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Abstract. Transferring a song from one genre to another is most diffi-
cult if no instrumentation information is provided and genre is only de-
fined by the timing and pitch of the played notes. Inspired by the Cycle-
GAN music genre transfer presented in [2] we investigate whether recent
additions to GAN training like spectral normalization and self-attention
can improve transfer. Our preliminary results show that spectral nor-
malization improves audible quality, while self-attention hurts content
retention due to its non-locality. We further provide insights into genre
attribution, showing that often only few notes are genre-decisive.

1 Introduction

What if you could listen to your favourite Beethoven symphony as a Jazz in-
terpretation at the press of a button? Humans are capable of performing such
transcription tasks, but it requires considerable skill, effort and creativity. The
goal of music genre transfer is to automate this task by training deep neural
networks on large amounts of music data. Unsupervised methods excel at this
task by allowing us to find structure in complex data in the absence of explicit
ground truth labels. Deep generative models have been particularly successful,
exemplified by methods such as Variational Autoencoders [5] and Generative
Adversarial Networks [3]. One natural application of deep generative models is
domain transfer, in which we learn a mapping function between two domains and
thus implicitly parts of the underlying data generating distributions. This has
led to many impressive applications such as rendering photographs in the style
of different painters [13]. However, most applications have focused on images
and only recently approaches for other types of data such as music have been
proposed. In this work we focus on the task of transferring pieces of music in the
MIDI format between different genres, e.g., from classic to jazz. For that purpose
we extend the architecture from [2] with recent advances in GANs, in particular
spectral normalization [8] and self-attention layers [12], and present respective
transfer performance as measured by an automatic classifier-based metric, as
well as inherent problems of using self-attention in domain transfer. With this,
we introduce a simple content change metric to quantify content retention in
transferred pieces. We further give insights in the decisions made by a neural
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network based genre classifier using a gradient-based attribution method [10] to
better understand genre differences.

2 Related Work

Most neural network based domain transfer approaches are build on either
VAEs [5] or GANs [3], or a combination of the two. Liu et al. [7] use a pair
of GANs to learn the joint distribution of observations. Their method cannot
directly perform domain transfer, but it can generate multiple versions of the
same image in different domains (e.g., the same face with different hair color).
Liu et al. [6] use a VAE architecture with a shared latent space to perform un-
supervised image-to-image translation. Zhu et al. [13] introduce an architecture
called CycleGAN which consists of a pair of GANs and is trained to perform
domain transfer using a cycle consistency loss. While aforementioned methods
are generally applicable, they focus their empirical evaluation on images, where
best practices are well established.

In contrast, we focus on domain transfer in music. Mor et al. [9] use an autoen-
coder based architecture with a shared domain-invariant latent space to transfer
input sounds to different instruments. While instruments can be indicative of
genre, we focus on the task of genre transfer in absence of any instrumenta-
tion information. Brunner et al. [1] force one dimension of the latent space of
a VAE to encode the genre by attaching a style classifier. Genre transfer can
then be achieved by manipulating this latent genre label. They also propose a
classifier-based metric to automatically evaluate the genre transfer. In a follow
up work, Brunner et al. [2] adapt the original CycleGAN architecture to per-
form music genre transfer and achieve good results as measured by a slightly
improved classifier-based metric. However, GANs are known to be difficult to
train and there are many common failure modes, such as mode collapse or the
discriminator overpowering the generator. We therefore investigate the effect of
two recent advances in GANs that have been shown to improve GAN perfor-
mance. In particular, we apply spectral normalization [8] to both the genera-
tor and discriminator. We further incorporate self-attention, a recent advance
in neural network architectures that has been applied successfully for language
modeling [11] and music generation [4]. Self-attention has been incorporated into
GANs and together with spectral normalization was shown to improve training
stability and overall performance [12]. We investigate both self-attention and
spectral normalization in our setup and compare with the genre transfer perfor-
mance of [2] as measured by a classifier-based metric. We further evaluate their
individual impact and show that self attention hinders content retention.

3 Methodology

3.1 Dataset

Our dataset is based on polyphonic multi-instrument MIDI (Musical Instrument
Digital Interface) files from three genres: jazz, classic and pop. We use the same
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dataset and preprocessing steps as [2]. That is, we remove the drum track and
merge the remaining instrument tracks into a single piano track, resulting in
a two dimensional matrix usually referred to as a piano roll, where the one
dimension represents time steps and the other represents pitches. Each matrix
entry indicates whether that note is played at the corresponding time. To acquire
a homogeneous dataset, we omit songs whose time signature is not consistently
4
4 . We choose a sampling rate of 16 time steps per bar and combine 4 consecutive
bars into one training example. This means that the shortest possible note we
consider is the 16th note. While music in MIDI files can have pitch values between
0 and 127, i.e., note pitches ranging from C−1 to C9, a standard piano can only
play pitches between 21 to 108, i.e., notes ranging from A0 to C8. Since we
merge all tracks into a single-instrument piano track we discard pitches beyond
that range. Therefore, each input piano roll matrix has dimensions 64 × 84,
corresponding to 16 ∗ 4 timesteps and 84 possible pitches respectively.

3.2 Architecture

Our neural network architecture is based on Generative Adversarial Networks
(GANs [3]), where a generator and a discriminator are optimized by playing
a minimax game. Since we want to perform style transfer in two directions,
i.e., from domain A to domain B and vice versa, two GANs are arranged in a
CycleGAN architecture [13]. In particular we use as baselines the “full” models
from [2] with the additional discriminators.1 We add two self-attention layers
each to the discriminator and generator. For the generator, we add them after
the second to last and the last residual blocks. For the discriminator, we add the
attention layers after both hidden layers. Spectral normalization is applied to all
convolution layers of each discriminator and generator. We use a batch size of
16 and the Adam optimizer with a learning rate of 0.0002. The generators and
discriminators are both updated at each step. While training the discriminator,
we add Gaussian noise with mean 0 and standard deviation σD as this was found
to improve genre transfer performance in [2].

3.3 Metrics

As discussed in [1, 2], human genre transfer evaluation is time consuming and
cannot be applied continuously during development. Thus, a classifier based
metric was introduced in [1] and slightly adapted in [2]. The classifier is a 5-layer
CNN that performs binary classification between two genres. To evaluate genre
transfer, the classifier is applied before and after transfer. For example, when
performing transfer from A to B, the original piece should be classified as A,
the transferred piece as B, and the transferred-back piece again as A. We report
the transfer strength SD

tot, a measure of average difference in correctly classified

1 See https://github.com/sumuzhao/CycleGAN-Music-Style-Transfer for more details
on the baseline architecture.
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samples [2]. Specifically, let PA(x) be the empirical probability of classifying x
as genre A. We then calculate the A→ B transfer strength as

SD
A→B =

1

2
(PA(xA) + PA(x̃A)− 2 · PA(x̂B))

where xA is a sample from domain A, x̂B is the same sample transferred to
domain B and x̃A is the sample transferred back to domain A. SD

tot is then
calculated as

SD
tot =

1

2
(SD

B→A + SD
A→B)

where SD
B→A is defined symmetrically to SD

A→B . For the sake of brevity we refer
to [2] for more details.

Further, as genre classification does not capture content retention, we intro-
duce a new content change metric. We quantify content change by counting the
number of added/removed notes in the piano roll, divided by the number of non-
zero entries in the source piano roll. Specifically, for input sample x ∈ {0, 1}64×84
we calculate the content change c(x) as

c(x) =

∑
t,p |xt,p − x̂t,p|∑

t,p xt,p

where x̂ is the transferred sample and t and p are the indices into the time and
pitch dimension. For a more fine grained analysis we can additionally look at
added/removed notes individually:

cadded(x) =

∑
t,p max(x̂t,p − xt,p, 0)∑

t,p xt,p
cremoved(x) =

∑
t,p max(xt,p − x̂t,p, 0)∑

t,p xt,p

Note that instead of looking at all notes one could also apply a heuristic for
melody extraction, e.g., taking the skyline notes, to quantify melody change (as
opposed to overall content change). However, we show that the simple metric
based on all nodes already correlates well with human ranking of content reten-
tion.

3.4 Genre Attribution

We note that genre is ill defined, but the decisions of deep neural networks
could provide insights into its nature. We therefore apply a gradient based input
attribution method to the trained genre classifier in order to highlight notes that
are most important in deciding genre. For instance, a 1-entry in the piano roll
matrix corresponds to a played note, and if the back propagated class activation
gradient is high for that note, then removing it would decrease the confidence in
the corresponding genre classification, indicating that the presence of the note
was significant in determining its genre. We use the saliency map attribution
method [10], which multiplies all positive gradients with the original sample
element-wise.
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4 Experiments and Results

4.1 Genre Transfer

We fix σD = 1 as this worked best in [2] and compare our new models with
the corresponding re-trained full model from [2], here referred to as Baseline.
The genre transfer results in Figure 1 show that self-attention (SA) and spectral
normalization (SN) – individually and combined – improve the transfer in two
out of the three genre pairings. Moreover, we see that transfer strength mainly
depends on the genre pair investigated, as the boundary between some genres
is ill defined. Further, the classifier metric does not measure content retention
and audible quality, two aspects we are also interested in when performing genre
transfer. To preliminarily investigate these aspects we took the classic vs. pop
models and asked 12 people of our lab to rank the anonymized and randomly
ordered transfers of the 4 models (Baseline, SN, SA, SN+SA) on 8 song snippets
(4 transferred from classic to pop and 4 from pop to classic). Each participant
thereby ordered for each song the transfers according to (a) content retention
and (b) audible quality with respect to the target domain. We aggregated the
rankings linearly into a normalized human ranking score sMhr by scoring each
model M according to

sMhr =
1

N

K∑
r=1

#{rank of M = r}K − r
K − 1

where K is the number of models compared (4 in our case) and N is the number
of participants. Note that rank one corresponds to the best and rank K to the
worst transfer. Figure 1 (right) shows that our content change metric introduced
above correlates negatively (Pearson correlation -0.805) with the human content
retention ranking, indicating that this is a good heuristic to quantify content
retention. Also visible in the figure is that models with self-attention score worse
on content retention. This is also reflected in the content change metric over all
test samples reported in Table 1, which shows an average content change of 0.92
for the Baseline model, 0.52 for SN, 2.11 for SA and 2.19 for SN+SA.

We therefore suspect that the use of self-attention can actually be harmful,
as the generators can encode information in a global manner, as every time
step and every pitch level attends to all other time-pitch cells, and hence the
generators can alter the content of the source piece more strongly while still being
able to achieve cycle-consistency. Explicit regularization techniques to retain
parts of the content, e.g., the melody, could be developed in future work. As
for audible quality, the results of our small user study were less homogeneous.
On average, models with spectral normalization where slightly preferred over the
others: the Baseline scored 0.47, SN 0.60, SA 0.42 and SN+SA 0.51, where scores
are between 1 (always ranked best) and 0 (always ranked worst). Note that the
user study only reflects relative audio quality among the studied models, and
that there is room for improvement in terms of absolute fidelity. In particular,
the genre transfer seems to introduce quite many dissonant notes. However, note
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Baseline SN

C → P P → C C → P P → C

added 0.82 ± 0.45 0.28 ± 0.17 0.57 ± 0.38 0.08 ± 0.09
removed 0.27 ± 0.17 0.46 ± 0.12 0.91 ± 0.07 0.3 ± 0.11
total 1.10 ± 0.5 0.75 ± 0.25 0.66 ± 0.38 0.38 ± 0.16

SA SN + SA

added 1.47 ± 0.41 0.85 ± 0.79 1.78 ± 1.33 0.72 ± 0.66
removed 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.05 0.93 ± 0.05
total 2.42 ± 0.42 1.79 ± 0.78 2.73 ± 1.33 1.65 ± 0.66

Table 1: Results of the content change metric for the different models. Shown is
the mean and standard deviation over the test set samples.

J vs. P C vs. P J vs. C

Baseline 28.49% 64.62% 57.64%
SN 32.16% 61.88% 63.98%
SA 44.85% 59.35% 63.56%

SN+SA 33.23% 53.07% 66.76%

Fig. 1: Top: Genre transfer perfor-
mance SD

tot. J: Jazz, C: Classic, P:
Pop, SN: With spectral normalization,
SA: With self-attention. Right: Con-
tent change metric to human evaluation
correlation.
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that audible quality is already an issue with the original pre-processed pieces,
because we reduce music pieces to single-instrument tracks, remove the drums
and get rid of some of the dynamics (ignoring velocity, constant tempo). Using
a richer input representation as, e.g., done in [1], would already result in more
pleasing audio. 2

4.2 Attribution

Figure 2 depicts source piano rolls from the jazz and classical genres, along with
the corresponding attributed piano roll. Intensity-thresholded instance normal-
ized saliency maps [10] are presented. Pixels with intensity less than one-fourth of
the maximum were removed in order to reduce clutter around more significantly
attributed notes. Attribution was conducted on correctly classified samples with
high gradient magnitudes to show interesting examples.

The saliency maps are dominated by a few hyperintense pixels. Therefore,
what distinguishes a sample’s genre from the perspective of a deep classifier
is truly subtle. We find that in jazz samples, often a sequence of notes in the
lower pitch ranges are highlighted. This is somewhat similar to how humans

2 Additional results and audio samples can be found here: http://bit.ly/31VnTxS
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Fig. 2: Piano rolls (top) with corresponding saliency maps (bottom). Jazz sam-
ples are to the left of the delimiter, classical to the right.

recognize jazz, where genre becomes clear upon hearing a bass play a simple,
rhythm-keeping line, over which different melodies are played.

One limitation of gradient-based attribution is that it is only a first order
approximation and it is unable to capture complex dependencies across notes.
Furthermore, patterns are not always obvious or provable. Nonetheless, the at-
tribution provides a qualitative insight into the decisions of the deep classifier,
highlighting certain musical motifs and revealing the nuance of musical genre in
its ability to be determined mostly by a small number of notes. Identifying and
isolating such motifs would make for fascinating future work in better defining
genre and extracting genre specific features.

5 Conclusion

We presented preliminary qualitative insights on automated music genre trans-
fer using MIDI files. We start from the CycleGAN model presented in [2] and
show the effect of adding spectral normalization and self-attention on transfer as
measured by a classifier-based metric. Further, we find on subsequent inspection
that self-attention often makes the transferred songs less recognizable from a hu-
man viewpoint, which is emphasized by our simple content change metric which
seems to correlate well with human perception. To the best of our understanding
this is due to the global attention mechanism scrambling the pitch/time locality
of notes. We further show that genre is often a matter of changing a few notes
by looking at the attribution of our genre classifier. Our work offers many direc-
tions for follow up work, including the development of a better metrics for genre
transfer as well as a quantitative analysis of motifs that make up a genre using
attribution on classifiers.
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