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Abstract. We study the convergence of influence networks, where each node
changes its state according to the majority of its neighbors. Our main result is a
new Ω(n2/ log2 n) bound on the convergence time in the synchronous model,
solving the classic “Democrats and Republicans” problem. Furthermore, we give
a bound of Θ(n2) for the sequential model in which the sequence of steps is
given by an adversary and a bound ofΘ(n) for the sequential model in which the
sequence of steps is given by a benevolent process.

1 Introduction

What do social networks, belief propagation, spring embedders, cellular automata, dis-
tributed message passing algorithms, traffic networks, the brain, biological cell systems,
or ant colonies have in common? They are all examples of “networks”, where the enti-
ties of the network are continuously influenced by the states of their respective neigh-
bors. All of these examples of influence networks (INs) are known to be difficult to
analyze. Some of the applications mentioned are notorious to have long-standing open
problems regarding convergence.

In this paper we deal with a generic version of such networks: The network is given
by an arbitrary graph G = (V,E), and all nodes of the graph switch simultaneously to
the state of the majority of their respective neighbors. We are interested in the stability
of such INs with a binary state. Specifically, we would like to determine whether an
IN converges to a stable situation or not. We are interested in how to specify such
a stable setting, and in the amount of time needed to reach such a stable situation. We
study several models how the nodes take turns, synchronous, asynchronous, adversarial,
benevolent.

Our main result is for synchronous INs: Each node is assigned an initial state from the
set {R,B}, and in every round, all nodes switch their state to the state of the major-
ity of their neighbors simultaneously. This specific problem is commonly referred to
as “Democrats and Republicans”, see e.g. Peter Winkler’s CACM column [Win08]. It
is well known that this problem stabilizes in a peculiar way, namely that each node
eventually is in the same state every second round [GO80]. This result can be shown
by using a potential bound argument, i.e., until stabilization, in each round at least one
more edge becomes “more stable”. This directly gives a O(n2) upper bound for the
convergence time. On the other hand, using a slightly adapted linked list topology, one
can see that convergence takes at least Ω(n) rounds. But what is the correct bound for



this classic problem? Most people that worked on this problem seem to believe that the
linear lower bound should be tight, at least asymptotically. Surprisingly, in the course
of our research, we discovered that this is not true. In this paper we show that the upper
bound is in fact tight up to a polylogarithmic factor. Our new lower bound is based on
a novel graph family, which has interesting properties by itself. We hope that our new
graph family might be instrumental to research concerning other types of INs, and may
prove useful in obtaining a deeper understanding of some of the applications mentioned
above.

We complement our main result with a series of smaller results. In particular, we look
at asynchronous networks where nodes update their states sequentially. We show that
in such a sequential setting, convergence may take Θ(n2) time if given an adversarial
sequence of steps, and Θ(n) if given a benevolent sequence of steps.

2 Related Work

Influence networks have become a central field of study in many sciences. In biology,
to give three examples from different areas, [RT98] study networks in the context of
brain science, [AAB+11] study cellular systems and their relation to distributed al-
gorithms, and [AG92] study networks in the context of ant colonies. In optimization
theory, believe propagation [Pea82, BTZ+09] has become a popular tool to analyze
large systems, such as Bayesian networks and Markov random fields. Nodes are con-
tinuously being influenced by their neighbors; repeated simulation (hopefully) quickly
converges to the correct solution. Belief propagation is commonly used in artificial
intelligence and information theory and has demonstrated empirical success in numer-
ous applications such as coding theory. A prominent example in this context are the
algorithms that classify the importance of web pages [BP98, Kle99]. In physics and
mechanical engineering, force-based mechanical systems have been studied. A typical
model is a graph with springs between pairs of nodes. The entire graph is then simu-
lated, as if it was a physical system, i.e. forces are applied to the nodes, pulling them
closer together or pushing them further apart. This process is repeated iteratively until
the system (hopefully) comes to a stable equilibrium, [KK89, Koh89, FER91, KW01].
Influence networks are also used in traffic simulation, where nodes (cars) change their
position and speed according to their neighboring nodes [NS92]. Traffic networks of-
ten use cellular automata as a basic model. A cellular automaton [Neu66, Wol02] is a
discrete model studied in many fields, such as computability, complexity, mathematics,
physics, and theoretical biology. It consists of a regular grid of cells, each in one of a
finite number of states, for instance 0 and 1. Each cell changes its state according to the
states of its neighbors. In the popular game of life [Gar70], cells can be either dead or
alive, and change their states according to the number of alive neighbors.

Our synchronous model is related to cellular automata, on a general graph; however,
nodes change their opinion according to the majority of their neighbors. As majority
functions play a central role in neural networks and biological applications this model
was already studied during the 1980s. Goles and Olivos [GO80] have shown that a
synchronous binary influence network with a generalized threshold function always



leads to a fixed point or to a cycle of length 2. This means that after a certain amount of
synchronous rounds, each participant has either a fixed opinion or changes its mind in
every round. Poljak and Sura [PS83] extended this result to a finite number of opinions.
In [GT83], Goles and Tchuente show that an iterative behavior of threshold functions
always leads to a fixed point. Sauerwald and Sudholt [SS10] study the evolution of cuts
in the binary influence network model. In particular, they investigate how cuts evolve
if unsatisfied nodes flip sides probabilistically. To some degree, one may argue that we
look at the deterministic case of that problem instead.

In sociology, understanding social influence (e.g. conformity, socialization, peer pres-
sure, obedience, leadership, persuasion, sales, and marketing) has always been a cor-
nerstone of research, e.g. [Kel58]. More recently, with the proliferation of online social
networks such as Facebook, the area has become en vogue, e.g. [MMG+07, AG10].
Leskovec et al. [LHK10] for instance verify the balance theory of Heider [Hei46] re-
garding conformity of opinions; they study how positive (and negative) influence links
affect the structure of the network. Closest to our paper is the research dealing with
influence, for instance in the form of sales and marketing. For example, [LSK06] in-
vestigate a large person-to-person recommendation network, consisting of four million
people who made sixteen million recommendations on half a million products, and
then analyze cascades in this data set. Cascades can also be studied in a purely theoret-
ical model, based on random graphs with a simple threshold model which is close to
our majority function [Wat02]. Rumor spreading has also been studied algorithmically,
using the random phone call model, [KSSV00, SS11, DFF11]. Using real data from
various sources, [ALP12] show that networks generally have a core of influential (elite)
users. In contrast to our model, nodes cannot change their state back and forth, once
infected, a node will stay infected. Plenty of work was done focusing on the prediction
of influential nodes. One wants to find subset of influential nodes for viral marketing,
e.g. [KKT05, CYZ10]. In contrast, [KOW08] studies the case of competitors, which is
closer to our model since nodes can have different opinions. However, also in [KOW08]
nodes only change their opinion once. However, in all these social networks the under-
lying graph is fixed and the dynamics of the stabilization process takes place on the
changing states of the nodes only. An interesting variant changes the state of the edges
instead. A good example for this is matching. A matching is (hopefully) converging
to a stable state, based on the preferences of the nodes, e.g. [GS62, KPS10, FKPS10].
Hoefer takes these edge dynamics one step further, as not only the state of the edge
changes, but the edge itself [Hoe11].

3 Model Definition

An influence network (IN) is modeled as a graph G = (V,E, o0). The set of nodes
V is connected by an arbitrary set of edges E. Each node has an initial opinion (or
state) o0(v) ∈ {R(ed), B(lue)}. A node only changes its opinion if a majority of its
neighbors has a different opinion. One may consider several options to breaking ties,
e.g., using the node’s current opinion as a tie-breaker, or weighing the opinions of indi-
vidual neighbors differently. As it turns out, for many natural tie-breakers, graphs can



be reduced to equivalent graphs in which no tie breaker is needed. For instance, using
a node’s own opinion as a tie-breaker is equivalent to cloning the whole graph, and
connecting each node with its clone and the neighbors of its clone.

In this paper we study both synchronous and asynchronous INs. The state of a syn-
chronous IN evolves over a series of rounds. In each round every node changes its state
to the state of the majority of its neighbors simultaneously. The opinion of a node v in
round t is denoted as ot(v).

As will be explained in Section 5, the only interesting asynchronous model is the se-
quential model. In this model, we call the change of opinion of one node a step. The
opinion of node v after t steps is defined as ot(v). In general, more than one node may
be ready to take a step. Depending on whether we want convergence to be fast or slow,
we may choose different nodes to take the next step. If we aim for fast convergence, we
call this the benevolent sequential model. Slow conversion on the other hand we call the
adversarial sequential model.

We say that an IN stabilizes if it reaches a state where no node will ever change its
opinion again, or if each node changes its opinion in a cyclic pattern with periodicity q.
In other words, a state can be stable even though some nodes still change their opinion.

Definition 1. An IN G = (V,E, o0) is stable at time t with periodicity q, if for all
vertices v ∈ V : ot+q(v) = ot(v). A fixed state of an IN G is a stable state with
periodicity 1. The convergence time c of an IN G is the smallest t for which G is stable.

Note that since INs are deterministic an IN which has reached a stable state will stay
stable.

In this paper we investigate the stability, the convergence time c and the periodicity q
of INs in the described models. Clearly, the convergence process depends not only on
the graph structure, but also on the initial opinions of the nodes. We investigated graphs
and initial opinions that maximize convergence time. In the benevolent sequential in
particular, we investigate graphs and sets of initial opinions leading to the worst possible
convergence time, given the respectively best sequence of steps.

4 Synchronous IN

A synchronous IN may stabilize in a state where some nodes change their opinion in
every round. For example, consider the graph K2 (two nodes, connected by an edge)
where the first node has opinionB and the second node has opinionR. After one round,
both vertices have changed their state, which leads to a symmetric situation. This IN
remains in this stable state forever with a period of length 2. As has already been shown
in [GO80, Win08], a synchronous IN always reaches a stable state with a periodicity of
at most 2 after O(n2) rounds.

Theorem 1 ([Win08]). A synchronous IN reaches a stable state after at most O(n2)
rounds.



Theorem 2 ([GO80]). The periodicity of the stable state in a synchronous IN is at most
2.

In this paper, we prove this bound to be almost tight.

Theorem 3. There is a family of synchronous INs with convergence timeΩ
(

n2

(log logn)2

)
.

Unfortunately, the technical proof of Theorem 3 does not fit into this paper. You can
find the full proof in Appendix A. In this section, we instead present a simpler IN with
convergence time Ω

(
n3/2

)
.

The basic idea is to construct a mechanism which forces vertices on a simple path graph
to change their opinion one after the other. Every time the complete path has changed,
the mechanism should force the vertices of the path to change their opinions back again
in the same order. To create this mechanism, we introduce an auxiliary structure called
transistor, which is depicted in Figure 1.
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Fig. 1: A transistor T (4). The dotted lines indicate how the transistor will be connected.

Definition 2. A transistor of size k, denoted as T (k), is an undirected graph consisting
of k collector vertices C = {Ci | 0 ≤ i ≤ k−1}, k emitter vertices E = {E i | 0 ≤ i ≤ k−1}
and three base vertices B = {B1,B2,B3}. All edges between collector and emitter ver-
tices, all edges between any two base vertices, and all edges between collector vertices
and the third base vertex exist. Formally:

T (s) =(V,E)

V =C ∪ E ∪ B
E ={{u, v} | u ∈ C, v ∈ E} ∪ {{u,B3} | u ∈ C}∪
{{u, v} | u, v ∈ B, u 6= v}



All nodes in a transistor are initialized with the same opinion X ∈ {R = 1, B = −1}.
The 3 + k + k2 collector edges (dotted edges pointing to the top of Figure 1, including
those originating from B1,B2 and B3) are connected to vertices with the constant opin-
ion −X , while up to k2 − k emitter edges (dotted edges pointing to the bottom) and
the 2 base edges (dotted edges pointing to the left) may be connected to any vertex. As
soon as both base edges advertise opinion−X , the transistor will flip to opinion−X in
4 rounds regardless of what is advertised over the emitter edges, i.e., the following sets
of vertices will all change their opinion to −X in the given order: {B1}, {B2,B3}, C,
E .
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Fig. 3: Path with 4 vertices connected
to 3 transistors T (3). Note that transis-
tors at bottom of figures are always up-
side down.
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Fig. 4: Two copies of Figure 3 with in-
verse opinions
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Fig. 5: In this graph, every time the path
has run through completely the next
transistor will flip, causing the path to
run again.

Note that T (k) contains only O(k) many vertices, yet its emitter vertices can poten-
tially be connected to Ω(k2) other vertices. Given a path graph of length O(k2) and
a transistor T (k), the emitter vertices of the transistor are connected to the path in the
following way: The first vertex in the path is connected to exactly two emitter vertices,
the last is connected to none and each of the remaining nodes of the path is connected
to exactly one emitter vertex. Furthermore, the collector edges of transistors of opinion
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Fig. 6: Final graph in which the paths run 3 times.

X are always connected to constant reservoirs of opinion −X . Such a reservoir can be
implemented as a clique. An illustration of this graph with k = 3 is given in Figure 2.
Without loss of generality, we set the initial state of the nodes of the path to B, and that
of the transistor to R. As long as the transistor remains red, the path will turn red one
vertex at a time. As soon as the transistor flips its opinion to blue (as a result of both
base edges having advertised blue) the path will turn blue again, one vertex at a time.
To force the path to change k times, k transistors are needed. Each of these transistors
(note that we make use of red as well as blue transistors) is connected with the path in
the same way as the first transistor. The resulting graph is given in Figure 3. A series of
k switches of the complete path can now be provoked by switching transistors of alter-
nating opinions in turns. For the example depicted in the Figures, the switching order
of the transistors is given by their respective indices.

Now, a way is needed to flip the next transistor every time the last vertex of the path has
changed its opinion. Assume the last vertex has changed to red. It is necessary to flip
a red transistor to blue in order to change the path to blue; however, the path changing
to red can only cause a blue transistor to turn red. To this end, the graph is extended by
a copy of itself with all opinions inverted. The resulting graph is given in Figure 4. As
in every round each vertex in the copy is of the opposite opinion than its original, the
copy of the last vertex in the path enables us to flip a red transistor to blue as desired.
The edges necessary to achieve this (highlighted in green in Figure 5) connect the end
of a path to B1 of each transistor in the other half of the graph. To ensure that the
transistors flip in the required order, additional edges (highlighted in magenta in Figure
5) are introduced, connecting an emitter node of each transistor TX

i to the node B1 of
transistor TX

i+1.



The green edges cause an unwanted influence on the last vertex of the paths. This influ-
ence can be negated by introducing additional edges (highlighted in cyan in Figure 6).
These edges connect the last vertex of each path with an emitter vertex of each transistor
not yet connected to that vertex.

The resulting graph contains O(k2) vertices, yet has a convergence time of Ω(k3). In
terms of the number of vertices n, the convergence time is n3/2. The detailed proof
in Appendix A shows that this technique can be applied to run the entire graph re-
peatedly, just as the graph in this section runs two paths repeatedly. This leads to a
convergence time of Ω(n7/4). In this new graph, the transistors change back and fourth
repeatedly, always taking on the opinion advertised over the collector edges, just like
real transistors. When applied recursively log log n times, an asymptotic convergence
time of Ω(n2/(log log n)2) is reached. Since the full proof is long and involved, to
complement our formal proof, we also simulated this recursively constructed networks
for path lengths of up to 100. Table 1 and Figure 7 show the outcome of this simulation.

path #nodes convergence
length time
1 10 1

2 12 2

3 96 22

10 494 310

20 1614 3331

30 2010 5701

100 5518 45985

Table 1: Table summariz-
ing the simulated results.
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Fig. 7: Shows how our simulation results compare
to a quadratic curve. The point clusters arise when
for several consecutive path lengths no new transis-
tor is created. Small jumps in the number of vertices
indicate that a new transistor was added; big jumps
indicate that a new layer of transistors was added.

5 Sequential IN

To complement our results for the synchronous model, we consider an asynchronous
setting in this section. In an asynchronous setting, nodes can take steps independently
of each other, i.e. subsets of nodes may reassess and change their opinion concurrently.
Unfortunately, in such a setting, convergence time is not well defined. To see this, con-
sider a star-graph where the center has a different initial opinion than the leaves. An
adversary may arbitrarily often chooses the set of all nodes to reassess their opinion.
After r such rounds the adversary chooses only the center node. Now this IN stabilizes,



after r rounds for an arbitrary r → ∞. In other words, asynchrony in its most general
form is not well defined, and we restrict ourselves to sequential steps only, whereas a
step is a single node changing its opinion. The sequence of steps is chosen by an ad-
versary which tries to maximize the convergence time. Note that the convergence upper
bound presented in Lemma 1 implies immediately that the IN stabilizes in a fixed state.

Lemma 1. A sequential IN reaches a fixed state after at most O(n2) steps.

Proof. Divide the nodes into the following two sets according to their current opinion:
SR = {v | o(v) = R} and SB : {v | o(v) = B}. If a node changes its opinion, it
has more neighbors in the opposite set than in its current set. Therefore the number of
edges X = {{u, v} | u ∈ SR, v ∈ SB} between nodes in set SR and set SB is strictly
decreasing. Each change of opinion reduces the number of edges of X by at least one.
Therefore the number of steps is bounded by the number of edges in X . In a graph G
with n nodes |X| is at most n2/4, therefore at most O(n2) steps can take place until
the IN reaches a fixed state. ut

It is more challenging to show that this simple upper bound is tight. We show a graph
and a sequence of steps in which way an adversary can provoke Ω(n2) convergence
time.

Lemma 2. There is a family of INs with n vertices such that a fixed state is reached
after Ω(n2) steps.

Algorithm 1 Adversarial Sequence

S ← ()
for i = 0 to n/3 do
S = reverse(S);
S ← (i, S);
for all x ∈ S do

take step x;
end for

end for

Proof. Consider the following graph G with n nodes. The nodes are numbered from 0
to n−1, whereas nodes with an even id are initially assigned opinionB and nodes with
an odd id are assigned opinion R. See also Figure 8. All even nodes with id ≤ n/3
are connected to all odd nodes. All odd nodes with id ≤ n/3 are connected to all
even nodes respectively. In addition an even node with id ≤ n/3 is connected to nodes
{0, 2, 4, . . . , n − 2 · id − 2}, respectively an odd node with id ≤ n/3 is connected to
nodes {1, 3, 5, . . . , n − 2 · id − 3}. For example, node 0 is a neighbor of all nodes,
whereas node 1 is neighbor of all nodes except the nodes n − 1 and n − 3. Note that
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Fig. 8: In this graph an adversary can provoke Ω(n2) changes of opinion.

each node i with i ≤ n/3 is connected to all other nodes with id ≤ n/3. For each node
v the change potential P (v) is defined as:

P (v) = |{u | o(u) 6= o(v)}| − |{u | o(u) = o(v)}|

Put differently, if the change potential of a node is larger than 0, and it is requested to
reassess its opinion, it takes a step. A large change potential of a node v, means that
many neighbors of v have the opposite opinion from v. If a neighbor of v with the same
opinion takes a step, v′s change potential P (v) is increased by 2. On the other hand, if
a neighbor changes from the opposite opinion to the same opinion as node v, P (v) is
decreased by 2. If v itself changes its opinion, its change potential turns from p to −p.
The change potential of v is basically the number of edges by which the total number
of edges between set SB and set SR is reduced if v changes its opinion. As the total
amount of steps is bounded by the number of edges between set SB and SR, a node v
with P (v) = p reduces the remaining number of possible changes by p if it takes a step.
E.g. in the previously constructed graph G, the first nodes have the following change
potential: P (0) = 1, P (1) = 3, P (2) = 3, P (3) = 5 Generally, node i has a change
potential P (i) = n/2 − (n/2 − i − 1) = i + 1 if i is even respectively P (i) = i + 2
if i is odd. In order to provoke as many steps as possible, the adversary selects the
nodes which have to reassess their opinion according to the following rule: He chooses
the node with the smallest id for which P (v) = 1. Therefore each step reduces the
remaining number of possible steps by 1. G is constructed in such a way, that a step
from a node triggers a cascade of steps from nodes which have already changed their
opinion whereas each change reduces the overall potential by 1.

The adversary chooses the nodes in phases according to algorithm 1. Phase i starts with
the selection of node i followed by the selections of all nodes with id < i, where the



adversary chooses the nodes in the reverse order than it did in round i − 1. Phase 0
consists of node 0 changing its opinion, in phase 1 node 1 and then node 0 make steps,
and in phase 2 the nodes change in the sequence 2, 0, 1. As a node v can only change
its opinion if P (v) > 0, we need to show that this is the case for each node v which is
selected by the adversary. It is sufficient to show that each node which is selected has a
change potential of 1.

We postulate:

(i) At the beginning of phase i, the following holds:P (i) = 1 and ∀v < i : o(v) = o(i).

(ii) Each node the adversary selects has change potential 1 and each node with id ≤ i
is selected eventually in phase i.

(iii) At the end of phase i, all nodes with id ≤ i have opinion R if i is even and opinion
B if i is odd.

We prove (i), (ii) and (iii) by induction. Initially, part (i) holds, as no node with id < 0
exists and as node 0 is connected to n/2 nodes with opinion R and to n/2 − 1 nodes
with opinion B and therefore has change potential 1. In phase 0 only node 0 is selected,
therefore part (ii) of holds as well. Node 0 changed its opinion and has therefore at the
end of phase 0 opinion R, therefore part (iii) holds as well.

Now the induction step: To simplify the proof of part (i) of we consider odd and even
phases separately. Consider an odd phase i. At the start of phase i, no node with id ≥ i
has changed its opinion yet. Therefore node i still has its initial opinion o(i) = R.
According to (iii), each node with id ≤ i − 1 has at the end of phase i − 1 opinion
R = o(i). So (i + 1)/2 neighbors of i have compared to the initial state, changed
their opinion from B to R. If a neighbor u of a node v with a different opinion than
v changes it, v′s change potential is decreased by 2. Therefore node i′s initial change
potential Pt0(i) = n/2− (n/2− i− 2) = i+ 2 is decreased by 2 · (i+ 1)/2 = i+ 1
and is therefore P (i) = i + 2 − (i + 1) = 1 at the beginning of phase i. Therefore (i)
holds before an odd phase.

Now consider an even phase i. At its start, all nodes with id ≥ i still have their initial
opinion. Therefore node i has opinion o(i) = B. According to (iii) each node with
id ≤ i − 1 has at the end of phase i − 1 opinion B = o(i). As node i′s initial change
potential was Pt0(i) = n/2 − (n/2 − i − 1) = i + 1 and i/2 neighbors of i changed
from opinion R to opinion B compared to the initial state, i′s new change potential is
calculated as P (i) = i + 1 − 2 · i/2 = 1. Therefore (i) holds before an even phase,
hence (i) holds.

To prove part (ii) let v be the last node which was selected in phase i − 1. As v was
selected, it had according to (ii) a change potential of 1. If a node changes its opinion,
its change potential gets inversed. Therefore node v had at the beginning of phase i
a change potential of −1. In addition, node v is by construction a neighbor of node i
and has according to (i) at the start of phase i the same opinion as node i. As node
i changes its opinion, node v′s change potential is increased by 2. Therefore v′s new
change potential is again −1 + 2 = 1, when it is selected by the adversary. The same
argument holds for the second last selected node u. After it was selected in phase i− 1



its change potential was −1. Then v has changed its opinion which led to P (u) = −3.
As node i and node v changed their opinions in phase i, P (u) was again 1. Hence if
the adversary selects the nodes in the inverse sequence as in phase i− 1, each selected
node has a change potential of 1 and is selected eventually. Therefore (ii) holds.

As node i and all nodes with id ≤ i− 1 had at the beginning of phase i the opinion o(i)
according to (iii) and all nodes have changed their opinion in phase i according to (ii),
all nodes with id ≤ i must have the opposite opinion at the end of phase i, namely R if
i is even or B otherwise. Therefore (iii) holds as well.

We now have proven that in phase i, i nodes change their opinion. As the adversary
starts n/3 phases, the total number of steps is 1/2 · n/3 · (n/3− 1) ∈ Ω(n2). ut

Directly from Lemma 1 and Lemma 2, we get the following theorem.

Theorem 4. A worst case sequential IN reaches a fixed state after Θ(n2) steps.

We have seen, that with an adapted graph and an adversary an IN takes up to Θ(n2)
steps until it stabilizes. But how bad can it get, if the process is benevolent instead?

Theorem 5. An IN with a benevolent sequential process reaches a fixed state after
Θ(n) steps.

Proof. A benevolent process needs Ω(n) steps to reach a stable state. This can be seen
by considering the complete graphKn with initially bn/2c−1 red nodes and dn/2e+1
blue nodes. Independently of the chosen sequence this IN needs exactly bn/2c−1 steps
to stabilize because the only achievable stable state is all nodes being blue. To proof that
the number of steps is bounded by O(n) we define the following two sets: The set of
all red nodes which want to change: CRi = {v | o(v) = R ∧ P (v) > 0} and the set of
all blue nodes which want to change: CB = {v | o(v) = B ∧P (v) > 0}. A benevolent
process chooses nodes in two phases. In the first phase it chooses nodes from CB until
the set is empty. During this phase, it may happen that additional nodes join CB (e.g. a
leaf of a node v ∈ CB , after v made a step). However, no node which leftCB will rejoin,
as those nodes turned red and can not turn blue again in this phase. In the second phase,
the benevolent process chooses nodes from CR until this set is empty. The set CB will
stay empty during the second phase since nodes turning blue can only reinforce blue
nodes in their opinion. Both phases take at most n steps, therefore proving our upper
bound. ut
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Appendix

A Synchronous IN

A.1 Transistor

In this section, we formally define how a transistor must be connected to the rest of the graph and
how it behaves in that case. The symbol T is used to denote a particular graph as well as instances
of that graph, which are induced subgraphs; the symbols C(T ), E(T ),Bx(T ) are used to denote
the respective vertex sets of an instance T . In order to talk about how a transistor should fit in a
network, we introduce the outside influence function, which specifies how an induced subgraph
is influenced by the rest of the graph.

Definition 3. For any vertex v ∈ V H , where H = (V H , EH) is an induced subgraph of
G = (V,E), the outside influence at time t exerted on said vertex is equal to the following:
IHt (v) = o0(v) ·

∑
u∈{u′|{v,u′}∈E\EH} ot(u).

So if IHt (v) is positive, node v will be influenced by the rest of the graph to stick with its initial
opinion or change back to it; if IHt (v) is negative, v will be influenced to change away from its
initial opinion. The upper right indices are sometimes left out if they are clear from the context.
We are now able to formally specify an outside influence range in which the transistor will operate
correctly.

Definition 4. An instance T = (V T , ET ) of a transistor T (k) with k ≥ 1 and with outside
influence ITt (·) is correctly accessed with initial opinionX if and only if the following conditions
hold.

(i) o0(v) = X for all v ∈ V T

(ii) It(v) = −k for all t and all v ∈ C(T )
(iii) |It(v) |≤ k − 1 for all t and all v ∈ E(T )
(iv) It(B1(T )) ∈ {−3,−1, 1} for all t
(v) It(B2(T )) = −1 for all t

(vi) It(B3(T )) = −(k + 1) for all t

Note that if all collector edges in Figure 1 advertise R then the conditions (ii) through (vi) are
fulfilled independent of that the other edges connecting the transistor to the rest of graph advertise.
Because of (ii) there is a strong outside influence on the collector vertices to change their opinion.
The first round t where It(B1(T )) is equal to −3 (both base edges in Figure 1 advertise R), will
cause that eventually all vertices in the transistor flip their opinion to (−X). We call this event t
flip time tf (T ) of T .

Lemma 3. If an instance T = (V T , ET ) of a transistor T (k) is correctly accessed with initial
opinion X , then the following statements hold.

(i) All vertices v ∈ V T are of opinion ot(v) = X for all t ≤ tf (T )



(ii) All vertices v ∈ E(T ) are of opinion ot(v) = X for all tf (T ) < t ≤ tf (T ) + 3

(iii) All vertices v ∈ V T are of opinion ot(v) = (−X) for all t ≥ tf (T ) + 4

Proof. First note that the vertices in E(T ) can not change their opinion until at least one in C(T )
has done so since they each have an outside influence of at most (k − 1) times (−X) after (iii)
of definition 4 and an inside influence of k times X from the k vertices in C(T ). Similarly, the
vertices in C(T ) can not change their opinion until B3(T ) and B2(T ) have done so and they
in turn have to wait for B1(T ) to change. Finally, B1(T ) will only change after the flip time
tf (T ). This takes care of (i) and (ii). To see that (iii) is true note that after the flip event the sets
({B1(T )}, {B2(T ),B3(T )}, C(T ), E(T )) will indeed all change their opinion in the given order
and that even if after the flip event the outside influence of B1(T ) will go back to some number
> −3, the process can still not be stopped or reversed. ut

A.2 Counters

The final graph for our intended lower bound is a recursively defined counter. In this section, we
present the base case in form of a simple 2-Path graph as well as the recursive case. In the latter,
a counter is combined with a number of transistors to form a bigger counter as suggested in the
proof outline.

A counter K = (H = (V,E), I(·),RR,RB ,S(·)) consists of a graph H = (V,E), a func-
tion I : V → Z, specifies the valid range of outside influence, two special interest vertices
RR,RB ∈ V , which indicate when the graph has finished running, and an initial configuration
S(·).
We will postpone the definition of the axioms a counter must satisfy, and first describe how a
counter is properly connected and accessed since the behavior of a counter need only be defined
if it is connected and accessed correctly.

Definition 5. A counter K = (H = (V H , EH), I(·),RR,RB ,S(·)) is correctly accessed and
correctly initialized from t1 to t2 if and only if the following condition holds.

(i) For all v in V H the initial state of v is set by ot1(v) = S(v).
(ii) For all X and all t1 ≤ t ≤ t2 the outside influence is given by IHt (v) = I(v)

A counter is considered reversely initialized if (i) is changed to ot1(v) = −S(v), and it is
considered reversely accessed if (ii) is changed to −I(v) = IHt (v). We sometimes add the
keyword virtually to indicate some deviations from the definition which do not result in an altered
behavior of H .

Definition 6. A tuple K = (H = (V H , EH), I(·),RR,RR,S(·)) is a proper counter with
convergence time c and supply edge number e if and only if correct access and correct initializa-
tion from t1 to t2 imply that the following statements hold.

(i) e =
∑
{v∈V K |I(v)·S(v)>0} I(v) · S(v) =

∑
{v∈V K |I(v)·S(v)<0}−I(v) · S(v)

(ii) d
√
e+ 2e+ 1 ≥ maxv∈V K |I(v)|

(iii) The verticesRX are of opinion X for all t ≤ min{t1 + c− 1, t2 + 1}
(iv) For all vertices v ∈ V H and all t1 + c ≤ t ≤ t2 +1 the following is true ot(v) = −ot1(v).



The edge supply number corresponds to the number of black edges in Figure 2 and (i) satisfied if
it is the same for blue and red. We will need condition (ii) to make sure that we do not produce
a multigraph, (iii) indicates thatRX only change their opinion after l rounds when the graph has
finished running, and (iv) makes it possible to run the counter again with reverse opinions. Note
that if a counter is correctly initialized and reversely accessed, or if it is reversely initialized and
correctly accessed from t1 to t2, ot(v) will be time-constant from t1 to t2 because of (iv).

2-Path graph The 2-Path graph counter will be the base case of our final, recursively defined
graph. It consists just of two simple paths one of which is initialized withR and the other withB.
If accessed correctly, the following will happen on both paths simultaneously. All vertices will
change their opinion in the order in which they occur on their respective paths.

Definition 7. A 2-Path graph is defined as P2(l) = (H = (V H , EH), I(·),RR,RB ,S(·))
where

V H = {vRi | 0 ≤ i < l} ∪ {vBi | 0 ≤ i < l}

EH = {{vRi , vRi+1} | 0 ≤ i < l − 1} ∪ {{vBi , vBi+1} | 0 ≤ i < l − 1}

I(v) =


−2 if v = vX0

−1 if v ∈ {vXi | 1 ≤ i < l − 1}
0 otherwise

RX = vXl−1

S(vXi ) = X

Lemma 4. A 2-Path graph P2(l) is a valid counter with n = 2l vertices, convergence time c = l
and supply edge number e = l.

Proof. We will have to prove the conditions in definition 6 under the assumption that the condi-
tion in the definition 5.

The conditions (i) and (ii) are trivially true. For (iii) note that from condition (ii) of definition 5
and the definition of I(·), it follows that the vertices in {vXi | 1 ≤ i < l − 1} all have one more
outside neighbor of the opinion −X than of the opinion X, the vertices vX0 has two more outside
neighbors of the opinion (−X) than of the opinion X, and vXl−1 has the same number of outside
neighbors of the opinion (−X) as of the opinion X . This means that the vertices vX0 will change
its opinion to (−X) in the first round, and cause vX1 to turn in the second and so forth. In other
words, ot(vXi ) will be X for all t ≤ i and (−X) ever after. Therefore, ot(RX) = ot(v

X
l−1) is

equal to X for all t ≤ l − 1, and condition (iii) of definition 6 is satisfied.

Also note that at time l all vertices will have turned and are not going to reverse back to their
original position therefore satisfying condition (iv). ut

Repeater A repeater is a function that takes a counter and uses transistors to repeatedly run that
counter and so produce a counter with much higher convergence time at the expense of an only
slightly increased number of vertices. However in addition to what was suggested in section 4 we
need two new verticesRR,RB to indicate when the graph has reached a stable state as displayed
in Figure 9. On first reading, the reader is advised to have a look at the definition of a repeater
and the content of the Lemmas 6 and 9, and then skip to section A.3.
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Fig. 9: Full repeater graph R(1, P2(4)) with a P2(4) as graph which is repeatedly run
and six transistors to run P2(4) three times.

Definition 8. A repeater is a function R which when it is given a number j and a counter
K̃ = (H̃ = (Ṽ H , ẼH), Ĩ(·), R̃R, R̃B , S̃(·)) with convergence time c̃, ñ vertices, and supply



edge number ẽ, produces a tuple R(K̃, j) = (H = (V H , EH), I(·),RR,RB ,S(·)) where

TX
i = (V X

i , EX
i ) for 0 ≤ i ≤ 2j,X ∈ {R,B} are instances of transistors T (s)

V H =

 j−1⋃
X∈{R,B},i=0

V X
i

 ∪ Ṽ H ∪ vR ∪ vB

EH =

 j−1⋃
X∈{R,B},i=0

EX
i

 ∪ ẼH ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5

E1 = {{R̃X ,B1(T−X
2i )} | 0 ≤ i ≤ 2j} ∪ {R̃X ,B1(TX

2i+1)} | 0 ≤ i ≤ 2j − 1} (green in Figure 9)

E2 = {{R̃X ,RX}|X ∈ {R,B}} (orange in Figure 9)

I(v) =



−2 if v = B1(TX
0 )

−1 if v = B1(TX
i ) for some 1 ≤ i ≤ 2j

−1 if v = B2(TX
i ) for some 0 ≤ i ≤ 2j

−(s+ 1) if v = B3(TX
i ) for some 0 ≤ i ≤ 2j

−s if v ∈ E(TX
i )

1 if v = RX

−1 if v = R̃X

0 otherwise

RR = vR

RB = vB

S(v) =


S̃(v) if v ∈ Ṽ T

X if v ∈ V X
i

X if v = RX

s = d
√
ẽ+ 2e+ 1

E3 (black in Figure 9) consists the following edges. For every vertex v ∈ Ṽ H with k = |Ĩ(v)|
and with X = sign(Ĩ(v)S(v)), there are edges from v to k different emitter vertices of every
T−X
2i with 0 ≤ i ≤ j and of every TX

2i+1 with 0 ≤ i ≤ j − 1 .

E4 (magenta in Figure 9) consists of the following edges. For every 0 ≥ i ≥ 2j−1 andX , there
is an edge from B1(TX

i+1) to an emitter vertex of TX
i and there is one edge from an emitter vertex

of TX
2j toRX .

E5 (cyan in Figure 9) consists of the following edges. For all X , there is an edge from R̃X to an
emitter vertex of every TX

2i with 0 ≤ i ≤ j and of every T−X
2i+1 with 0 ≤ i ≤ j − 1.

Lemma 5. The repeater R(K̃, j) does indeed exist such that the emitter vertices of Ti are con-
nected to no more than (s− 1) vertices outside Ti.

Proof. We have to show that there are E3, E4 and E5 such that the emitter vertices of the
transistors do not have too many outside edges. Every transistor’s emitter vertices have ẽ edges
leaving the transistor in E3 because of condition (i) of definition 5, one edge in E4 and one edge
in E5. This is a total of ẽ+ 2 necessary edges. A transistor T (s) has s collector vertices each of
which should have no more than (s− 1) outside edges where s = d

√
ẽ+ 2e+ 1. This makes a



total of more than possible ẽ+ 2 edges.

s(s− 1) = (d
√
ẽ+ 2e+ 1)(d

√
ẽ+ 2e+ 1− 1)

> d
√
ẽ+ 2e2

≥ ẽ+ 2

Additionally condition (ii) of definition 5 shows that |Ĩ(v)| ≤ s. This is necessary because we
could otherwise only realize the graph if we were allowed multigraphs. ut

Lemma 6. The repeater R(K̃, j) has n = 2(2j +1)(2s+1)+ ñ+2 vertices and supply edge
number e = (2j + 1)(s2 + s+ 3) + 3 where s = d

√
e+ 2e+ 1.

Proof. To obtain the number of vertices we add the number of vertices in a transistor times the
number of transistors to the number in the counter K and two verticesRX .

|V H | = 2(2j + 1)|T (s)|+ |Ṽ H |+ 2

= 2(2j + 1)(2s+ 3) + n+ 2

To obtain the supply edge number we just the go through the cases in the definition of S(·) and
add them up.

e = 1 · 2 + 2j · 1 + (2j + 1) · 1 + (2j + 1) · (s+ 1) + (2j + 1)s · s+ 1 · 1 + 1 · 1

= 2(2j + 1) + (2j + 1)(s+ 1) + (2j + 1)s2 + 3

= (2j + 1)(s2 + s+ 3) + 3

ut

Lemma 7. For all 0 ≤ i ≤ 2j and all X , TX
i is accessed correctly.

Proof. Condition (i) of definition 4 is trivially true. The collector vertices as well as B2 and
B3 of Ti have no edges to other parts of H so it holds that ITi

t (v) = IHt (v) = I(v) for all
v ∈ C(Ti) ∪ {B2(Ti)} ∪ {B3(Ti)}. Therefore, (ii),(v) and (vi) are fulfilled.

Condition (iii) of is fulfilled because of Lemma 5.

For condition (iv) we distinguish between i = 0 and i 6= 0. If i is equal to 0, then B1(TX
i ) has 1

edge coming from outside V X
i but still insideH and an outside influence of IH(B1(TX

i )) = −2.
If i is not equal to 0, then B1(TX

i ) has 2 edges coming from outside V X
i but still insideH and an

outside influence of IH(B1(TX
i )) = −1. In both cases, the resulting IT

X
i (B1(TX

i )) will satisfy
(iv). ut

Lemma 8. The transistors flip in order. That is, the following statements must hold.

(i) If tf (TX
i ) = t there must be a t′ ≤ t− 4 such that tf (TX

i−1) = t′ for all 1 ≤ i ≤ 2j.
(ii) If OR

X

t (RX) = −X there must be a t′ ≤ t− 4 such that tf (TX
2j ) = t′

Proof. The vertexRX has total influence Ivt (RX) = IHt (RX) + ot(R̃X) + ot(E(TX
2j )) which

is equal to 1 + X · (ot(R̃X) + ot(E(TX
2j ))). So RX can only change its opinion to (−X)

if both ot(R̃X) and ot(E(TX
2j )) are (−X). Similarly IT

X
i

t (B(TX
i )) which can be written as

IHt (B(TX
i )) +X(ot(E(TX

i−1)) + ot(R̃)) = −1 +X(ot(E(TX
i−1)) + ot(R̃)) can only be −3 if

E(TX
i−1) is −X for all 1 ≤ i ≤ 2j. This together with statements (i) and (ii) of Lemma 3 we get

the required statements. ut



Definition 9. We define 1IH̃(·), 2IH̃(·), 3IH̃(·) and 5IH̃(·) to be the outside influence exerted
on vertices in H̃ by E1, E2, E3 and E5 respectively.

Note that IH̃t (v) = 1IH̃t (v) + 2IH̃t (v) + 3IH̃t (v) + 5IH̃t (v) + IHt (v). The edges E4 are inten-
tionally left out since they do not have endpoints in H̃ .

Lemma 9. R(j, K̃) is indeed a counter of convergence time c = (2j + 1)(c̃+ 4) + 1.

Proof. So assume that the constant outside influence of all vertices is given by IH(·) = IH(·).
We define c to be the smallest t with ot(RR) = B or ot(RB) = R. By Lemma 8 all transistors
have flipped at time c. For all t < c and all vertices v ∈ H̃ , the outside influences of 2IH̃t (v) and
of IHt (v) cancel out each other so we need only care about 1IH̃(), 3IH̃() and 5IH̃() until we
reach time c.

To get a induction hypothesis we prove the following stronger statement: tf (T 2l) = 2l(c̃ + 4)
and o2l(c̃+4)(v) = S(v) for all 0 ≤ l ≤ j and for all vertices v in H̃ .

The base case for l = 0 is trivial. For the induction step l → l + 1 assume tf (T 2l) = 2l(c̃+ 4)
and o2l(v) = S(v) is true for all vertices v in H̃ . We will in the following look at how the graph
behaves in the following intervals [2l(c̃+4), 2l(c̃+4)+3], [2l(c̃+4)+4, (2l+1)(c̃+4)− 1],
[(2l+1)(c̃+4), (2l+1)(c̃+4)+3] and [(2l+1)(c̃+4)+4, (2l+2)(c̃+4)−1]. I.e., we take
the behavior during the interval [a, b] to mean the influences exerted in [a, b] and their outcomes
in [a+ 1, b+ 1].

Interval [2l(c̃+ 4), 2l(c̃+ 4) + 3]. We will show that K̃ is correctly initialized and virtually
reversely accessed from 2l(c̃+4) to 2l(c̃+4)+3. Therefore and because of (iii) in definition 6,
o2l(c̃+4)+4(·) will still be equal to S(·).

Let us start by considering 1IH̃(·) + 5IH̃(·). Using Lemma 8 we can deduce the following
statement. All transistors TX

i with i < 2l have already switched completely by 2l(c̃ + 4) (they
are in the region specified by (iii) of Lemma 3, similarly all such transistors with i > 2l can only
start switching after i(c̃ + 4) + 3 (they are in the region specified by (i) of Lemma 3. So the
contribution of TY

i to 1IH̃() is canceled out by the contribution of T−Y
i to 5IH̃() for all i 6= 2l

and vice versa. And for TX
2l we know that oi(E(TX

2j )) = X for i ≤ 2l(c̃4) + 3 from (i), (ii)
of Lemma 3. Therefore, 1IH̃i (v) + 5IH̃i (v) must be non-negative for R̃X and zero for all other
vertices.
3IH̃i (·) will be exactly −I(·) for 2l(c̃ + 4) ≤ i ≤ 2l(c̃ + 4) + 3 because the transistors TY

i

with an even i 6= 2l cancel out each other and those with i = 2l will have ot(E(TX
i )) = X

for t ≤ 2l(c̃+ 4) + 3 so TX
i will exactly contribute the required outside influence of −I(·). So

ITt (v) = 1IH̃t (v) + 3IH̃t (v) + 5IH̃t (v) will be −I(v) for all v except forRR andRB . However
RX is supposed to stick with o(RX) = X , in case of correct initialization and reverse access
and the deviation introduced by 1IH̃() + 5IH̃() further encourages them to do so. Therefore K̃
is a correctly initialized and virtually reversely accessed counter.

Interval [2l(c̃ + 4) + 4, (2l + 1)(c̃ + 4) − 1]. We will use a proof of induction over k
to show that K̃ is accessed and initialized correctly from 2l(c̃ + 4) + 4 to 2l(c̃ + 4) + 4 + k
and that tf (TX

2l+1) ≥ 2l(c̃ + 4) + k for all k < c̃. Using (iv) of definition 6 the induction
statement for k set to c̃− 1 will imply that o(2l+1)(c̃+4)(·) = −S̃(·). This in turn will imply that
tf (TX

2l+1) = (2l + 1)(c̃+ 4).



Because of Lemma 8 and because o2l(c̃+4)(R̃X) = X , tf (T e
2l+1) must be bigger than 2l(c̃+4)+4.

Therefore, of all transistors each one will be of uniform opinion at 2l(c̃ + 4), and therefore
1IH̃2l+4() +

5IH̃2l+4() will be 0. 3IH̃2l+4(v) will be exactly I(v). This is because for the same rea-
son as in the previous interval all transistors TX

i with i 6= 2l cancel out the transistors i = 2l have
already flipped completely. Hence, K̃ is accessed and initialized correctly from 2l(c̃+ 4) + 4 to
2l(c̃+ 4) + 4. This covers the base case of our induction.

Now assuming K̃ is accessed and initialized correctly from 2l(c̃+ 4) + 4 to 2l(c̃+ 4) + 4 + k
and tf (TX

2l+1) ≥ 2l(c̃ + 4) + k for some k < c̃. Because of the first assumption and because
k + 1 < c̃ we can apply (iii) of definition 6. Hence o2l(c̃+4)+k(R̃X) = X will still be true and
as a direct consequence tf (TX

2l+1) ≥ 2l(c̃+ 4) + k + 1 and we have proven the first part of our
induction statement. Now since tf (TX

2l+1) ≥ 2l(c̃ + 4) + k + 1 TX
2l+1 is still uniformly of the

opinion X at 2l(c̃+4)+ k+1, so IH̃2l(c̃+4)+k+1(·) is still equal to I(·). This also means that K̃
is still correctly accessed and therefore proves our induction statement.

Interval [(2l + 1)(c̃ + 4), (2l + 1)(c̃ + 4) + 3] The graph K̃ is reversely initialized and
virtually correctly accessed from (2l+ 1)(c̃+ 4) to (2l+ 1)(c̃+ 4) + 3. We know from the last
interval that K̃ is reversely initialized and that TX

(2l+1) = (2l + 1)(c̃ + 4) The proof of correct
access is completely analogous to the first interval. Therefore and because of (iii) in definition 6,
o2l(c̃+4)+4(·) will still be equal to −S(·).

Interval [(2l+ 1)(c̃+ 4) + 4, (2l+ 2)(c̃+ 4)− 1] The graph K̃ is accessed and initialized
reversely from (2l+1)(c̃+4)+ 4 to (2l+2)(c̃+4)− 1 and tf (TX

2l+2) = 2l(c̃+4). We know
from the last interval that K̃ is reversely initialized the rest of the proof is completely analogous
to the second interval. Therefore o(2l+2)(c̃+4)(·) = S̃(·).
This concludes the proof of the induction step. Now we only need to show that we can indeed
derive the Lemma from this induction result. At time 2j(c̃+ 4) we basically have the same case
as at the beginning of the first interval and using the same technique as in the first and second
interval we can deduce that the first time t with IH̃t (RX) < 0 is (2j+1)(c̃+4) (this proves (iii)
of definition 6). We can in the same manner prove that o(2j+1)(c̃+4)(v) = −S(v) for all v ∈ Ṽ H .
And since all transistors have already flipped completely and because K̃ is reversely initialized
and correctly accessed from (2j+1)(c̃+4) to infinity (iv) is also fulfilled. The conditions (i) are
true because of Lemma 6 and finally (ii) is true since

d
√
e+ 2e+ 1 = d

√
(2j + 1)(s2 + s+ 3) + 3 + 2e+ 1

≥ d
√
s2e+ 1

= s+ 1

= max
v∈V H

I(v).

ut

A.3 Putting it all together

Lemma 10. For every l ≥ 1 and h ≥ 0, there is a counter K with n ≤ (h + 1)54
(
1 + 80√

l

)h
l

vertices, supply edge number e ≤ l2−
1
2h ·

(
1 + 80√

l

)h
and convergence time c ≥ l2−

1
2h .



Proof. We prove this by induction over h. For h = 0K is trivially given by P2(l). Now given a

counter K̃ with ñ ≤ (h + 1)54
(
1 + 80√

l

)h
l vertices, convergence time c̃ ≥ l

2− 1
2h and supply

edge number ẽ ≤ l
2− 1

2h ·
(
1 + 80√

l

)h
we construct K = R(K̃, 1

2
bl

1
2h+1 c). By Lemma 9 the

convergence time c is at least (2 1
2
bl

1
2h+1 c + 1)(l

2− 1
2h + 4) which is in turn at least l2−

1
2h+1 .

To prove the bound on the supply edge number, we first show a bound for the transistor size s by
using the definition of R. The required bound for the supply edge number of K can be deduced
using Lemma 6.

s = d
√
ẽ+ 2e+ 1 (1)

≤

√
l
2− 1

2h ·
(
1 +

80√
l

)h

+ 2 + 2 (2)

≤

√(
1 +

2

l

)
l
2− 1

2h ·
(
1 +

80√
l

)h

+ 2 (3)

≤
(
1 +

2

l

)√
l
2− 1

2h ·
(
1 +

80√
l

)h

+ 2 (4)

≤
(
1 +

2

l
+

2√
l

)√
l
2− 1

2h ·
(
1 +

80√
l

)h

(5)

≤
(
1 +

4√
l

)√
l
2− 1

2h ·
(
1 +

80√
l

)h

(6)

e = (2j + 1)(s2 + s+ 3) + 3 where j =
1

2
bl

1
2h+1 c

≤
(
1 +

1

l

)
· l

1
2h+1 (s2 + s+ 3) + 3

≤
(
1 +

1

l

)
· l

1
2h+1

((
s+

1

2

)2

+
11

4

)
+ 3

≤
(
1 +

1

l

)
· l

1
2h+1

(1 + 4√
l

)√
l
2− 1

2h ·
(
1 +

80√
l

)h

+
1

2

2

+
11

4

+ 3

≤
(
1 +

1

l

)
· l

1
2h+1

(1 + 5√
l

)√
l
2− 1

2h ·
(
1 +

80√
l

)h
2

+
11

4

+ 3

≤
(
1 +

1

l

)
· l

1
2h+1

((
1 +

10√
l
+

25

l

)
l
2− 1

2h ·
(
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80√
l

)h

+
11

4

)
+ 3

≤
(
1 +

1

l

)
· l

1
2h+1

(
1 +

38√
l

)
l
2− 1

2h ·
(
1 +

80√
l

)h

+ 3

≤
(
1 +

77√
l

)
· l2−

1
2h+1 ·

(
1 +

80√
l

)h

+ 3

=

(
1 +

80√
l

)h+1

l
2− 1

2h+1



When contracting terms in (3) and (5), we use the fact that l2−
1
2h ≥ l and

(
1 + 80√

l

)h
≥ 1.

Using the same lemma, also gives the needed bound for the number of vertices n.

n = 2(2j + 1)(2s+ 3) + ñ+ 2 where ñ = (h+ 1)54

(
1 +

80√
l

)h

l

≤ 2

(
1 +

1

l

)
l

1
2h+1 (2s+ 3) + ñ+ 2

≤
(
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2

l

)
l

1
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2
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l

)√
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2h ·
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≤
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)
l

1
2h+1

(
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)√
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2h ·
(
1 +
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)h

+ ñ+ 2

≤
(
4 +

48√
l

)
l

1
2h+1 · l1−

1
2h+1

(
1 +

80√
l

)h
2

+ ñ+ 2

≤
(
4 +

50√
l

)(
1 +

80√
l

)h
2

l + ñ

≤ 54

(
1 +

80√
l

)h
2

l + (h+ 1)54

(
1 +

80√
l

)h

l

≤ (h+ 2)54

(
1 +

80√
l

)h

l

≤ (h+ 2)54

(
1 +

80√
l

)h+1

l
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We need one more additional tool from mathematics to proof our final Theorem 3.

Lemma 11. For every x > 0 and all n > 0 the following inequality holds
(
1 + x

n

)n ≤ ex

Proof. It is well known that the sequence sn(x) =
(
1 + x

n

)n converges to ex as n goes to
infinity. So we need only proof that sn(x) is non-decreasing in n. We achieve this by showing that



all coefficients in the power series sn(x) =
∑∞

k=0 c
k
nx

k =
∑∞

k=0

(
n
k

)(
x
n

)k are non decreasing.

ckn+1

ckn
=

(
n+1
k

)
1

(n+1)k(
n
k

)
1
nk

(7)

=

(n+1)!
k!(n+1−k)!

1
(n+1)k

n!
k!(n−k)!

1
nk

(8)

=

1
n+1−k

1
(n+1)k−1

1
nk

(9)

=
nk

(n+ 1)k−1(n− (k − 1))
(10)

≥ nk

nk
(11)

= 1 (12)

In (10), the arithmetic mean of the factors in the denominator (numerator respectively) is n.
Since the geometric mean of positive numbers can never be bigger than the arithmetic mean, the
geometric mean of the factors of the denominator has to be (≤ n) and the product (≤ nk). ut

Now we combine Lemma 10 and Lemma 11 to proof Theorem 3.



Proof. If we select h in Lemma 10 to be blog log lc we can get a counter with the following
dimensions for every l.

n ≤ (blog log lc+ 1)54

(
1 +

80√
l

)blog log lc

l (13)

≤ 108 log log l

(
1 +

80

b
√
lc

)blog log lc

l (14)

≤ 108 log log l

(
1 +

80

b
√
lc

)b√lc

l (15)

≤ 108 · e80 log log l · l (16)

e ≤ l2 · l−
1

2blog log lc ·
(
1 +

80√
l

)blog log lc

(17)

≤ l2 · l−
1

log l · e80 (18)

=
1

2
l2 · e80 (19)

c ≥ l2 · l−
1

2blog log lc (20)

≥ l2 · l−
1

2(log log l)−1 (21)

= l2 · l−
2

log l (22)

= l2 ·
(
l
− 1

log l

)2
(23)

=

(
1

2

)2

l2 (24)

=
1

4
l2 (25)

(16) and (18) are true because of Lemma 11, and (19) and (24) are true because it holds that
log
(
l
− 1

log l

)
= − 1

log l
log l = −1 = log 1

2
. We can also run this counter by creating a red and

a blue clique of size d
√
ee + 1 and then connecting the vertices in the counter to vertices in the

cliques according to I(·). Since
√
e = O(n) this increases the number of vertices only by a

constant fraction. So our final network has n = O(l · log log l) vertices and a convergence time

of Ω(l2) = Ω
(

n2

(log log l)2

)
≥ Ω

(
n2

(log logn)2

)
. ut


