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ABSTRACT
Human activity recognition from raw sensor data has en-
abledmodernwearable devices to track and analyze everyday
activities. However, when used in real world conditions, the
performance of off-the-shelf devices is often insufficient. This
paper tackles the problem of swimming style recognition
and lap counting using sensor data from a single smartwatch.
In total 17 hours of this data was collected from 40 swim-
mers of diverse backgrounds. The data was then used to
train a convolutional neural network to recognize the four
main swimming styles, transition periods and lap turns. Our
method achieves an F1 score of 97.4% for style recognition
and 99.2% for counting laps. To the best of our knowledge,
these results are the first to enable accurate automatic swim-
ming recognition in a realistic and completely uncontrolled
environment.

CCS CONCEPTS
• Information systems → Clustering and classification; •
Hardware → Sensor devices and platforms; • Computing
methodologies → Neural networks.
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1 INTRODUCTION
Smartwatches accompany many of us in our everyday life.
They are equippedwith several sensors, such as an accelerom-
eter or a gyroscope, which make it possible to track our
chores, analyze collected data and offer feedback. With the
emergence of waterproof smartwatches, open-water swim-
mers have been given the possibility to accurately measure
the swimming distance and efficiency during a training in
the lake. When the smartwatch is being used indoors, the
requirements are however different. While some participants
of our study already use a smartwatch to track their swim-
ming, the results are not accurate enough to support a serious
training regimen. This is because an indoor swimmer usually
follows a plan and measures progress by repeating the same
exercise in different trainings and then comparing the lap
times. In order for a smartwatch to replace the duties of a
coach, it therefore should be able to differentiate between
styles and exercises, as well as reliably recognize when the
swimmer switches the style, turns or takes a break.
In this paper, we address two of the tasks mentioned be-

fore: counting laps and recognizing the four main swimming
styles, i.e., crawl, breaststroke, backstroke and butterfly. For
this purpose data was collected using an off-the-shelf smart-
watch. In order to collect data in a realistic scenario, we
work with a local masters team which has members from
various countries all over the world. These swimmers are
on different levels of swimming and have diverse swimming
techniques. As there were at least ten swimmers sharing a
single lane at any point in time, the swimming conditions are
comparable to those of a public swimming pool. The swim-
mers were further allowed to follow their training routine as
usual, with the only difference being that they were wearing
a smartwatch.
The collected data is used to build an end-to-end system

that can directly work with raw sensor data and profit from
large amounts of data. For this purpose we train a Convolu-
tional Neural Network (CNN) to take windows of raw sen-
sor data from the gyroscope, accelerometer, magnetometer,
barometer and ambient light sensor as inputs, and output a
probability distribution over the four main swimming styles,
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as well as a transition class. The transition class acts as a
NULL class and combines turns and rests. We then use the
predicted transitions to count laps, effectively outputting a
complete segmentation of the swimming session. Such a seg-
mentation can for example be used to follow a pre-defined
swimming plan. Deep learning methods generally require
large amounts of data in order to give accurate predictions
and generalize well. To ensure that this is satisfied, we col-
lect a large and representative dataset containing 17 hours
of sensor data from 40 swimmers for all four major swim-
ming styles and transitions. To the best of our knowledge,
this paper presents the first application of deep learning to
swimming style recognition and lap counting. Our method
recognizes stroke styles with precision and recall of 97.4%
each. For lap recognition we achieve precision and recall of
99.6% and 98.9% respectively. We argue that our end-to-end
method achieves state-of-the art performance, and in partic-
ular, it achieves a level of performance that is sufficient for
swimmers to actually adopt it. Unfortunately, there are no
publicly available datasets in prior work which would enable
direct comparison. In order to facilitate future research in
HAR and facilitate direct comparison to our work, we make
our code and dataset publicly available.1

2 RELATEDWORK
Human Activity Recognition (HAR) is an active field of re-
search that deals with recognizing human actions, ranging
from activities of daily living [2, 23, 24] (walking, cleaning,
eating, etc.) to job-specific motions [14, 15, 28], all the way
to movements in certain sports, such as volleyball [4, 11],
weight lifting [17, 25] or swimming [3, 6, 7, 10, 19–21, 29, 30].
For a broader treatment of HARwe refer the interested reader
to [13, 22].

Previous work in swimming style classification has mainly
focused on basic classification approaches. One line of re-
search therefore uses hand-crafted features and rule-based
classification. Davey et al. [5] use a chest-mounted accelerom-
eter and define orientation and energy thresholds to detect
the stroke type. Bachlin et al. [1] use 6 sensors placed in
different locations to capture multi-modal sensor data. Their
main goal is to analyze swimming technique and efficiency
of 21 participants among which are elite, recreational and oc-
casional swimmers. Topalovic et al. [29] use a wrist-mounted
accelerometer to collect data and design a decision graph to
classify between all four major swimming styles and turns.
Gonzalo et al. [6] use a wrist-worn accelerometer. In con-
trast to [29], they also consider turns and rests, but leave out
one style - butterfly - which is very similar to crawl for a
wrist-worn sensor. They use a state-machine to recognize
individual swimming laps and a decision graph, based on

1http://bit.ly/2IvhS3m

mean acceleration, to classify swimming styles within laps.
Another line of work uses model-based approaches in ad-
dition to hand-crafted features. Pan et al. [21], for example,
use a palm-mounted smartphone to record 15 strokes for
each swimming style and compute a model for each style.
They then classify new strokes by calculating the correlation
coefficient with each style model.
A majority of existing papers focuses on hand-crafted

features and classical machine learning methods. Siirtola et
al. [26] use accelerometers to recognize crawl, breaststroke,
backstroke and turns. They collect data from 11 participants
wearing an accelerometer sensor on the wrist and upper back.
They compute a set of hand-crafted features and train a qua-
dratic discriminant analysis classifier. Zhang et al. [30] use a
total of 6 IMUs mounted to both legs to collect data from 3
competitive swimmers. They use simple statistical features
to train a quadratic discriminant analysis classifier to rec-
ognize the four major swimming styles. The limited size of
their dataset raises questions about how their model would
perform if it were applied to many swimmers of differing
skill levels. Ohgi et al. [19] collect data from 45 well trained
university swimming club members wearing chest-mounted
accelerometers. They use standard statistical features to train
an SVM and MLP and achieve an accuracy of 91.1%. They
use a fixed threshold on one acceleration sensor axis to dis-
tinguish between swimming and resting. Note that since
they use a chest-mounted accelerometer, distinguishing rest
and swimming can be done by simply looking at the down-
wards acceleration due to gravity. This is less straightforward
in our case, since swimmers’ arms are constantly moving,
even when when resting. Choi et al. [3] develop a swimming
exercise game that also includes swimming style classifica-
tion and turn detection, where the swimmers are wearing a
smartphone on their upper arm. For style classification they
evaluate decision trees, Naive Bayes and SVMs with linear
and gaussian kernels. When applying their method to seven
occasional swimmers, mean classification accuracy drops
from 99.7% to 78.2%, indicating that the training data was
probably not large and varied enough. For turn detection
they use the magnetometer (compass).
All presented approaches are based on data from 6 to 13

swimmers (with the exception of [19]). All swimmers are
generally asked to follow a fixed predefined plan without
interfering with other swimmers, giving a controlled setting
for the experiment, possibly yielding unrealistic data. Our
data collection setting is highly realistic and reflects the con-
ditions of a public swimming pool, where many swimmers
are on the same lane and have to frequently stop or evade.
Apart from [6, 19], the discussed papers collect their data
from a small group of elite swimmers, who are likely to have
similar swimming technique. The work of Choi et al. [3]
shows that data collected in such a controlled environment

http://bit.ly/2IvhS3m
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does not generalize well to occasional swimmers. In contrast,
we collected data from 40 swimmers of different skill levels,
which should give us a better estimate of generalization per-
formance. We further do not impose any restrictions on the
swimmers, but instead let them follow their normal training
procedure. The only other work that collected data from
a large number of non-elite swimmers [19] achieve lower
stroke style classification accuracies and rely on classical ma-
chine learning and hand-picked thresholds. Conversely, our
model does not require manual feature engineering, works
on raw data and includes butterfly.

3 DATA
We collect data from members of a local masters swimming2
club during regular training sessions in a 50 meter indoor
swimming pool. The team includes women and men whose
ages range from 25 to 75 years. Their swimming skills range
from competitive swimmers who participate in international
masters championships, triathletes and open water swim-
mers, who are specialized in crawl, to recreational fitness
swimmers. The minimum requirement to be part of the team
is to be able to swim 100 meters in under two minutes. Note
that not all swimmers in our study are able to swim all styles.

There are nine training sessions a week, each of which has
an assigned member as a trainer. At least ten swimmers are
sharing the same lane during training at all times. During the
session, the swimmers follow a swimming plan written by
one of the trainers. This plan includes different swimming
styles over distances of 50 to 400 meters, performed at a
varying pace. Additionally, the swimmers perform other
exercises like kicks and sculling drills, and are also using
assistance equipment such as fins or pull buoys. In total,
we obtain 17 hours of data collected from 40 swimmers by
attending their swimming sessions. We ask the swimmers to
wear the smartwatch for some part of the training and only
interact with it at the beginning and the end of a session,
thereby we do not interfere with the swimming plan or the
general structure of their training.

The data is collected using a commercial wrist-worn smart-
watch called Nixon The Mission [18]. The watch is water-
proof and contains a comparably large number of built-in
sensors. For this work, we record data from the accelerome-
ter, gyroscope, magnetometer, barometer and the ambient
light sensor. The sensor data is recorded at the maximum
possible sampling frequency, which varies between 6.67Hz
and 104Hz depending on the sensor type.
The user interface of the data collection app is kept as

simple as possible with large UI elements to avoid errors and
frustration for the swimmers. A difficulty is the lack of phys-
ical buttons or dials, as touchscreen operation is challenging

2https://en.wikipedia.org/wiki/Masters_swimming

when the screen is wet. A wet touchscreen does for example
not react to user input, or even mistakes water droplets for
touch input. In order to minimize such accidental touch in-
puts, the stopping and starting of recordings is done by two
successive swipe gestures. Swiping is still possible even on a
wet touchscreen and is unlikely to happen accidentally.

The participants are asked to wear the watch for a series of
exercises that they perform during the training. The watch
is placed on the users preferred wrist and they are asked
to start, stop and label recordings manually using the user-
interface. Recordings are typically stopped and re-started
when the swimmers are resting between laps. We provide
assistance where necessary, but otherwise try to be unob-
trusive as not to disturb the usual training flow. Note that
recording video is illegal in public swimming pools in our
country, and hence we are not able to use video footage to
label the sensor data. Instead, in addition to the information
directly provided by the data collection app, we manually
note down the order in which the styles are swum as well as
any unforeseen events, such as a swimmer having to abort
a lap because too many other swimmers are on the same
lane. We then manually inspect all of the collected sensor
data and use our notes to provide a complete annotation of
the four main swimming styles. We further manually label
transitions, which include both turns and rest. This results
in a total of 5 classes. If swimmers perform more than one
style per lap, or do not restart the recording before switching
styles, we also manually correct the labels. Figure 1 shows an
example of a completely annotated data stream, containing
multiple turns and mixed laps.
In total we collect 17 hours of sensor data from 40 swim-

mers. Since we observe the swimmers during their normal
training routine we do not take much influence on which
styles they swim. Therefore, we do not have the same amount
of data for every swimming style and participant, as shown
in Table 1.

Pre-Processing
The methods described in this work operate on windows of
sensor data Xi . Xi is a matrix of dimension NS ×TW , where

Table 1: The amount of data per class and the number of
users that represent each class.

Class Duration
[min]

Nr. of
swimmers

Avg. data
per user [min]

Crawl: 410 37 11.1
Breaststroke: 84 24 3.5
Backstroke: 136 31 4.4
Butterfly: 62 23 2.7
Transition: 327 40 8.2

https://en.wikipedia.org/wiki/Masters_swimming
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Figure 1: An example of the 3-axis acceleration signals from a labeled recording. The recording shows all four swimming styles
in the span of two laps. The transitions denote turns and rests.

NS denotes the number of sensor channels, and TW is the
length of the input segments in samples. In our experiments
we use 11 sensor channels (3-axis accelerometer, 3-axis gy-
roscope, light sensor, pressure sensor), and thus NS = 11.
We experimented with different input window lengths and
settled on a value of 6 seconds. Since we collect data from
each sensor at its respective maximum sampling frequency,
we re-sample all sensor channels at 30Hz using a cubic spline,
which yields a window length ofTW = 30Hz ∗ 6s = 180 sam-
ples. The dataset is then segmented into windows with 83%
(5s) overlap. Each signal channel is independently normal-
ized to have zero mean and unit variance. Finally, we assign
a class label to each window. A window is labeled with one
of the five classes (crawl, breast, back, butterfly, transition)
if at least 75% of the window duration (4.5s) are made up of
a single class. If no single class is present for more than 4.5s,
we label the window as unknown and exclude it from the
training. Finally, we are left with 53,732 input windows for
training and testing.

Data Augmentation
In order to increase the effective amount of training data and
improve the generalization performance of our models we
apply four data augmentation methods: time-scaling, noise,
reversing and rotation. In the following we describe each
data augmentation method in detail.

Time-scaling. We apply time-scaling to each recording in the
dataset in order to simulate a swimmer swimming faster
or slower than in the original recording. For a signal x(t)
we say that y(t) is a time-scaled version of x(t), if y(t) =
x(αt), α ∈ R+ where α is the time-scale factor. This kind of
linear time-scaling will likely produce unrealistic data, and
we therefore keep α close to one. We generate two additional
copies of the entire dataset using time-scale factors 0.9 and
1.1. During training, we pick each time-scale factor with a
probability of 15%, and apply no scaling in the remaining
70% of cases.

Noise. In order to increase the robustness of our methods
with respect to random fluctuations we add zero mean Gauss-
ian noise to each normalized input window. The standard
deviation is set to 0.01.

Reversing. During trainingwe transform the sensor axeswith
a certain probability in order to simulate how the signals
would look like if the watch was worn on the opposite wrist.
We therefore introduce the following transformation

accx −→ −accx
magx −→ −magx (1)
gyroy −→ −gyroy
gyroz −→ −gyroz

which inverts the coordinates of the accelerometer, magne-
tometer and the gyroscope respectively. This augmentation
is applied to each input window during training with a prob-
ability of 50%.

Rotation. We apply random rotations around the x-axis (par-
allel to the arm) in order to simulate the watch being rotated
around the wrist. Strictly speaking, we simulate the watch
being rotated in place, and not around the swimmers’ arms.
Doing the latter would require us to know the diameter of
each swimmers’ wrist. However, we verified experimentally
that our simplified method indeed produces realistic record-
ings that correspond well to real recordings where the watch
was in fact worn loosely and hence being rotated around the
wrist. We define θ to be the rotation angle and apply the rota-
tion augmentation to all input windows during training. We
therefore sample θ uniformly at random from the interval
[−30◦, 30◦] for each window.

4 METHODS
In this section we describe our two-step approach to recog-
nize swimming styles and count laps.

Model for Swimming Style Recognition
Our CNN architecture follows a similar structure as in [8, 16]
and is depicted in Figure 2. A distinguishing feature of these
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Figure 2: A visual representation of the CNN used in this paper. The 3 × 1 convolutions and max-pooling operations preserve
the width of the network which is equal to the number of sensor signals in the data. Information from different sensors is
finally combined in the first fully connected layer. The last layer is a fully connected softmax classification layer.

networks are them × 1 convolutional filters and pooling op-
erations which only reduce the feature size along the time di-
mension, but preserve the number of sensor channels. Thus,
features are extracted for each sensor channel separately
and are only merged at the end by a fully connected layer.
The input Xi is a frame of sensor data which consists of
NS = 11 signals over a TW = 180 ≈ 6s time interval. The
input is passed through four convolutional layers with iden-
tical configurations. They all produce 64 feature maps with
3 × 1 shaped kernels at a stride of 1. The filter outputs are
passed through ELU activations and max-pooling operations
to reduce the feature size along the time dimension. After
the last convolutional layer, there is a fully connected layer
with 128 units and ELU activations. The final layer is a fully
connected layer with five units and softmax activations that
outputs the final estimated class probabilities.

Regularization is applied at each layer except for the final
classification layer. As in [8], the network is regularized using
Dropout [9] and Max-norm [27]. Regularization strengths
are chosen based on the networks performance on a valida-
tion set. The validation set is constructed from user-class
combinations that were classified with both low and high
accuracy in early experiments. Table 2 shows these user-
class combinations. We first perform several experiments by
randomly sampling values from the following grid

pi ∈{0, 0.1, 0.25, 0.5, 0.75}
ci ∈{0.1, 0.5, 1.0, 2.0, 3.0, 4.0,∞}

where pi and ci are the dropout probability and max-norm
constraint of layer i . We then take the best performing con-
figuration and manually experiment by slightly changing
the values in order to achieve better performance. The final
values are shown in Table 3.

Table 2: Validation set used during hyper parameter search.

Class Users
Transition user29
Crawl user16, user19, user13
Breaststroke user29, user40, user33
Backstroke user22, user23, user36
Butterfly user18, user33

Table 3: Regularization values used in the CNN architecture.

Layer Conv. 1 Conv. 2 Conv. 3 Conv. 4 Fully Con.
Dropout 0.5 0.75 0.25 0.1 0.25
Max-norm 0.1 0.1 ∞ 4 4

The network is trained by minimizing the negative log
likelihood, which is given by

H (p,q) = −
∑
c ∈C

pc log(qc )

whereC is the set of all classes, andpc and qc are the true and
predicted class probabilities of class c respectively. We use
the ADAM optimizer [12] on mini-batches of input windows
Xi . The exponential decay parameters of ADAM are kept at
their default values β1 = 0.9, β2 = 0.999, but the learning
rate is slightly decreased to α = 0.0005.
To mitigate the effects of class imbalance we train on

mini-batches that are sampled using a stratified sampling
scheme. The stratification is applied over classes and users.
Statistically, this means that each mini-batch has an equal
number of windows from each class, and each user has equal
contribution. We choose a mini-batch size of 64. At this stage
we also use the data augmentation methods described in
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Section 3. The network is trained for 60,000 mini-batches
with no early stopping. A validation set is used for selecting
the best model. We use both k-fold and Leave-One-Subject-
Out cross-validation depending on the specific experiment.
In both cases we make sure that all data from one user is
either in the training or in the validation/test set.

Lap Counting
Four of the classes in our dataset belong to swimming, while
the fifth class constitutes transitions (rests and turns). We
do not differentiate between a rest and a turn, because a
short pause of five seconds resembles a slow turn in the data.
The time between two transitions can then be considered as
one lap of swimming. This rather coarse way of predicting
a lap would likely generate many false positives, especially
in cases where a swimmer is forced to take a short break
during a lap (e.g., due to water in the goggles or due to
another swimmer overtaking). In this section, we describe
an algorithm that improves recognition of laps by smoothing
the raw predictions of the CNN.
We split the lap recognition task into the following sub-

tasks: (1) We recognize long transitions for which the neural
network is very confident. (2) We filter out spurious pre-
dictions of a swimming style between the long transition
periods we found previously. Such prediction errors can hap-
pen if the swimmers move their arms while resting at the end
of the pool. (3) We look at the swimming periods between
the detected transition periods and try to find quick turns,
which are more difficult to detect than longer transitions
since they are much shorter.
We first define ptr(t) as the predicted probability of the

transition class at time t . We further define the two threshold
values, t (lap)min and t (lap)max as the minimum and the maximum lap
swimming times in our dataset. For long transition periods,
we define t (transition)min to be the minimum transition time. We
set a binary signal r (t) = 1 if ptr(t) ≥ 0.5, and r (t) = 0
otherwise. We then filter out transitions that are shorter
than t (transition)min in order to avoid potential false positives due
to spurious predictions.
Next, we remove predicted swimming periods between

the long transitions which are shorter than the minimum
lap time t (lap)min . This already gives us a first coarse estimate
of the transitions. Unfortunately, in addition to filtering out
false positives, this method sometimes smooths out actual
transitions consisting of quick turns.
In order to also capture these short turns while avoiding

introducing false positives, we use a thresholding method
for the transition probability function ptr (t). Here, we con-
sider two cases: either the turns are short and have a high
probability for a transition ptr (t), or they last longer and
have a small probability ptr (t). We introduce thresholds τp

and τt . τp denotes the minimum value for ptr (t) for which
we accept a transition prediction. τt denotes the minimum
duration which we require a transition to have such that we
accept it. We accept a transition if and only if both thresholds
are met. Choosing single threshold values would likely be
sub-optimal and not generalize well. We thus introduce an
ordered set of threshold pairs T that contains tuples (τp ,τt )
which are used to progressively relax the conditions to accept
a transition. The tuples (τp ,τt ) in T are ordered according
to τp ∗ τt in descending manner. Intuitively, we first use the
maximum lap time t (lap)max to check whether we are missing
short turns between long transitions, the latter of which
we already found during the first step of our lap recogni-
tion algorithm. If this is the case, we progressively lower our
thresholds for ptr (t) and the transition duration until there is
no swimming period longer than t

(lap)
max , or there are no tran-

sition candidates that satisfy the least conservative threshold
pair. By lowering the threshold progressively we pick the
most likely turns, but avoid introducing false positives. The
threshold values we used are:

τp ∈ [0.5, 0.45, 0.4, 0.35, 0.3, 0.25]
τt ∈ [6s, 5s, 4s, 3s, 2s, 1s]

T = τp × τt ∈ [(6s, 0.5), (6s, 0.45), (5s, 0.5), ..., (1s, 0.25)]

The threshold sets τp and τt are chosen based on a small
validation set comprised of three participants (u5,u22,u30).
The values are then fixed and used for predictions on all
40 participants. The maximum and minimum lap times are
taken from our dataset; t (lap)max = 75s and t (lap)min = 22s . The min-
imum transition duration for the first step of our algorithm
is t (transition)min = 6s . These values can easily be personalized
for a specific swimmer.

5 RESULTS
Swimming Style Recognition
We use Leave-One-Subject-Out (LOSO) evaluation in order
to evaluate the performance of our model. In LOSO the data
is partitioned into training and test sets such that data from
one user is in the test set, and data from all others in the
training set. We further separated data from the training
set into a validation set. The validation set was constructed
for each class by picking five users uniformly at random to
represent the respective class. During training, we allowed
the network to train for a fixed number of epochs while
monitoring the performance on the validation set. The model
with the highest normalized accuracy on the validation set
was applied to the left-out subject set for final evaluation.

For the computation of the evaluation metrics, we make
sure that every participant contributes an equal amount of
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data. Therefore, all performance metrics are first computed
per participant and then averaged.

The confusionmatrix for the LOSO evaluation is presented
in Table 4. We also show the precision and recall of each class
in the same table. The average F1 score is F̂1 = 97.4%. Ob-
serve that among the swimming styles, recall is highest for
crawl and backstroke, while it is lower for breaststroke and
butterfly. Conversely, precision is highest for breaststroke
and butterfly while it is lowest for crawl. These results are
likely due to class imbalance, since crawl is the most rep-
resented swimming style in our data. We therefore would
expect higher recall at the expense of lower precision. Inter-
estingly, recall is lower for breaststroke than for butterfly
even though breaststroke is slightly more represented in
our data. This might indicate that there is greater variability
between users performing breaststroke than butterfly. Back-
stroke and butterfly show the best balance between precision
and recall with an F1 score of 98%. The largest error we ob-
serve is when butterfly is predicted as crawl. This is an error
we expect since the technique for these two styles is similar
if we only look at the motion of one arm. Transitions are
predicted with the highest recall at 98.7%, but precision is
slightly lower at 96.4%.
The first box plot in Figure 3 shows the distribution of

recall over the LOSO runs. Observe that recall is very high
in most cases. In fact, the median is 100% for breaststroke,
backstroke and butterfly, and over 99% for transitions and
crawl. For each class there are clear outliers. The largest out-
liers for crawl and backstroke both come from user21. In both
instances, the errors are due to the styles being falsely classi-
fied as transitions. As can be seen from the box plots, there
are only a handful of strong outliers. Naturally, training on
data from even more users would likely result in fewer out-
liers. Alternatively, one could imagine fine-tuning the CNN
to each user, especially if that user, like user21, is an outlier.
We leave the investigation of fine-tuning and personalization
to future work.

The second box plot of Figure 3 shows the results without
data augmentation. There, breaststroke and butterfly outliers
are not as severe, but overall we have introduced more out-
liers for all classes. The average F1 score drops from 97.4% to
96.4% in this case. We have also performed informal experi-
ments where we omitted data from specific sensors during
training. We found that ignoring the light and pressure sen-
sors does not have any impact on performance, indicating
that data from these sensors is not predictive of swimming
style.

Lap Counting
In order to test the lap recognition algorithm described in
earlier, we use the predicted output from the CNN and apply

Table 4: The normalized confusionmatrix forwindow-based
predictions.

Predicted Class
Trans. Crawl Breast Back Fly Recall

Trans. 0.987 0.007 0.002 0.003 0.000 0.987
True Crawl 0.008 0.985 0.000 0.001 0.005 0.985
Class Breast 0.017 0.018 0.949 0.017 0.000 0.949

Back 0.012 0.004 0.002 0.982 0.000 0.982
Fly 0.001 0.034 0.000 0.000 0.965 0.965

Precision 0.964 0.940 0.994 0.979 0.994
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Figure 3: Distribution of recall over users for each class.

Table 5: Results for lap recognition under varying levels of
allowed deviations.

Deviation
Metrics 1s 2s 4s 6s 8s ∞

True Pos. 421 676 732 747 749 752
False Pos. 331 76 20 5 3 0
False Neg. 336 81 25 10 8 5
Precision 0.560 0.899 0.973 0.993 0.996 1.0
Recall 0.556 0.893 0.967 0.987 0.989 0.993

the algorithm to all recordings in the dataset that do not
contain any periods of unknown activity. Since we rely on
transitions to count laps, we remove all recordings without
any transitions, resulting in a total of 169 recordings contain-
ing 757 laps. To determine if a lap is correctly recognized,
we measure how accurately the start and the end times of a
lap are identified. Let tstart and tstop be the start and the end
times of a lap respectively, and t̂start, t̂stop our predictions. We
say that the lap is correctly identified if

|t̂start − tstart | ≤ D and |t̂stop − tstop | ≤ D

where D is the allowed deviation. Table 5 depicts the perfor-
mance with different values for D. Even with a strict bound
of D = 2s we are able to correctly recognize most laps. As
we allow D to increase, precision and recall reach 99.6%
and 98.9% for D = 8s . If we allow arbitrary deviation (e.g.,
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Figure 4: An example of a backstroke lap which is concluded with a couple of crawl strokes. The top figure shows the 3-axis
acceleration signals and the bottom figure shows the raw CNN output.

Table 6: The confusion matrix for predicted swimming
styles within laps.

Predicted Class
Crawl Breast Back Fly Mix Recall

Crawl 546 0 0 0 5 0.991
True Breast 0 85 0 0 4 0.955
Class Back 0 0 156 0 2 0.987

Fly 1 0 0 77 6 0.917
Mix 0 0 4 0 54 0.931

Precision 0.998 1.000 0.975 1.000 0.761

D = ∞), we achieve perfect precision and only count 5 laps
too few, which results in a recall of 0.993.
These results compare very favourably to the ones re-

ported in [3], where for D = ∞ the authors achieve precision
and recall of 0.962 and 1.0 respectively. For stricter bounds
the differences become even larger. For D = 4s their preci-
sion and recall drop to 0.705 and 0.74 respectively, which is
significantly lower than our results at 0.973 and 0.967.

Laps with Mixed Styles
Swimmers often change swimming styles in the middle of a
lap, e.g., they swim 25m butterfly followed by 25m crawl. We
define such mixed laps as any lap containing more than one
swimming style. We further require a swimming style to be
predicted for more than 4s per lap. Previous work does not
report results onmixed laps, and to the best of our knowledge,
existing smartwatch apps simply output a “mixed lap” label,
instead of detailing the exact sequence of styles during the
mixed lap. For this experiment, our data set contains of 940
laps. Table 6 shows the confusion matrix of the results over
all 940 laps. We achieve an average F1 score of 94.9%.

In order to better understand the kinds of errors our model
makes we look at the errors for the Mix class, where four laps
were wrongly classified as backstroke. All four errors come
from the same user who is swimming laps of backstroke
concluding with a couple of crawl strokes. Figure 4 shows an
example of such a recording. The crawl strokes last longer
than four seconds and hence we are dealing with a mixed
style lap by our definition. Our model correctly detects the
crawl strokes at the end of the lap but the total duration
of the predicted crawl sequence is only 3s , and hence we
wrongly classify the lap as a single-style crawl lap. However,
we see that there is a short transition period from backstroke
to crawl during which our model has high uncertainty. This
corresponds well with the swimmer having to transition
between the two swimming styles. Hence it is possible that
these mistakes are caused by the the resolution of our data
labelling scheme. Amore accurate labeling of the data by, e.g.,
using video recordings to label the short transition period,
might have resulted in less than 4s of crawl.

6 CONCLUSION
To the best of our knowledge, we introduce the first end-
to-end deep learning based approach for swimming stroke
style recognition and lap counting. Our approach requires
minimal feature engineering and only few manually chosen
thresholds. We collect a large dataset from a diverse set of
swimmers with varying backgrounds and skill levels. The
results show that our approach generalizes well and hence
it should be applicable to almost anyone who has learned
how to properly swim a certain stroke style. Our method
can predict complete segmentations of mixed style laps and
hence, to the best of our knowledge, is the first approach
capable of accurately following a swimming plan.
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