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Abstract. Frequency hopping is a central method in wireless communi-
cation, offering improved resistance to adversarial interference and inter-
ception attempts, and easy non-coordinated control in dynamic environ-
ments. In this paper, we introduce a new model that supports a rigorous
study of frequency hopping in adversarial settings. We then propose new
frequency hopping protocols that allow a sender-receiver pair to essen-
tially use the full communication capacity, despite a powerful adversary
that can scan and jam a significant amount of the ongoing transmissions.

1 Introduction

The term frequency hopping (FH) in wireless communication refers to a century
old method [31–33] of rapidly switching the carrier of a transmitted radio sig-
nal among many frequency channels. This method offers various advantages in
comparison to traditional fixed frequency transmissions: it is highly resistant to
narrow-band interference, it is much more difficult to intercept, and it allows
for easy non-coordinated control in dynamic environments. Because of these ad-
vantages, FH is omnipresent in modern wireless communication standards such
as GSM. Nevertheless, state-of-the-art FH schemes typically use “cryptographic
heuristics” whose security is not mathematically established and sometimes turns
out to be compromised. For example, using an off-the-shelf device that costs less
than 100 EUR [27], the FH scheme that lies at the heart of Bluetooth can be
breached within less than a second [17].

In this paper, we hope to bring the state of analysis of FH to the next level.
In particular, we ask ourselves what kind of interference a FH protocol can
withstand on an information theoretic level (without making any cryptographic
assumptions). It turns out that the right tools enable us to design a FH pro-
tocol that can cope with adversarial interference, where the adversary can not
only jam a constant fraction φ of the bandwidth, but also intercept the proto-
col’s transmissions with a small delay. The price to pay for implementing this
protocol is a constant additive overhead on the size of each transmitted mes-
sage. Surprisingly, our protocol manages to utilize the bandwidth up to that φ
fraction.



1.1 Model

The Cast. Consider the setting of a uni-directional wireless communication
from Alice (the transmitter) to Bob (the receiver) in an adversarial environment.
There are n available channels and in each round t ∈ Z>0, Alice chooses a single
channel a(t) ∈ [n] over which she transmits her message and Bob chooses a
single channel b(t) on which he listens; b(t) = a(t) is a necessary condition for
Bob to receive Alice’s message in round t.

Eve (the adversary) wishes to disturb the communication from Alice to Bob.
In each round t ∈ Z>0, Eve chooses to jam a channel subset E (t) ⊂ [n] of size
at most φn, 0 < φ < 1: if b(t) ∈ E (t), then Bob does not receive Alice’s message
even if b(t) = a(t). We distinguish between two types of jamming, differing in the
exact effect that b(t) ∈ E (t) has on Bob’s input in round t: overwriting means
that Bob receives a message that was tailored by Eve which may be confused
with Alice’s messages; blocking means that Bob receives static noise which in
particular, indicates to Bob that he did not receive Alice’s message. Eve is called
an overwriting (respectively, blocking) adversary if her jamming capabilities are
suited for overwriting (resp., blocking) Alice’s transmissions. For completeness
of the model, we assume that if Bob listens on a wrong channel which is not
jammed by Eve, i.e., b(t) /∈ E (t) ∪ {a(t)}, then he also receives static noise.
Note that Alice does not get any feedback regarding the channel on which Bob
listened or the actual message he received (if any).

In attempt to avoid Eve’s channel jamming, Alice and Bob must use ran-
domness in their channel choices.3 This should be done in a coordinated fashion
to ensure, above everything else, that they both choose the same channel. For
that purpose, they both have access to a total of s shared random bits generated
(once) prior to round 1. Alice can also generate as many private random bits as
she needs in each round; these cannot be (directly) accessed by Bob, however,
Alice may append to each message she transmits up to k additional bits that
can be used to communicate some information regarding her (private) random
choices. In fact, since the actual content of Alice’s messages is irrelevant to the
current paper, we shall subsequently consider these k bits as Alice’s (whole)
message, so in what follows we assume that all messages are of size k.

The setting described so far is trivial to cope with if Eve is an oblivious
adversary: Alice and Bob can simply follow a random permutation of the chan-
nels (assuming that s is sufficiently large to support this random choice, i.e.,
s = Ω(n log n)). However, in our model Eve also enjoys the benefit of some
sort of delayed adaptiveness. It is assumed that Eve can scan the spectrum and
extract the channel a(t) over which Alice transmitted in round t, but this infor-
mation is revealed to Eve with a certain lag λ, that is, in round t+ λ.

Notice that according to our basic model, Eve’s scanning reveals the channel
a(t) over which Alice transmitted in round t, but it does not reveal the content of
the transmitted message. (Although this issue is abstracted away in our model,

3 As usual, we assume that Eve knows Alice and Bob’s protocol, but not their random
bits.



note that it is a valid assumption in settings with encrypted messages.) A variant
of the model in which Eve’s scanning reveals both the channel and the message
content, referred to as enhanced scanning, is discussed in Sec. 4.

Grouping the Parameters. We refer to Alice and Bob’s channel choosing
strategy as an (n, s, k)-FH protocol, where n denotes the number of channels,
s denotes the number of shared random bits, and k denotes the size (in bits)
of the messages. Eve is referred to as a (λ, φ)-adversary, where λ denotes the
delayed adaptiveness lag and φ denotes the fraction of channels she jams. It is
important to point out that these five parameters may exhibit inter-dependencies
(in particular, we shall express s and λ as functions of n), however, unless stated
otherwise, they do not grow as a function of the execution length.

Round t is said to be successful if b(t) = a(t) /∈ E (t), namely, if Bob listens on
the channel over which Alice transmits and this channel is not jammed by Eve.
The quality of a FH protocol is measured in terms of the fraction of successful
rounds captured by the probability that an arbitrary round is successful. Clearly,
no FH protocol can guarantee a success probability larger than 1 − φ; this is
demonstrated already by an (oblivious) adversary that in every round t, chooses
E (t) uniformly at random out of all channel subsets of size φn.4 Therefore, at
best, we can hope for FH protocols that guarantee success probability close to
1− φ.

Resilience. Formally, an (n, s, k)-FH protocol is said to be ε-resilient to block-
ing/overwriting (λ, φ)-adversaries if round t is successful with probability at least
1−φ− ε for every t ∈ Z>0 against any blocking/overwriting (λ, φ)-adversary, re-
spectively. Note that the requirement on the success probability should hold, in
particular, as t goes to infinity (fixing all other parameters). This can be thought
of as requiring that the guarantees of the FH protocol hold for infinitely long
executions, even though all other parameters (including the number s of shared
random bits) are finite.

Motivation. The role of the shared random bits is similar to that of a secret key
in cryptographic systems, generated and exchanged between the collaborating
parties before the execution commences. Under our model, the situation is clearly
hopeless without shared random bits: if s = 0, then Eve knows everything Bob
knows already in round 1 and can easily jam the communication. On the other
hand, if Alice and Bob have access to infinitely many shared random bits and
in particular, can use fresh dlg ne shared random bits per round,5 then they can
trivially choose a(t) = b(t) ∈ [n] uniformly at random in every round t, thus
ensuring an optimal success probability of 1−φ. To a large extent, the challenge

4 By Yao’s principle, the existence of an oblivious probabilistic adversary that guar-
antees a success probability of at most 1−φ against all FH protocols implies that for
every FH protocol, there exists an oblivious deterministic adversary with the same
guarantee.

5 We use lg x to denote log2 x.



in this paper is to to deal with the case of a finite, yet positive, number s of
shared random bits, while trying to keep s small (as a function of n).

One may wonder whether the delayed adaptiveness feature of our model can
be justified in practical applications. To that end, note that with dedicated hard-
ware, Eve can scan all n channels, however, extracting the information regarding
the channels over which Alice transmitted from the perceived signals is a dif-
ficult challenge, likely to incur a significant delay. Moreover, in practical FH
scenarios, the spectrum is usually shared between many concurrently communi-
cating Alice-Bob pairs (e.g., secondary users in cognitive radio networks [24]),
thus adding another level of complexity to the challenge of obtaining the FH
channels used by one specific pair.

1.2 Related Work

Several people are credited with inventing FH. In 1903 Nikola Tesla was granted
two U.S. patents [31, 32], where in the second patent, he states: “To overcome
[several drawbacks such as electrical disturbance] and to enable a great number of
transmitting and receiving stations to be operated selectively and exclusively and
without any danger of the signals or messages being disturbed, intercepted, or
interfered with in any way is the object of my present invention.” Jonathan Zen-
neck [33] claimed in his textbook on wireless telegraphy that the newly founded
company Telefunken tested FH around the same time.

The first applications of FH were probably for military purposes. It is re-
ported that the German Reichswehr used FH during World War I to prevent
eavesdropping by British forces. During World War II, FH was already pretty
common, e.g. in a system called SIGSALY that provided a secure communication
infrastructure between Roosevelt and Churchill. Perhaps the most well known
FH related martial invention was that of star actress Hedy Lamarr (Markey) and
composer George Antheil for preventing the detection of radio guided torpedoes
[21]. Nowadays, FH is used by essentially all military radio systems.

FH is well studied in the context of information and coding theory, e.g.
[15, 22, 5]. These studies typically aim to provide algebraic hopping sequences
with various properties, such as good Hamming correlation or near linear span.
However, to the best of our knowledge, this body of work does not deal with
adversarial interference.

In contrast, the wireless algorithms community has recently developed an
increasing interest in adversarial jamming. Often, the jammer must live on a
limited energy budget, which may [16] or may not [13] be known. Dolev et al.
[9] studied jamming in the context of multi-channel gossip and presented tight
bounds for the ε-gossip problem, where the adversary may jam 1 frequency per
round. They also study a setting allowing the nodes to exchange authenticated
messages despite a malicious adversary that can cause collisions and spoof mes-
sages [10], and present new bounds on broadcasting [11]. Another line of work
focuses on the bootstrap problem where nodes have to find each other despite
adversarial jammers [23, 8, 4]. Awerbuch et al. [3] present a MAC protocol for
single-hop networks that is provably robust to an adaptive adversary that can



jam (in a blocking style) a (1 − ε)-fraction of the rounds. This work was later
extended to self-stabilization [29, 30]. In [2], the adversary controls both packet
injections and jamming, according to a leaky bucket process. Richa et al. [28]
recently introduced a reactive jammer that can in addition learn from the proto-
col history. Hopping sequences with cryptographic guarantees on the resilience
to adversarial jamming is studied, e.g., in [19].

Due to their asymptotic approach, theoretical works are typically deemed
successful once they manage to exploit a constant fraction of the available com-
munication capacity. In contrast, wireless protocol designers are rarely willing
to sacrifice a constant fraction of the precious capacity for protocol overhead.
In that regard, we would like to emphasize that our protocols use the available
communication capacity up to an ε-fraction that can be made arbitrarily small.

1.3 Our Results

Our main technical contribution is a FH protocol that guarantees success prob-
ability near 1 − φ with constant size messages, logarithmically many shared
random bits, and a logarithmic lag. This protocol is suitable for any constant
0 < φ < 1 if Eve is a blocking adversary; and for any constant 0 < φ < 1/16 if
Eve is an overwriting adversary.

We then turn to study the enhanced scanning variant of the model, where
the content of Alice’s messages is revealed to Eve together with the channel over
which these messages were transmitted. In this variant we prove that resilience
cannot be achieved as long as the adaptiveness lag is bounded. On the other
hand, we show that if the lag grows logarithmically with time, then our FH
protocol works even when Eve enjoys the benefit of enhanced scanning.

1.4 Techniques

Our FH protocols are inspired by pseudo-random generators à la Impagliazzo
and Zuckerman [14]. The sequence of channels over which Alice transmits corre-
sponds to a random walk on an n-vertex constant degree expander. On the one
hand, this sequence seems sufficiently random to fool Eve; on the other hand,
Bob only needs a constant number of bits per round in order to follow Alice’s
choices. Since a φ-fraction of Alice’s messages are doomed to be lost, she encodes
her transmissions using a family of error-correcting codes with suitably chosen
parameters.

In contrast to the method of Impagliazzo and Zuckerman, where the subset of
bad vertices is fixed, we have to deal with an adaptive adversary that dynamically
changes the bad vertex subset. This issue is handled in our analysis through a
careful examination of the spectral properties of the underlying expander.

2 Preliminaries

In this section, we describe the main ingredients used in the design of our FH
protocols, namely, expander graphs and error-correcting codes.



Ramanujan Graphs. Consider some n-vertex d-regular connected non-
bipartite graph G. Let A ∈ {0, 1}n×n be G’s adjacency matrix and let W = 1

dA
be the corresponding walk matrix. Since W is symmetric, it has n real eigenval-
ues ω1 ≥ · · · ≥ ωn, and since G is d-regular, connected, and non-bipartite, we
know that 1 = ω1 > ω2 ≥ · · · ≥ ωn > −1. Moreover, the all 1s vector 1 is an
eigenvector of W of eigenvalue ω1 = 1, thus the stationary distribution of the
random walk w is uniform in [n].

Let ω(G) = max2≤i≤n{|ωi|} = max{ω2, |ωn|}. The parameter ω(G) captures
some important properties of the graph G, and in particular, the speed of con-
vergence of a random walk to the stationary distribution. This is cast in the
following lemma which is a well known fact in spectral graph theory (see, e.g.,
[7]).

Lemma 1. Let w be a random walk in an n-vertex regular connected non-
bipartite graph G and let wt be the distribution vector of w after t steps. Then
for every i ∈ [n] and t ∈ Z>0, we have

∣∣wt(i)− 1
n

∣∣ ≤ ω(G)t. Note that this
inequality holds regardless of the initial distribution w0.

The graphs in an infinite family G of d-regular connected non-bipartite graphs
are called expanders if they all have a small ω(G), that is, if there exists some
constant 0 < c < 1 such that ω(G) ≤ c for all graphs G ∈ G. In particular, the
graphs in G are said to be Ramanujan graphs (a.k.a. Ramanujan expanders) if
they all satisfy ω(G) ≤ 2

√
d− 1/d [18]. The Alon-Boppana theorem (cf. [26])

essentially states that Ramanujan graphs are the best possible expanders in
terms of their small ω(G).

Theorem 2 ([18, 20, 25]). For every prime power q and integer n0 > 0, there
exist an integer n = Θ(n0) and an explicitly constructable n-vertex Ramanujan
graph of degree d = q + 1.

Error-Correcting Codes. An error-correcting code C over an alphabet Σ is
an injective mapping C : Σm → Σn, where m and n, m < n, are called the
dimension and the length of the code, respectively. We refer to the |Σ|m strings
in the image of C as codewords. The minimum distance of C is the minimum
Hamming distance between any two codewords. The ratio of the minimum dis-
tance to the length, referred to as the relative distance δ of the code, indicates
the quality of the code in terms of the number of errors that can be corrected:
any number smaller than δn/2. The ratio of the dimension to the length, referred
to as the rate r = m/n of the code, indicates the quality of the code in terms of
the number of different messages that can be encoded, also known as the size of
the code: |Σ|rn.

Fixing some alphabet Σ of size |Σ| = q, one typically seeks an infinite family
Cq of codes such that both the relative distance and the rate of every code
C ∈ Cq are bounded below by some constant. Our construction requires an
explicit such family in which the relative distance can be made arbitrarily close
to 1 by increasing q (and decreasing the rate). Such a family Cq is designed, e.g.,
in [1].



Theorem 3 ([1]). For every real ξ > 0, prime power q, and sufficiently large
integer n, there exist a real 0 < r = r(ξ) < 1 and an explicitly constructable
error-correcting code over GF (q) of length n, rate at least r, and relative distance
at least 1− 1

q − ξ.

3 Resilient FH Protocols

Our goal in this section is to establish the following theorem.

Theorem 4. Consider some constant real 0 < φ < 1 (respectively, 0 < φ <
1/16). There exist constant integers k = k(φ) > 0 and n0 = n0(φ) > 0 such that
for every real ε > 0 and integer n ≥ n0, there exist an integer λ = O(log(n/ε)),
an integer s = O(log(n/ε)), and an (n, s, k)-FH protocol with ε-resilience to
blocking (resp., overwriting) (λ, φ)-adversaries.

The basic protocol, presented in Sec. 3.1 and analyzed in Sec. 3.2, is resilient
to overwriting (and hence also blocking) adversaries with 0 < φ < 1/16. Sec-
tion 3.3 is dedicated to tuning up our protocol so that it can cope with the whole
range of parameter 0 < φ < 1 when restricted to blocking adversaries only.

3.1 The Basic Protocol

In a preprocessing stage, Alice and Bob deterministically construct an n-vertex
d-regular Ramanujan graph G as promised by Theorem 2, where d = d(φ) is
a constant integer whose value will be determined later on, and identify the
vertices of G with the n channels. Note that Theorem 2 does not promise that
such a graph exists for every choice of n, however, by taking a graph G of size
n′ > n, and identifying each channel with either bn′/nc or dn′/ne vertices, we do
not lose more than an (n/n′)-term in the guaranteed success probability, and this
can be made arbitrarily small. For the sake of simplicity, we shall subsequently
assume that the graph G has exactly n vertices. Since the construction of G is
deterministic, we are forced to assume that Eve knows G; this will not affect our
analysis.

The Phases. Our protocol relies on two parameters: a constant real ρ = ρ(φ),
0 < ρ < 1, and an integer L = O(log(n/ε)); the exact values of these two param-
eters will be determined later on. The rounds of the execution are partitioned
into phases indexed by the non-negative integers, where phase j ∈ Z≥0 consists
of the first

`(j) = L+
⌈
2 log1/ρ (j + 1)

⌉
rounds not belonging to any phase j′ < j. Note that this fully determines the
phase to which round t belongs for every t ∈ Z>0.

Alice’s channel choices follow a random walk w in G: The channels used in
phase 0, namely, the initial vertex a(1) (chosen uniformly at random) and the
first L− 1 steps of w, are dictated by the s = dlg n+ (L− 1) lg de = O(log(n/ε))



shared random bits. The steps of w in phase j + 1, j ∈ Z≥0, are dictated by
Alice’s private random bits and communicated to Bob via the `(j) messages sent
in phase j. Recall that some of the messages received by Bob in phase j may
be transmitted over channels jammed by Eve; to compensate for that, Alice’s
messages in phase j are encoded by a carefully designed error-correcting code.

Communicating w’s Steps. Using the terminology of Theorem 3, we take
ξ = ξ(φ) and q = q(φ) to be a constant real, 0 < ξ < 1/4, and a constant
(integer) prime power, respectively, whose exact values will be determined later
on. Employing Theorem 3, let Cj be the error-correcting code over GF (q) with
length `(j), relative distance δ ≥ 1− 1

q −ξ, and rate r ≥ r(ξ), where 0 < r(ξ) < 1
is the real promised by the theorem.

Let µ denote the `(j + 1) ≤ `(j) + 1 ≤ 2`(j) steps of the random walk w in
phase j + 1. We set the size of Alice’s messages to k = k(φ) = dlg qe; this allows
Alice to encode µ using the error-correcting code Cj and to transmit the resulting
codeword in phase j, a single letter of the alphabet GF (q) in each round. For
that to work, we must make sure that the size of Cj is sufficiently large to encode
µ, i.e., that qr`(j) ≥ d`(j+1), which is guaranteed by requiring that the parameter
q = q(φ) satisfies q ≥ d2/r(ξ) ≥ d2/r, and hence qr`(j) ≥ d2`(j) ≥ d`(j+1). This
completes the description of our FH protocol.

3.2 Analysis of the Basic Protocol

For the sake of simplicity, we will prove that our FH protocol is O(ε)-resilient
(rather than ε-resilient). Our analysis relies on the fact that with probability at
least 1 − O(ε), all phases admit many successful rounds. To formally state this
fact (and establish it), we first need some more definitions.

Successful Phases. We say that phase j ∈ Z≥0 is successful — an event
denoted by Aj — if less than a (δ/2)-fraction of the rounds in the phase are
unsuccessful. Note that this implies that if Bob listened on the right channels,
then he can successfully decode the codeword transmitted by Alice in phase j.
By induction on j, we conclude that the event A0 ∧ · · · ∧ Aj−1 implies that
b(t) = a(t) for every round t in phase j. We are now ready to state the two main
lemmas of our analysis.

Lemma 5. Consider some round t ∈ Z>0 and let j ∈ Z≥0 be the phase to which
this round belongs. Conditioned on the event A0∧· · ·∧Aj−1, round t is successful
with probability at least 1− φ− ε.

Lemma 6. The event A0 ∧ · · · ∧ Aj holds with probability at least 1− O(ε) for
every j ∈ Z≥0.

The remainder of Sec. 3.2 is dedicated to establishing Lemmas 5 and 6, but
first, we should convince ourselves that the correctness of our protocol indeed
follows from these two lemmas. To that end, consider some round t ∈ Z>0 in



phase j and let B denote the event that round t is successful. By Lemmas 5 and
6, we have

P(B) ≥P (B | A0 ∧ · · · ∧Aj−1) · P (A0 ∧ · · · ∧Aj−1)

≥(1− φ− ε) · (1−O(ε)) ≥ 1− φ−O(ε)

as required.
Our first step towards establishing Lemmas 5 and 6 is to observe that

P (A0 ∧ · · · ∧Am) = P (Am | A0 ∧ · · · ∧Am−1) · P (A0 ∧ · · · ∧Am−1)

= P (Am | A0 ∧ · · · ∧Am−1) · P (Am−1 | A0 ∧ · · · ∧Am−2) · · ·
· · ·P (A1 | A0) · P (A0) .

Fixing Fj = P(¬Aj | A0 ∧ · · · ∧Aj−1), we have

P (A0 ∧ · · · ∧Am) = (1− F0) · · · (1− Fm) ≥ 4−F0 · · · 4−Fm = 4−
∑m
j=0 Fj ,

where the inequality holds by ensuring that Fj ≤ 1/2 for every j ∈ Z≥0.

Bounding
∑
Fj. Lemma 6 will be established by showing that

exp4(−
∑m
j=0 Fj) ≥ 1 − O(ε), or alternatively, that exp4(

∑m
j=0 Fj) ≤ 1 +

O(ε) ⇐⇒
∑m
j=0 Fj ≤ log4(1 + O(ε)). Since log4(1 + x) > x/2 for all 0 < x < 1,

it suffices to show that
m∑
j=0

Fj ≤ O(ε) (1)

Take d = d(φ) to be sufficiently large to ensure that 2√
d
≤ 1/4−

√
φ

2 , which

is possible as φ is a constant strictly smaller than 1/16. The following three
auxiliary constants play a major role in setting the parameters introduced in
Sec. 3.1:

α = α(φ) =
1/2− 2

√
φ

4
√
φ+ 1

, β = β(φ) = (1 + α)

(√
φ+

2√
d

)
,

γ = γ(φ) =
1

log4

(
1
β

) .
Since

√
φ < 1/4, it follows that 0 < α < 1/2. Moreover, we have 0 < β ≤(

1 + 1/2−2
√
φ

4
√
φ+1

)(√
φ+ 1/4−

√
φ

2

)
= 2
√
φ+3/2
8 < 1

4 , and hence 0 < γ < 1.

Recall the parameters ρ = ρ(φ) and ξ = ξ(φ) introduced in Sec. 3.1 and fix

ρ = 2βδ/2 and ξ =
1− γ

4
.

Note that since 0 < γ < 1, it follows that 0 < ξ < 1/4 as promised. Moreover, by
requiring that q ≥ 4

1−γ , we ensure that δ ≥ 1− 1
q − ξ ≥

1+γ
2 > γ = 1

log4( 1
β )

. This



implies that 41/δ < 1
β , hence 0 < ρ = 2βδ/2 < 1 as promised. Fix the integer

parameter L introduced in Sec. 3.1 to be

L = max

{⌈
log1/ρ

(
1

ε

)⌉
,

⌈
log√d/2

(
φn

ε

)⌉
,
⌈
log√d/2

(n
α

)⌉}
,

which yields L = O(log(n/ε)) as promised.
We shall establish (1) by showing that

Fj ≤ ρ`(j) ; (2)

indeed, this suffices since it implies that

m∑
j=0

Fj ≤
m∑
j=0

ρL+d2 log1/ρ(j+1)e ≤ ρL ·
∞∑
j=1

j−2 ≤ ε ·O(1) ,

where the last inequality follows from the requirement that L ≥ log1/ρ

(
1
ε

)
.

The Adaptiveness Lag. Recalling that L = O(log(n/ε)), we require that the
lag λ = O(log(n/ε)) satisfies λ ≥ L. For the sake of the analysis, we think of
Eve’s scanning as the ability to know in round t, the vertices visited by w in all
rounds up to t − L. In fact, since the random walk w is memoryless, we may
think of Eve as a function that maps the current round index t and the vertex
visited by w in round t− L to E (t).

Recall that ω(G) ≤ 2
√
d−1
d < 2√

d
. Since L ≥ log√d/2

(
φn
ε

)
, we can employ

Lemma 1 to conclude that Eve’s delayed adaptiveness does not allow her to boost
the probability of hitting a(t) by more than an additive term of ε

φn per channel,
which sums up to an additive term of at most ε for all channels jammed by Eve,
thus yielding Lemma 5. So, it remains to establish Lemma 6 which is executed by
proving that (2) holds. Since L ≥ log√d/2

(
n
α

)
as well, we can employ Lemma 1

once more to establish the following observation.

Observation 7. Conditioned on Eve’s knowledge of the vertex visited by w in
round t − L, the probability that w visits vertex i ∈ [n] in round t is at most
1
n + α

n = 1
n (1 + α).

Consider some phase j ∈ Z≥0 and let t1 ≤ · · · ≤ t` denote the indices of the
` = `(j) rounds in this phase. Assume that all previous phases were successful,
i.e., event A0 ∧ · · · ∧Aj−1 occurs, so, in particular, Bob knows the random walk
w up to the end of phase j, that is, b(th) = a(th) for every h ∈ [`]. Inequality (2)
can be established by letting E = {h ∈ [`] | E (th) 3 a(th)} and showing that

P (|E| ≥ δ`/2) ≤ ρ` (3)

subject to the assumption that Eve knows a(t− L) at round t.
Given some subset S ⊆ [`], let pS = P(E = S). We can express P(|E| ≥ δ`/2)

as

P (|E| ≥ δ`/2) = P

 ∨
S⊆[`],|S|≥δ`/2

E = S

 ≤ ∑
S⊆[`],|S|≥δ`/2

pS .



Inequality (3) can now be established by showing that

pS ≤ βδ`/2 (4)

for every S ⊆ [`], |S| ≥ δ`/2; indeed, (4) implies that P (|E| ≥ δ`/2) ≤ 2` ·βδ`/2 =(
2βδ/2

)`
= ρ` as required.

A Linear Algebraic View. Fix some subset S ⊆ [`], |S| ≥ δ`/2. For every
h ∈ [`], let Dh be a diagonal n× n real matrix defined by setting

Dh(i, i) =

1 if h /∈ S
1 + α if h ∈ S and i ∈ E (th)
0 if h ∈ S and i /∈ E (th)

for every i ∈ [n]. In other words, Dh is the identity matrix if h /∈ S; and a matrix
having 1 + α on the diagonal entries corresponding to E (th) and 0 elsewhere if
h ∈ S. Observe that in the latter case, multiplying a vector by Dh increases all
entries corresponding to E (th) by a factor of 1+α and zeros out all other entries.

Lemma 8. Denoting the uniform distribution vector on [n] by u = 1
n1, we have

pS ≤ 1TD`WD`−1W · · ·D2WD1u .

Proof. Let Nh denote the vertex subset E (th) if h ∈ S; and the vertex subset
[n]−E (th) otherwise. Taking Bh to be the event that the random walk w visited
(a vertex of) Nh in round th, we can express the event S = E (whose probability
we would like to bound) as B1∧· · ·∧B`. By Observation 7, the ith entry D1u(i)
of the vector D1u bounds from above the probability that event B1 occurred
and w visits vertex i in round t1, given that w is in its stationary distribution
u in the beginning of the phase. Employing Observation 7 again, we notice by
induction on h that

DhWDh−1 · · ·WD1u(i)

serves as an upper bound on the probability that event B1 ∧ · · · ∧ Bh occurred
and w visits vertex i in round th, given that w is in its stationary distribution u
in the beginning of the phase. The assertion follows as multiplying by 1T simply
sums up the entries.

Lemma 8 allows us to complete the proof of Lemma 6 by linear algebraic
arguments; indeed, we shall establish (4) by showing that

1TD`WD`−1W · · ·D2WD1u ≤ βδ`/2 . (5)

based solely on the definition of the matrices D1, . . . , D` and on the assumption
that W is the walk matrix of a Ramanujan graph. To that end, observe that

1TD`WD`−1W · · ·D2WD1u = 1TD`WD`−1W · · ·D2WD1Wu

≤ ‖1‖ · ‖D`W‖ · · · ‖D1W‖ · ‖u‖
= ‖D`W‖ · · · ‖D1W‖ ,



where ‖v‖ =
√∑n

i=1 v(i)2 denotes the `2 norm of vector v, ‖M‖ =

maxv∈Rn−{0}
‖Mv‖
‖v‖ denotes the induced norm of matrix M , and the inequal-

ity follows from Cauchy-Schwarz and from some well known properties of the
induced matrix norm (see, e.g., [6]).

Bounding ‖DhW‖. Since W is symmetric, we know that ‖W‖ =
maxi∈[n] |ωi| = 1, and since Dh is the identity matrix for every h /∈ S, it follows
that

‖D`W‖ · · · ‖D1W‖ =
∏
h∈S

‖DhW‖ .

Recalling that |S| ≥ δ`/2, inequality (5), and hence, also Lemma 6, are estab-
lished due to Lemma 9, whose proof is deferred to the full version.

Lemma 9. The walk matrix W satisfies ‖DhW‖ ≤ β for every h ∈ S.

3.3 Extending the Range of Parameter φ

Our goal in this section is to adapt the FH protocol presented in Sec. 3.1 and
the analysis presented in Sec. 3.2 to blocking adversaries while allowing for any
constant 0 < φ < 1. The main observation en route to this adaptation is that
an error-correcting code that can recover from up to k errors, can alternatively
recover from wiping-off up to 2k letters.

More formally, given some alphabet Σ and a word u ∈ Σn, let Bd(u) be the
set of all words that can be obtained from u by replacing less than d letters with
the designated letter [ /∈ Σ. In other words, v ∈ Bd(u) ⊆ (Σ ∪ {[})n if and only
if v disagrees with u on less than d entries in which v has the designated letter
[. The proof of the following observation is deferred to the full version.

Observation 10. If C is an error-correcting code of length n and minimum
distance d, then Bd(u) ∩ Bd(v) = ∅ for every two codewords u, v of C.

The application of Observation 10 is rather straightforward: We can use the
error-correcting code C to recover from any number smaller than d of wiped-off
letters. In the context of our FH protocol, Alice and Bob can recover from any
number smaller than d of blocked rounds. So, except from adjusting some of
the parameters, we use here the same protocol that we used against overwriting
adversaries, only that this time, Bob can reconstruct the codeword that Alice
transmitted in phase j as long as the fraction of unsuccessful rounds is smaller
than the relative distance of the code (rather than half the relative distance).

Adjusting the Parameters. The FH protocol presented in Sec. 3.1 and ana-
lyzed in Sec. 3.2 relies on the parameters d, ρ, L, ξ, q, δ, and r, and on the three
auxiliary constants α, β, and γ. We will use the primed versions d′, ρ′, L′, ξ′,
q′, δ′, r′ and α′, β′, γ′ to describe the adaptation of this protocol to blocking
adversaries. The reader is encouraged to read the remainder of this section in
conjunction with Sec. 3.1 and 3.2.



Recall that in the context of overwriting adversaries, we assumed that φ is
a constant satisfying 0 < φ < 1/16 and chose d and 0 < α < 1/2 so that

0 < β = (1 + α)
(√

φ+ 2√
d

)
< 1/4. In the context of blocking adversaries, we

assume that φ is a constant satisfying 0 < φ < 1 and choose the parameter
d′ = d′(φ) and the auxiliary constant 0 < α′ = α′(φ) < 1 so that

0 < β′ = β′(φ) = (1 + α′)

(√
φ+

2√
d′

)
< 1 .

Let H(x) = −x lg(x) − (1 − x) lg(1 − x) = H(1 − x) be the binary entropy
function defined for every 0 < x < 1. Observe that limx→1− 2H(x)β′x = β′ and

take γ′ = γ′(φ) to be the smallest real 1/2 ≤ γ′ < 1 such that 2H(γ′)β′γ
′ ≤ β′+1

2 .

Let ξ′ = ξ′(φ) = 1−γ′

2 and let q′ = q′(φ) be the smallest prime power that
satisfies

q′ ≥ max

{
2

1− γ′
, d′2/r(ξ

′)

}
,

where 0 < r(ξ′) < 1 is the real promised by Theorem 3. The error-correcting
codes C ′j over GF (q′) we use have rate r′ ≥ r(ξ′) and relative distance δ′ ≥
1− 1

q′ − ξ
′. Finally, let ρ′ = ρ′(φ) = 2H(γ′)β′γ

′
and

L′ = max

{⌈
log1/ρ′

(
1

ε

)⌉
,

⌈
log√d′/2

(
φn

ε

)⌉
,
⌈
log√d′/2

( n
α′

)⌉}
.

Modified Analysis. Using the adapted parameters, the analysis presented in
Sec. 3.2 carries over quite smoothly. The one part that does require some changes
is that involving inequalities (3) and (4) and the transition between them. Re-
calling that a phase is now considered to be successful if less than a δ′-fraction
of its rounds are unsuccessful, we rewrite (3) as

P (|E| ≥ δ′`) ≤ ρ′` , (6)

(again, subject to the assumption that Eve knows a(t−L′) at round t). So, our
goal is to prove that (6) follows from pS ≤ β′δ

′` (the equivalent of (4)) for every
S ⊆ [`], |S| ≥ δ′`.

As in Sec. 3.2, we express P(|E| ≥ δ′`) as

P (|E| ≥ δ′`) = P

 ∨
S⊆[`],|S|≥δ′`

E = S

 ≤ ∑
S⊆[`],|S|≥δ′`

pS ,

only that this time, we use the fact that
∑n
k=dxne

(
n
k

)
≤ 2H(x)·n for every n ≥ 1

and 1/2 ≤ x < 1 (see, e.g., [12]) to bound the number of subsets S that should
be accounted for. Specifically, we get

P (|E| ≥ δ′`) ≤ 2H(δ′)·`β′δ
′` =

(
2H(δ′)β′δ

′
)`

.

This concludes our proof as δ′ ≥ 1 − 1
q′ − ξ′ ≥ γ′, and hence 2H(δ′)β′δ

′ ≤
2H(γ′)β′γ

′
= ρ′.



4 Enhanced Scanning

The FH protocols developed in Sec. 3 are ε-resilient to (blocking and overwrit-
ing) (λ, φ)-adversaries that have access in round t + λ to the channel a(t) over
which Alice transmitted in round t, but not to the actual content m(t) of Al-
ice’s message. We now turn our attention to adversaries with enhanced scanning,
namely, both a(t) and m(t) are revealed to Eve in round t+ λ. On the negative
side, we prove that no FH protocol can be resilient to such adversaries as long
as we stick to the model introduced in Sec. 1.1, requiring that the lag λ is fixed
with respect to the time t. On the positive side, we show that a FH protocol
with resilience to enhanced scanning adversaries does exist if the lag λ grows
logarithmically with t. Due to space limitations, these proofs are deferred to the
full version.
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