
Distrib. Comput. (2005)
DOI 10.1007/s00446-005-0143-6

SPECIAL ISSUE: DISC 0 4

Hagit Attiya · Fabian Kuhn · C. Greg Plaxton ·
Mirjam Wattenhofer · Roger Wattenhofer

Efficient adaptive collect using randomization

Received: 23 November 2004 / Accepted: 3 May 2005 / Published online: 14 October 2005
C© Springer-Verlag 2005

Abstract An adaptive algorithm, whose step complexity
adjusts to the number of active processes, is attractive for
distributed systems with a highly-variable number of pro-
cesses. The cornerstone of many adaptive algorithms is an
adaptive mechanism to collect up-to-date information from
all participating processes. To date, all known collect algo-
rithms either have non-linear step complexity or they are im-
practical because of unrealistic memory overhead.

This paper presents new randomized collect algorithms
with asymptotically optimal O(k) step complexity and linear
memory overhead only. In addition we present a new deter-
ministic collect algorithm that beats the best step complexity
for previous polynomial-memory algorithms.

Keywords Adaptive algorithms · Total contention ·
Randomization

A preliminary version of this paper appeared in the Proceedings of the
18th Annual Conference on Distributed Computing (DISC) 2004 [10].

H. Attiya (B)
Department of Computer Science, The Technion, Haifa 32000, Israel
E-mail: hagit@cs.technion.ac.il

F. Kuhn · R. Wattenhofer
Deptartment of Information Technology and Electrical Engineering,
ETH Zurich, 8092 Zurich, Switzerland
E-mail: {kuhn, wattenhofer}@tik.ee.ethz.ch

C. G. Plaxton
Department of Computer Science, University of Texas at Austin,
1 University Station C0500, Austin, Texas 78712-0233

Partially supported by NSF Grants CCR–0310970 and ANI–0326001.
Also affiliated with Akamai Technologies, Inc., Cambridge, MA 02142
E-mail: plaxton@cs.utexas.edu

M. Wattenhofer
Department of Computer Science, ETH Zurich, 8092 Zurich,
Switzerland
E-mail: mirjam.wattenhofer@inf.ethz.ch

1 Introduction and related work

To solve certain problems, processes need to collect up-to-
date information about the other participating processes. For
example, in a typical indulgent consensus algorithm [11,
12], a process needs to announce its preferred decision value
and obtain the preferences of all other processes. Other prob-
lems where processes need to collect values are in the area
of atomic snapshots [1, 3, 9], mutual exclusion [2, 4, 6, 7],
and renaming [2]. A simple way that information about other
processes can be communicated is to use an array of regis-
ters indexed by process identifiers. An active process can
update information about itself by writing into its register.
A process can collect the information it wants about other
participating processes by reading the entire array of regis-
ters. This takes O(n) steps, where n is the total number of
processes.

When there are only a few participating processes, it is
preferable to be able to collect the required information more
quickly. An adaptive algorithm is one whose step complex-
ity is a function of the number of participating processes.
Specifically, if it performs at most h(k) steps when there are
k participating processes, we say that it is h-adaptive. An al-
gorithm is wait-free if all processes can complete their oper-
ations in a finite number of steps, regardless of the behavior
of the other processes [13].

Several adaptive, wait-free collect algorithms have been
presented [2, 8, 9]. In particular, there is an algorithm that
features an asymptotically optimal O(k)-adaptive collect,
but its memory consumption is exponential in the number
of potential processes [9], which renders the algorithm im-
practical. Other algorithms have polynomial (in the number
of potential processes) memory complexity, but the collect
costs �(k2) steps [9, 16]. (Moir and Anderson [16] em-
ploy a matrix structure to solve the renaming problem. The
same structure can be used to solve the collect problem, fol-
lowing ideas of [9].) The lower bound of Jayanti, Tan and
Toueg [14] implies that the step complexity of a collect al-
gorithm is �(k). This raises the question of the existence of
a collect algorithm that features an asymptotically optimal

H. Attiya et al.

O(k) step complexity and needs polynomial memory size
only.

This paper suggests that randomization can be used to
make adaptive collect algorithms more efficient, in contrast
to known deterministic algorithms with either super-linear
step complexity or unrealistic memory overhead. We present
a wait-free randomized algorithm with memory complexity
that is linear in n, step complexity that is linear in k for the
collect operation, and step complexity that is nearly loga-
rithmic in k for the first invocation of a store operation. The
algorithm is randomized, and the step complexity bounds
hold “with high probability” as well as “in expectation.” We
believe that randomization may bring a fresh approach to the
design of adaptive shared-memory algorithms.

Analogously to previous approaches, our randomized al-
gorithm (Sect. 4) uses splitters as introduced by Moir and
Anderson to govern the algorithmic decisions of processes
[16]. A splitter has an associated register. Various processes
may visit the splitter to try to acquire this register. The split-
ter ensures that at most one process succeeds in acquiring
the register. In addition, the splitter partitions the unsuccess-
ful processes into two sets. Ideally, these two sets are equal,
or approximately equal, in size. Using a deterministic split-
ter, it is difficult to partition the unsuccessful processes into
two approximately equal-sized sets. That being the case, it
is natural to consider a randomized splitter that flips a fair
coin to assign each unsuccessful process to one of the two
output partitions. As in the deterministic linear collect algo-
rithm of [9], where deterministic splitters are organized in a
complete binary tree, we find it useful to study the behavior
of a complete binary tree of randomized splitters, which we
refer to as a randomized splitter tree. The randomized split-
ter tree is the basic building block of our randomized adap-
tive collect algorithm. The algorithm itself corresponds to a
cascaded sequence of randomized splitter trees of geomet-
rically decreasing size, followed by a deterministic backup
structure. We prove that with high probability the backup
structure is unused.

A binary tree of randomized splitters was previously
used by Kim and Anderson [15] for adaptive mutual
exclusion.

In addition, Sect. 3 introduces a new wait-free, deter-
ministic algorithm that improves the trade-off between col-
lect time and memory complexity: Using polynomial mem-
ory only, we achieve o(k2) collect. For any integer γ > 1,
the algorithm provides a STORE with O(k) step complex-
ity, a COLLECT with O(k2/((γ − 1) log n)) step complexity
and O(nγ+1/((γ − 1) log n)) memory complexity. Inter-
estingly, by choosing γ accordingly, our deterministic al-
gorithm achieves the bounds of both previously known
algorithms [9, 16].

All new algorithms build on the basic collect algorithm
on a binary tree [9]. To employ this algorithm in a more ver-
satile manner than its original design, we rely on a new and
simplified proof for the linear step complexity of COLLECT
(Sect. 3.1).

2 Model

We assume a standard asynchronous shared-memory
model of computation. A system consists of n processes,
p1, . . . , pn , communicating by reading from and writing to
shared registers.

Processes are state machines, each with a (possibly in-
finite) set of local states, which includes a unique initial
state. In each step, the process determines which operation
to perform according to its local state, and subsequently
changes its local state according to the value returned by the
operation.

A register provides two operations: read, returning the
value of the register; and write, changing the register value
to the value of its input. A configuration consists of the states
of the processes and the values of the registers. In the ini-
tial configuration, every process is in the initial state and all
registers are ⊥. A schedule is a (possibly infinite) sequence
pi1 , pi2, . . . of process identifiers. An execution consists of
the initial configuration and a schedule, representing the in-
terleaving of steps by processes.

An implementation of an object of type X provides for
every operation OP of X a set of n procedures F1, . . . , Fn ,
one for each process. (Typically, the procedures are the same
for all processes.) To execute OP on X , process pi calls pro-
cedure Fi . The worst-case number of steps performed by
some process pi executing procedure Fi is the step complex-
ity of implementing OP.

An operation OPi precedes operation OP j (and OP j fol-
lows operation OPi) in an execution α, if the call to the pro-
cedure of OP j appears in α after the return from the proce-
dure of OPi .

Let α be a finite execution. Process pi is active at the end
of α if α includes a call of a procedure Fi without a matching
return.

The total contention during α is the number of all pro-
cesses that are active at the end of some prefix of α. Let f be
a non-decreasing function. An implementation is f -adaptive
to total contention if the step complexity of each invocation
of its procedures in α is bounded from above by f (k), where
k is the total contention during α.

For completeness, we also define the stronger notion
of adaptivity to point contention, which is not addressed
in this paper. The point contention during an interval in
α is the maximum number of processes that were simul-
taneously active at some point in time during that inter-
val. An implementation is f-adaptive to point contention if
the step complexity of its procedures is bounded by f (k),
where k is the point contention during the interval of the
procedure.

A collect algorithm provides two operations: Operation
STORE(val) by process pi sets val to be the latest value for
pi . A COLLECT operation returns a view, a partial function
V from the set of processes to a set of values, where V (pi)
is the latest value stored by pi , for each process pi . A COL-
LECT operation cop should not read from the future or miss
a preceding STORE operation sop. Formally, the following
validity properties hold for every process pi :

Efficient adaptive collect using randomization

stop

right

left

right

Fig. 1 Traversing the basic binary tree

– If V (pi) = ⊥, then no STORE operation by pi precedes
cop.

– If V (pi) = v �= ⊥, then v is the value of a STORE op-
eration sop of pi that does not follow cop, and there
is no STORE operation by pi that follows sop and
precedes cop.

3 Deterministic adaptive collect

3.1 The basic binary tree algorithm

Associated to each vertex in the complete binary tree of
depth n − 1 is a splitter [16]: A process entering a splitter
exits with either stop, left or right. It is guaranteed that if a
single process enters the splitter, then it obtains stop, and if
two or more processes enter the splitter, then there are two
processes that obtain different values. Thus the set of pro-
cesses is “split” into smaller subsets, according to the values
obtained.

To perform a STORE in the algorithm of [9], a process
writes its value in its acquired vertex. In case it has no ver-
tex acquired yet it starts at the root of the tree and moves
down the data structure according to the values obtained in
the splitters along the path: If it receives a left, it moves to
the left child, if it receives a right, it moves to the right child.
A process marks each vertex it accesses by raising a flag
associated with the vertex. Fig. 1 illustrates how a process
traverses the basic binary tree in a STORE operation.

We call a vertex marked, if its flag is raised. A process
i acquires a vertex v, or stops in v, if it receives a stop at
v’s splitter. It then writes its id into v.id and its value in
v.value. In Fig. 1, a vertex is black if it is acquired by some
process, it is grey if it is marked, and white in all other cases.
In later invocations of STORE, process i immediately writes
its value in v.value, clearly leading to a constant step com-
plexity. This leaves us to determine the step complexity of
the first invocation of STORE.

In order to perform a COLLECT, a process traverses the
part of the tree containing marked vertices in DFS order and
collects the values written in the marked vertices.

A complete binary tree of depth n−1 has 2n −1 vertices,
implying the following lemma.

Lemma 1 The memory complexity is �(2n).

Lemma 2 ([9]) Each process writes its id in a vertex with
depth at most k − 1 and no other process writes its id in the
same vertex.

Lemma 3 The step complexity of COLLECT at most 2k − 1.

Proof In order to perform a collect, a process traverses the
marked part of the tree. Hence, the step complexity of a col-
lect is equivalent to the number of marked (visited) vertices.

Let xk be the number of marked vertices in a tree, where
k processes access the root. The splitter properties imply the
following recursive equations:

xk = xi + xk−i−1 + 1, (i ≥ 0) (1)

xk = xi + xk−i + 1, (i > 0) (2)

Equation (1) holds if a process stops in the splitter; other-
wise, Eq. (2) holds.

We prove the lemma by induction; note that the lemma
trivially holds for k = 1. For the induction step, assume the
lemma is true for j < k, that is, x j ≤ 2 j − 1. Then we can
rewrite Eq. (1):

xk ≤ (2i − 1) + (2(k − i − 1) − 1) + 1 ≤ 2k − 1

and Eq. (2) becomes:

xk ≤ (2i − 1) + (2(k − i) − 1) + 1 ≤ 2k − 1. ��

3.2 The cascaded trees algorithm

We present a spectrum of algorithms, each providing a dif-
ferent trade-off between memory complexity and step com-
plexity. For an arbitrary constant γ > 1, the cascaded trees
algorithm provides a STORE with O(k) step complexity, a
COLLECT with O(k2/((γ − 1) log n)) step complexity and
O(nγ+1) memory complexity.

3.2.1 The algorithm

The cascaded trees algorithm is performed on a sequence of
n/((γ − 1)�log n) complete binary splitter trees of depth
γ �log n	, denoted T1, . . . , Tn/((γ−1)�log n). (To keep the cal-
culations simple, we assume that γ �log n	 is an integer and
that n is divisible by (γ − 1)�log n	.) Except for the last
tree, each leaf of tree Ti has an edge to the root of tree Ti+1
(Fig. 2).

To perform a STORE, a process writes in its acquired ver-
tex. If it has not acquired a vertex yet, it starts at the root of
the first tree and moves down the data structure as in the bi-
nary tree STORE (described in the previous section). A pro-
cess that does not stop at some vertex of tree Ti continues to
the root of the next tree. Note that both the right and the left
child of a leaf in tree Ti , 1 ≤ i ≤ n/((γ −1)�log n)−1, are
the root of the next tree. Algorithm 1 presents the code for
acquiring a vertex in the cascaded trees; note that the code

H. Attiya et al.

Fig. 2 Organization of splitters in the cascaded trees algorithm

Algorithm 1 Cascaded trees: Node acquisition
1: v = root of T1
2: repeat
3: v.mark = true
4: move = splitter(v)returns either stop, left, or right
5: if move == left then
6: v = v.left-child
7: els if move == right then
8: v = v.right-child
9: fi

10: until move == stop
11: v.id = id {write your identifier}
12: return(v)

relies on the fact (proved below) that a process will obtain
stop in one of the trees and does not include a condition to
avoid “falling out” of the cascaded trees.

The splitter properties guarantee that no two processes
stop at the same vertex.

To perform a COLLECT, a process traverses the part of
tree Ti containing marked vertices in DFS order and collects
the values written in the marked vertices. If any of the leaves
of tree i are marked, the process also collects in tree Ti+1.

3.2.2 Analysis

We have n/((γ − 1)�log n) trees, each of depth γ �log n	,
implying the following lemma.

Lemma 4 The memory complexity is

O

(
nγ+1

(γ − 1) log n

)
.

Let k be the number of processes that call STORE at least
once and ki be the number of processes that access the root
of tree Ti .

Lemma 5 At least min{ki , (γ −1)�log n	} processes do not
exit from a leaf of tree Ti for every i , 1 ≤ i ≤ n/(γ −
1)�log n	.

Proof Let mi be the number of marked leaves in tree Ti .
Consider the sub-tree T ′

i that is induced by all the paths from
the root to the marked leaves of Ti .

We first argue that a non-leaf vertex v ∈ T ′
i with one

marked child in T ′
i corresponds to at least one process that

does not continue to Ti+1. If only one child value (left or
right) is returned at v, then either some process obtained
stop at v or some process did not return from the splitter as-
sociated with v. Otherwise, processes reaching v return both
left and right. Since only one path leads to a leaf, say, the
one through the left child, at least one process (that obtained
right at v) does not access the right child of v and does not
reach a leaf of Ti .

The number of vertices in T ′
i with two children is exactly

mi − 1, since each node with two children adds one to the
number of paths to the leaves in T ′

i .
To count the number of vertices with one child, we es-

timate the total number of vertices in T ′
i and then subtract

mi − 1.
Since T ′

i is a subtree of a binary tree, the number of
nodes at a level at most doubles the number of nodes in
the preceding level. Conversely, the number of vertices on
each preceding level is at least half the number at the current
level. Starting above the leaves of T ′

i , whose number is mi ,
we therefore get the following inequality for the number of
non-leaf vertices ni of tree T ′

i :

ni ≥ mi

2
+ mi

4
+ · · · + mi

2�log mi 	︸ ︷︷ ︸
mi −1

+1 + · · · + 1,︸ ︷︷ ︸
γ �log n	−�log mi 	

where the number of ones in the equation follows from the
fact that the tree Ti has depth γ log n and after �log mi	 lev-
els the number of vertices on the preceding level is at least
one. The claim follows since mi ≤ n. ��
Lemma 6 A process writes its id in a vertex in tree Tm at the
latest, for the smallest m such that k ≤ m · (γ − 1)�log n	.

Proof If k ≤ (γ − 1)�log n	, then a process stops in tree T1,
by Lemma 2, and the claim follows.

Assume (m−1)·(γ −1)�log n	 < k ≤ m ·(γ −1)�log n	,
for some integer m > 1. By Lemma 5 at least (γ −1)�log n	
processes do not exit from a leaf of tree Ti , for every i , 1 ≤
i ≤ m − 1. Thus, at most (γ − 1)�log n	 processes access
tree Tm and by Lemma 2, a process stops in a vertex of tree
Tm at the latest. ��

Efficient adaptive collect using randomization

Thus a process stops after accessing at most �k/((γ −
1)�log n)	 trees. Since the depth of each tree is γ �log n	
and each splitter requires a constant number of opera-
tions, it follows that the step complexity of the first invo-
cation of STORE is O(k/((γ − 1)�log n) · γ �log n) =
O(γ /(γ − 1)k). All invocations thereafter require O(1)
steps.

By Lemma 3, the time to collect in tree Ti is 2ki − 1. By
Lemma 6, all processes stop after at most k/((γ − 1) log n)
trees. This implies the next lemma:

Lemma 7 The step complexity of a COLLECT is

O

(
k2

(γ − 1) log n

)
.

Remark: The cascaded-trees algorithm provides a spectrum
of trade-offs between memory complexity and step com-
plexity. Choosing γ = 1 + 1/ log n gives an algorithm
with O(k2) step complexity for COLLECT and O(n2) mem-
ory complexity; this matches the complexities of the ma-
trix algorithm [16]. Setting γ = n/ log n + 1 yields a sin-
gle binary tree of height n; namely, an algorithm where
the step complexity of COLLECT is linear in k but the
memory requirements are exponential, as in the algorithm
of [9].

4 Adaptive collect with randomized splitters

The algorithm presented in this section uses another kind
of splitter, described in Sect. 4.1, that makes a random
choice in order to direct processes left and right. In Sect. 4.2
we analyze the behavior of a complete binary tree of such
randomized splitters. In Sect. 4.3 we present our adap-
tive collect algorithm, which utilizes a cascaded sequence
of randomized splitter trees. In Sect. 4.4 we analyze this
algorithm. Our three main results are Theorem 1, which
bounds the memory complexity of the algorithm, Theo-
rem 2, which bounds the step complexity of the first invoca-
tion of STORE, and Theorem 3, which bounds the step com-
plexity of COLLECT. Most of our analysis is geared towards
establishing the latter pair of theorems. We remark that the
constant factors associated with our bounds could be im-
proved via a more careful analysis. In general we have opted
to simplify the presentation at the expense of such constant
factors.

4.1 A randomized splitter

Algorithm 2 presents the code defining the operation of our
randomized splitter. If only one process enters the splitter,
it is guaranteed to stop. If two or more processes enter the
splitter, then zero or one processes stop, and the remaining
processes each get a return value of left or right, indepen-
dently and uniformly at random.

Algorithm 2 Randomized Splitter
1: X = idi
2: if Y then return randomly right or left
3: Y = true
4: if (X == idi) then
5: return stop
6: else
7: return randomly right or left
8: fi

4.2 Randomized splitter trees

A randomized splitter tree is a complete binary tree with a
randomized splitter at each vertex. A process enters a ran-
domized splitter tree at the root and attempts to acquire the
root vertex by entering the associated randomized splitter.
If this attempt is successful, the process stops at the root
randomized splitter. Otherwise, the process recursively de-
scends to one of the two subtrees of the root depending on
the value, left or right, returned by the root randomized split-
ter. A process is said to stop in the tree if it successfully ac-
quires some vertex. A vertex that is visited by at least one
process is said to be marked.

Randomized splitter trees are the basic building block of
the randomized adaptive collect algorithm to be presented
in Sect. 4.3. In this section, we establish a number of ba-
sic probabilistic lemmas characterizing the behavior of this
building block. Throughout the remainder of Sect. 4, we find
it convenient to employ a shorthand notation to characterize
the probability with which certain claims hold. In particular,
when we say that a claim holds “whp(a),” where a is a pa-
rameter, we mean that the probability that the claim fails to
hold is upper bounded by an arbitrary inverse polynomial in
a. In other words, the claim holds with probability at least
1 − a−c, where c is a positive constant that can be set arbi-
trarily large by appropriately adjusting other constants in the
relevant context.

A basic technical tool that we use is the following stan-
dard bound on the upper tail of the binomial distribution.
Let X denote a random variable drawn from B(n, p), that
is, assume that X is the number of successes observed in n
independent Bernoulli trials, each with success probability
p. Then the following inequality holds for all nonnegative δ:

Pr(X ≥ (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np

(3)

At times it will be convenient to use the following weakened
version of the preceding inequality, which holds for all α ≥
1. This version may be derived from Eq. (3) by observing
that eδ < e1+δ and setting α = δ + 1.

Pr(X ≥ αnp) ≤
(e

α

)αnp
(4)

We also make use of the following bound on the lower tail of
the binomial distribution, which holds for all δ in the interval
[0, 1].
Pr(X ≤ (1 − δ)np) ≤ exp(−δ2np/2) (5)

H. Attiya et al.

See [5] or [17], for example, for derivations of Eqs. (3)
and (5).

For any pair of real-valued random variables X and Y ,
we say that X dominates Y if for all reals z, Pr(X ≥ z) ≥
Pr(Y ≥ z). The following sequence of lemmas are con-
cerned with the random experiment in which b processes
enter a randomized splitter tree with a leaves, where a and b
are positive integers such that b ≤ a.

Lemma 8 The number of processes leaving the tree is dom-
inated by a random variable drawn from 2B(b, b/a).

Proof Fix an arbitrary numbering of the processes from 1
to b. For any process x , let E0(x) denote the event that x
leaves the tree, let E1(x) denote the event that x descends
to a leaf and at least one other process descends to the same
leaf, and let E2(x) denote the event that x descends to a leaf
and at least one other lower-numbered process descends to
the same leaf. Let the random variable X (resp., Y , Z) denote
the total number of processes x such that event E0(x) (resp.,
E1(x), E2(x)) occurs.

For any leaf v, let the random variable W (v) denote
the number of processes that descend to leaf v. Note that
Y = �v:W (v)>1W (v) while Z = �v:W (v)>1W (v) − 1. It
follows that 2Z ≥ Y , so the random variable 2Z dominates
Y . Furthermore, Y dominates X since event E1(x) occurs
whenever event E0(x) occurs. Thus 2Z dominates X , and
we can complete the proof of the lemma by showing that Z
is dominated by a random variable drawn from B(b, b/a).

To see that Z is dominated by a random variable drawn
from B(b, b/a), consider a modified version of the random
experiment in which no process stops or fails at an internal
vertex of the randomized splitter tree, i.e., each process de-
scends randomly from the root until it reaches a leaf. For this
modified random experiment, let E ′

2(x) denote the event that
a process x descends to the same leaf as at least one other
lower-numbered process. Let the random variable Z ′ denote
the total number of processes x such that E ′

2(x) occurs. Note
that we can convert a run of the original experiment to a run
of the modified experiment as follows: For each process x
that stops or fails at some internal vertex v in the original
experiment, randomly extend the path of x downward from
v to a leaf. Observe that in such a pair of runs of the original
and modified experiment, for any process x , if E2(x) occurs
in the original experiment then E ′

2(x) occurs in the modified
experiment. It follows that Z ′ dominates Z .

We now complete the proof by showing that Z ′ is domi-
nated by a random variable drawn from B(b, b/a). One way
to run the modified experiment is to consider the processes
one at a time in numerical order, and to generate a uniformly
random root-leaf path for each process. Running the exper-
iment in this manner, we see that Z ′ counts the number of
times a process selects a previously selected path. Since the
probability any process selects a previously selected path is
at most (b − 1)/a < b/a, Z ′ is dominated by a random
variable drawn from B(b, b/a). ��
Lemma 9 The number of processes that leave the tree is
upper bounded by max(4b2/a, O(log a)) whp(a).

Proof By Lemma 8, it is sufficient to prove that if X is a
random variable drawn from B(b, b/a), then X is at most
max(2b2/a, O(log a)) whp(a). In other words, we wish to
prove that the probability X exceeds max(4b2/a, c log a)
can be driven below an arbitrary inverse polynomial in a by
making a sufficiently large choice of the positive constant c.

To see this, let us first assume that c log a ≤ 8b2/a and
consider Eq. (3) with n = b, p = b/a, and δ = 1. With this
choice of the parameters, Eq. (3) implies that the probability
X exceeds 2b2/a is at most

(e/4)b2/a ≤ (e/4)(c/8) log a = a−c′

where c′ = (2 − log2 e)c/8 ≈ 0.06966c. Thus this probabil-
ity can be made smaller than an arbitrary inverse polynomial
in a by choosing the constant c sufficiently large.

Now let us assume that c log a ≥ 8b2/a. In this case,
consider Eq. (4) with n = b, p = b/a, and α = ac log a

b2

so that αnp = c log a. With this choice of parameters,
Eq. (4) implies that the probability X exceeds c log a is at
most (e/α)c log a . Now observe that α ≥ 8 ≥ 2e since
c log a ≥ 8b2/a. Therefore the probability that X ≥ c log a
is at most 2−c log a = a−c, completing the proof. ��
Lemma 10 If b = O(a1/3), then the number of processes
that leave the tree is O(1) whp(a).

Proof By Lemma 8, it is sufficient to prove that if X is a ran-
dom variable drawn from B(b, b/a) and b = O(a1/3), then
the probability that X exceeds a sufficiently large positive
constant is less than an arbitrary inverse polynomial in a.

To see this, consider Eq. (4) with n = b, p = b/a, and
α = ac

b2 for some positive constant c. With this choice of
parameters, Eq. (4) implies that the probability X exceeds c
is at most(

b2e

ac

)c

= O(a−c/3),

where the preceding equation follows from our assumption
that b = O(a1/3). This probability can be driven below an
arbitrary inverse polynomial in a by making a sufficiently
large choice of the positive constant c. ��
Lemma 11 If b = O(1) then the probability that no pro-
cesses leave the tree is 1 − O(1/a).

Proof By Lemma 8, it is sufficient to prove that if X is a
random variable drawn from B(b, b/a) and b = O(1), then
the probability that X ≥ 1 is O(1/a).

To see this, consider Eq. (4) with n = b, p = b/a, and
α = a

b2 . With this choice of parameters, Eq. (4) implies that
the probability X ≥ 1 is at most b2e/a, which is O(1/a) for
b = O(1). ��
Lemma 12 Let X denote a random variable equal to the
number of independent flips of a fair coin required to obtain
b − 1 heads. Then the number of marked vertices is domi-
nated by X + b.

Efficient adaptive collect using randomization

Proof Call a marked vertex good if some process stops or
fails at the vertex, and bad otherwise. Note that there are at
most b good vertices. Below we complete the proof of the
lemma by arguing that the number of bad vertices is domi-
nated by X .

Note that two or more processes leave each bad vertex.
Call a bad vertex v unlucky if all of the processes leaving

v descend to the same child of v. Call a bad vertex lucky
otherwise.

We claim that at most b − 1 bad vertices are lucky. One
way to see this is to reveal the downward paths of all pro-
cesses in a breadth-first manner starting at the root. While
doing this, we maintain a partition of the processes into
equivalence classes based on the portions of their paths that
have been revealed thus far. Initially, all processes belong to
a single equivalence class since all of their associated paths
are empty. When a lucky bad vertex v is encountered, the
equivalence class of processes descending to v is partitioned
into two or three nonempty equivalence classes. (A three-
way partition is possible because one process could stop at
v.) Suppose we encounter a (b−1)th lucky bad vertex. Then
at that point we have exactly b singleton equivalence classes,
and so we cannot encounter another bad vertex. To complete
the proof, note that each bad vertex we encounter has proba-
bility at most 1/2 of being unlucky, independent of the luck-
iness of any previously identified bad vertices. It follows that
the number of bad vertices is dominated by X . ��

Lemma 13 The expected number of marked vertices is
O(b).

Proof Immediate from Lemma 12. ��
Lemma 14 The number of marked vertices is O(b) whp(b).

Proof Let the random variable X be as defined in the state-
ment of Lemma 12. By Lemma 12, it is sufficient to prove
that X = O(b) whp(b). Let Y denote the number of heads in
4b flips of a fair coin. In order to establish the desired bound
on X , it is sufficient to prove that Y ≥ b whp(b). The latter
claim is immediate from Eq. (5) with n = 4b, p = 1/2,
and δ = 1/2. Remark: The inverse polynomial bound on
the failure probability claimed in this lemma is somewhat
weaker than what is implied by Eq. (5), but is adequate for
our purposes. ��
Lemma 15 The number of marked vertices is O(b + log a)
whp(a).

Proof Let the random variable X be as defined in the state-
ment of Lemma 12. By Lemma 12, it is sufficient to prove
that X = O(b + log a) whp(a). Let c be a positive integer
constant, and let Y denote the number of heads in 4b+c log a
flips of a fair coin. Letting n = 4b + c log a, p = 1/2, and
δ = 1/2 in Eq. (5), we find that the probability Y ≤ b+ c log a

4

is at most exp(− b
4 − c log a

16) ≤ exp(− c log a
16). It follows that

the number of flips required to obtain b − 1 heads is at most
4b + O(log a) = O(b + log a) whp(a). ��

Lemma 16 The maximum depth of any marked vertex is at
most O(log b), both whp(b) and expected.

Proof The probability that two processes follow the same
downward path to depth i is at most 2−i . By a union bound,
the probability that any pair of the b processes follow the
same downward path to depth i is qi = O(b22−i). The
whp(b) claim follows since a vertex at level i +1 can only be
marked if two or more processes follow the same downward
path to depth i . The bound on the expectation follows since
the qi ’s decrease geometrically with i . ��

4.3 The construction

Our randomized adaptive collect algorithm employs a cas-
caded sequence of randomized splitter trees Ti , 1 ≤ i ≤ �,
where � = O(log log n), along with a backup array of size
n. (See Fig. 3.) Assume without loss of generality that n is a
power of 2. Then tree Ti has ni = n·25−i leaves and its depth
is log n +5− i . As in Fig. 2, for each tree Ti such that i < �,
both children of all the leaves of Ti are defined to be the root
of Ti+1. Both children of all the leaves of T� are defined to be
nil. On the first invocation of a STORE operation, a process
enters T1 and proceeds downward as described in Sect. 4.2
until it either stops at a vertex of some Ti –thereby success-
fully acquiring the register associated with that vertex–or
leaves T�. In the latter case, the process raises a global flag
(called overflow) to indicate that the backup array is in use,
and acquires the array register corresponding to its ID. That
is, process i acquires register i of the array, where 1 ≤ i ≤ n.
In either case, the process completes the STORE operation
by writing the value into the acquired register. Subsequent
STORE operations by the same process are completed in a
constant number of operations by writing into the register
acquired previously. Of course, a process may fail at any
point during its execution.

The code for acquiring a vertex is similar to Algorithm 1,
and appears in Algorithm 3.

The COLLECT works analogously to the previous algo-
rithms. The marked vertices of T1 are traversed in DFS order.
Then, if the root of T2 is marked, the marked vertices of T2
are traversed, and so on. Finally, if the flag of the array (over-
flow) is set, the entire backup array is read.

4.4 Analysis

We now analyze the performance of our adaptive collect al-
gorithm in terms of the parameters n and k. The memory
complexity of the algorithm is straightforward to analyze.Theorem 1 The memory complexity is O(n).

Proof The Ti ’s are geometrically decreasing in size, and T1
has size �(n), so the total size of all the Ti ’s is linear in n.
The size of the backup array is also linear in n. ��

Our remaining goal is to bound the step complexity of
the STORE and COLLECT operations. To this end, we first
present a few auxiliary definitions and lemmas.

H. Attiya et al.

Fig. 3 Cascaded randomized splitters trees

Algorithm 3 Cascaded randomized splitter trees: Node
acquisition
1: v = root of T1
2: repeat
3: v.mark = true
4: move = rand-splitter(v) {returns either stop, left, or right}
5: if move == left then
6: v = v.left-child
7: else if move == right then
8: v = v.right-child
9: fi

10: until move == stop or v == nil
11: if move == stop then
12: v.id = id {write your identifier}
13: return(v)
14: fi
15: overflow = true {the backup array is used}
16: return(backup[id])

For all i such that 1 ≤ i ≤ �, let ki denote the number of
processes entering Ti . Thus k = k1. In addition, it is conve-
nient to define k�+1 as the number of processes entering the
backup array.

Throughout the remainder of this section, let c denote a
sufficiently large positive constant. Call a tree marked if at
least one of its vertices is marked, that is, Ti is marked if and
only if ki > 0. Assign a color to each tree Ti as follows. Each
unmarked tree is white. If there is no marked tree Ti such that
ki ≤ c log n, then all marked trees are red. Otherwise, the
marked tree Ti with the least index i such that ki ≤ c log n
is purple, all (marked) trees with lower indices are red, and
all marked trees with higher indices are blue.

In several of the proofs that follow, we make implicit
use of the fact that any claim holding whp(ni), where 1 ≤
i ≤ �, also holds whp(n). This is because ni is within a
polylogarithmic factor of n, and as such is lower-bounded
by a polynomial in n.

Lemma 17 If tree Ti is red, then whp(n),

ki+1/ni+1 ≤ max(8(ki/ni)
2, O(log ni)/ni).

Proof Lemma 9 implies that ki+1 ≤ max(4k2
i /ni ,

O(log ni)) whp(ni), and hence whp(n). The claim follows
by dividing through by ni and using the fact that ni+1 =
ni/2. ��

It is convenient to define the following function for all
positive integers a and b such that a ≥ b.

f (a, b) = max[1, (log log a) − log log(2a/b)] (6)

Note that f (a, b) = O(log log b), and f (a, b) = O(1) for
b ≤ a1−ε, where ε denotes an arbitrarily small positive con-
stant.

Lemma 18 There are O(f (n, k)) red trees whp(n).

Proof If k1 ≤ c log n, then there are no red trees, so the
claim is trivial. In what follows, we assume that k1 ≥ c log n.
By Lemma 17, whp(n), either k2 is O(log n) or k2/n2 is at
most 8(k1/n1)

2. If k2 is O(log n), then assuming we choose
the positive constant c sufficiently large, there is exactly one
red tree. Otherwise, there are at least two red trees. So we
may assume in what follows that k2/n2 is at most 8(k1/n1)

2.
By Lemma 17, whp(n), either k3 is O(log n) or k3/n3 is at
most 8(k2/n2)

2 ≤ 83(k1/n1)
4. If k3 is O(log n), then assum-

ing we choose the positive constant c sufficiently large, there
are exactly two red trees. Otherwise, there are at least three
red trees. So we may assume in what follows that k3/n3 is at
most 83(k1/n1)

4. Continuing in this manner, we find that af-
ter i iterations, either we have exhausted all of the red trees,
or

ki/ni ≤ 82i −1(k1/n1)
2i

= 1

8
(8k1/n1)

2i
.

Efficient adaptive collect using randomization

Thus we can obtain a whp(n) upper bound the number of
red trees by determining the maximum i such that the pre-
ceding upper bound on ki/ni is at least 1/n, say, since 1/n
is O(

log n
ni

) for any i . Taking logarithms, and using k = k1

and n1 = 16n, we seek the maximum i such that 2i log k
2n ≥

log 8
n , or equivalently, 2i log 2n

k ≤ log n
8 . Taking logarithms

once again, and rearranging terms, we find that whp(n) the
number of red trees is at most log log n

8 − log log 2n
k ≤

f (n, k). ��
Lemma 19 If Ti is blue then ki = O(1) whp(n).

Proof If Ti is blue then there is a purple tree Tj such that
j < i . Lemma 10 implies that k j+1 is O(1) whp(n). The
claim follows since ki ≤ k j+1. ��
Lemma 20 There are O(1) blue trees whp(n).

Proof Assume that there are one or more blue trees and let
Ti be the blue tree with the least index. By Lemma 19, ki =
O(1) whp(n). By repeated application of Lemma 11 we find
that, conditional on ki = O(1), the probability that there are
more than m blue trees is O(a−m) for any positive constant
m. The claim of the lemma follows. ��
Lemma 21 There are O(f (n, k)) marked trees whp(n).

Proof Recall that every marked tree is either red, purple, or
blue, and there is at most one purple tree. Thus the claim
follows from Lemmas 18 and 20 and the observation that
f (n, k) ≥ 1. ��
Lemma 22 We can choose � such that � = O(log log n) and
whp(n) the backup array is unused.

Proof It is sufficient to prove that the total number of
marked trees is O(log log n) whp(n). This follows from
Lemma 21 since f (n, k) = O(log log n) for all k. ��
Lemma 23 The expected number of marked trees is at most
O(f (n, k)).

Proof By our choice of �, the maximum number of
marked trees is O(log log n). Thus the desired bound
on the expected number of marked trees follows from
Lemma 21. ��

We are now ready to state and prove the two main theo-
rems of this section.

Theorem 2 The step complexity of the first invocation of
STORE satisfies the following upper bounds:

• O((log n) log log n) worst case;
• O(f (n, k) log n) whp(n);
• O(f (n, k) log k) whp(k);
• O(f (n, k) log k) expected.

Proof Let the random variable X denote the the max-
imum depth of any marked node in the overall cas-
caded tree structure. Note that in order to establish the
step complexity bounds claimed in the lemma, it is suf-
ficient to establish that these bounds hold for the random
variable X .

Note that each tree has O(log n) depth. The worst case
bound follows since there are � = O(log log n) trees. The
whp(n) bound follows from Lemma 21. For the two remain-
ing bounds, let us consider the cases k ≤ √

n and k ≥ √
n

separately.
First assume that k ≤ √

n. At most k processes enter any
marked tree, so Lemma 16 implies that whp(k) the maxi-
mum depth of any marked vertex within a marked tree Ti
(i.e., relative to the root of Ti) is O(log k). Furthermore,
f (n, k) = O(1) for k ≤ √

n, so the number of marked
trees is O(1) whp(n) by Lemma 21. We conclude via a
union bound that whp(k) there are O(1) marked trees and
that all marked vertices in any marked tree Ti occur at depth
O(log k) within Ti . It follows that X is O(log k) whp(k),
as required. To bound the expected value of X , note that
Lemma 23 implies that the expected number of marked
trees is O(1). Furthermore, since at most k processes en-
ter any marked tree, Lemma 16 implies that the expected
maximum depth of any marked node within any marked
tree is O(log k). It follows that the expected value of X is
O(log k).

Now assume that k ≥ √
n. In this case, log k =

�(log n), so it is sufficient to establish a bound of
O(f (n, k) log n), both whp(k) and expected. But both of
these bounds are immediate from our whp(n) bound. ��
Theorem 3 The step complexity of COLLECT satisfies the
following upper bounds:

• O(n) worst case;
• O(k + log n) whp(n);
• O(k) whp(k);
• O(k) expected.

Proof Let the random variable X denote the total number of
marked vertices in the randomized splitter trees. Lemma 22
implies that in order to establish the step complexity bounds
claimed in the lemma, it is sufficient to establish that these
bounds hold for the random variable X .

The O(n) worst case bound on X is immediate from
Theorem 1.

Lemma 9 implies that the sequence of ki ’s associated
with the red trees decreases (super-)geometrically whp(n).
Thus, Lemma 15 implies that the number of marked ver-
tices in all red trees is O(k) whp(n). The number of marked
vertices in the purple tree, if any, is O(log n) whp(n) by
Lemma 15. The number of marked vertices in all blue trees
is O(log n) whp(n) by Lemmas 19 and 20, and the fact that
the depth of every tree is O(log n). Thus X = O(k + log n)
whp(n).

Now let us prove that X = O(k) whp(k). If T1 is red,
then k = �(log n), so we have X = O(k + log n) = O(k)
whp(n), implying that X = O(k) whp(k). Otherwise, T1 is

H. Attiya et al.

Table 1 Summary of the complexities achieved by different collect algorithms. See Equation (6) for the definition of the function f

Step Complexity Memory

Algorithm COLLECT STORE Complexity

triangular matrix [16] O(k2) O(k) O(n2) deterministic
tree [9] O(k) O(k) O(2n) deterministic
cascaded trees (Sec. 3.2) O(k2/(ε log n)) O(k/ε) O(n2+ε) deterministic
randomized splitters (Sec. 4) O(k) O(f (n, k) log k) O(n) randomized

purple, and Lemma 14 implies that the number of marked
vertices in T1 is O(k) whp(k). Furthermore, Lemma 16 im-
plies that whp(k) there are no blue trees, so X = O(k)
whp(k).

It remains to prove that the expectation of X is O(k). If
T1 is red, then k = �(log n) so X = O(k + log n) = O(k)
whp(n). The latter bound implies that the expectation of X
is O(k), since X = O(n) in the worst case. If T1 is not red
then it is purple, so k = O(log n) and Lemma 23 implies
that the expected number of marked trees is O(1). By the
expectation bound of Lemma 13, the expected value of X is
O(k) times the expected number of marked trees, and hence
is O(k). ��

5 Conclusions

We presented new deterministic and randomized adaptive
collect algorithms. Table 1 compares the algorithms pre-
sented in this paper with previous work. The algorithms are
adaptive to so-called total contention, that is, to the maxi-
mum number of processes that were ever active during the
execution. There are other contention definitions which are
more fine-grained, such as point contention. The point con-
tention during an execution interval is the maximum number
of processes that were simultaneously active at some point
in time during that interval. We believe that some of our new
techniques carry over to algorithms that adapt to point con-
tention [2, 3, 8].

Our paper shows that it is possible to perform a
COLLECT operation in O(k) time with polynomial mem-
ory using randomization. To determine the best possible
step complexity for COLLECT achievable by a deterministic
algorithm with polynomial memory is an interesting open
problem.

References

1. Afek, Y., Merritt, M.: Fast, wait-free (2k − 1)-renaming. In: Pro-
ceedings of the 18th Annual ACM Symposium on Principles of
Distributed Computing, pp. 105–112 (1999)

2. Afek, Y., Strupp, G., Touitou, D.: Long-lived adaptive collect with
applications. In: Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science, pp. 262–272 (1999)

3. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive atomic
snap-shot and immediate snapshot. In: Proceedings of the 19th

Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 71–80 (2000)

4. Afek, Y., Stupp, G., Touitou., D.: Long lived adaptive splitter and
applications. Distributed Computing 15(2), 67–86 (2002)

5. Alon, N., Spencer. J.H: The probabilistic method. Wiley, New
York, NY (1991)

6. Anderson, J., Kim, Y.-J., Herman, T.: Shared-memory mutual ex-
clusion: Major research trends since 1986. Distributed Computing
16, 5–110 (2003)

7. Attiya, H., Bortnikov, V.: Adaptive and efficient mutual exclusion.
Distributed Computing 15(3), 177–189 (2002)

8. Attiya, H., Fouren, A.: Algorithms adaptive to point contention.
Journal of the ACM 50(4), 444–468 (2003)

9. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm
with applications. Distributed Computing 15(2), 87–96 (2002)

10. Attiya, H., Kuhn, F., Wattenhofer, M., Wattenhofer, R.: Efficient
adaptive collect using randomization. In: Proceedings of the 18th
Annual Conference on Distributed Computing, volume 3274 of
Lecture Notes in Computer Science, pp 159–173. Springer (2004)

11. Guerraoui, R.: Indulgent algorithms. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 289–297 (2000)

12. Guerraoui, R., Raynal, M.: A generic framework for indulgent
consensus. In: Proceedings of the 23rd International Conference
on Distributed Computing Systems, pp. 88–95 (2003)

13. Herlihy, M.: Wait-free synchronization. CM Transactions on Pro-
gramming Languages and Systems 13(1), 124–149 (1991)

14. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds
for nonblocking implementations. SIAM Journal on Computing
30(2), 438–456 (2000)

15. Kim, Y.-J., Anderson, J.: A time complexity bound for adaptive
mutual exclusion. In: Proceedings of the 14th International Sym-
posium on Distributed Computing, volume 2180 of Lecture Notes
in Computer Science, pp. 1–15 (2001)

16. Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived
renaming. Science of Computer Programming 25(1), 1–39 (1995)

17. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge
University Press, Cambridge, UK (1995)

