BlueWallet: The Secure Bitcoin Wallet

Abstract. With the increasing popularity of Bitcoin, a digital decen-
tralized currency and payment system, the number of malicious third
parties attempting to steal bitcoins has grown substantially. Attackers
have stolen bitcoins worth millions of dollars from victims by using mal-
ware to gain access to the private keys stored on the victims’ computers
or smart phones. In order to protect the Bitcoin private keys, we pro-
pose the use of a hardware token for the authorization of transactions.
We created a proof-of-concept Bitcoin hardware token: BlueWallet. The
device communicates using Bluetooth Low Energy and is able to securely
sign Bitcoin transactions. The device can also be used as an electronic
wallet in combination with a point of sale and serves as an alternative
to cash and credit cards.
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1 Introduction

The digital currency and payment system Bitcoin has become more popular in
recent years. As the price of a bitcoin increased to more than 1200 USD in 2013,
the number of Bitcoin users and investors increased dramatically.! Unlike other
payment systems, Bitcoin is not controlled by a central authority. Instead, it is
operated by a decentralized authority, the Bitcoin network. This peer-to-peer
network collectively handles the creation and transfer of funds using public-key
cryptography. As a digital payment system, Bitcoin enables global and secure
transactions with low transaction fees.

With its growth in popularity, Bitcoin has also attracted malicious third par-
ties trying to steal other users’ bitcoins. In Bitcoin transactions, users receive
bitcoins to their Bitcoin addresses. To spend the funds associated to a Bitcoin
address, control of the corresponding private key is needed. Losing access to a
private key is equivalent to losing the bitcoins associated to the Bitcoin address.
Even though the Bitcoin system itself is protected by strong cryptography, at-
tackers have stolen bitcoins worth millions of dollars by gaining access to the
private keys of the victims. The private keys are generally stored on the com-
puters or mobile phones of the users, where they could be exposed to malware
and spyware attacks. A study by Litke and Stewart [1] shows that the amount of
cryptocurrency-stealing malware has increased with the popularity of Bitcoin.

Whenever the private key is stored on a device connected to the Internet,
there is a potential for theft. Our solution is to use a dedicated hardware token to
store the private key needed to sign and thus authorize transactions: Blue Wallet.

! We use Bitcoin to describe the system and bitcoin when we talk about the currency.



This hardware token is used in combination with a device that is connected to the
Bitcoin network, like the user’s computer. The computer can prepare a Bitcoin
transaction, but it cannot sign it. The user can use BlueWallet to review the
transaction and sign it. Then, the computer can broadcast the signed transaction
to the Bitcoin network. The securely stored private key never leaves the device
and is only unlocked if the user correctly enters her PIN.

The hardware token delegates the creation of transactions to another en-
tity and allows independent review of transaction details before signing. It can
therefore also be used as an electronic wallet: in combination with a point of
sale (POS) connected to the Bitcoin network, the device can be used to directly
make Bitcoin payments. BlueWallet offers a mobile and fast solution to securing
the user’s bitcoins, while at the same time serving as an alternative to cash and
credit cards.

2 Bitcoin

Bitcoin is an entirely digital, decentralized currency. The Bitcoin specification
was introduced in 2008 by Satoshi Nakamoto [2] and a proof-of-concept client
was created in 2009. Bitcoin enables instant global payments. There is no cen-
tral financial authority like in traditional payment systems. Instead, the whole
Bitcoin network acts as the financial authority, using cryptography to control
the transfer and creation of money.

2.1 Transactions

In the Bitcoin network, a transaction describes the transfer of a specific amount
of bitcoins from one individual to another. Every single Bitcoin transaction is
recorded in a public ledger called the blockchain. A Bitcoin transaction is a
digitally signed data structure that is broadcast in the Bitcoin network [3]. It
consists of one ore more inputs and one or more outputs. Inputs are references to
previous transactions and specify the addresses which own the bitcoins that are
going to be transferred. Outputs specify the addresses that are going to receive
the bitcoins, as well as the amount of bitcoins being transferred.

Each Bitcoin address is associated with a private key that is required to spend
the funds assigned to the address. The Bitcoin address is derived from the public
key corresponding to the private key. The user signs transactions accessing the
funds of the Bitcoin address with her private key and the peers in the network
verify the transaction using her public key.

To understand how Bitcoin transactions are signed and verified, it is vital to
know how raw bitcoin transactions look like. Figure 1 gives an overview of the
transaction structure as defined in the protocol specification:

— version: The transaction data format version, a four byte field, with default
value 1.

— tx_in[ |: A list of transaction inputs with tx_in count elements.

— tx_out[ |: List of the transaction outputs with tx_out count elements.
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Fig. 1. Transaction packet with different fields.

— locktime: The block number or timestamp at which the transaction is
locked. By default set to 0, meaning the transaction is immediately locked.

Each tx_out output element contains a destination address and the amount
of bitcoins that are transferred to this address:

— value: Eight byte field holding the transaction value transferred to this out-
put.

— pkScript: Script of length pkScript length containing the destination ad-
dress for the bitcoins transferred to this output.

A tz_in element comprises a reference to a previous transaction’s output and
a script containing the signature needed to claim this output:

— prev. output hash: 32-byte hash of the previous transaction which is ref-
erenced in the input.

— prev. output index: Four byte index specifying which output of the refer-
enced previous transaction is used as an input.

— scriptSig: Script of length scriptSig length containing the signature needed
to claim the referenced output and the public key matching the address own-
ing that output.

— sequence: Sequence number allowing replacement of transactions.

The previous output hash combined with previous output index points to a
pkScript of the referenced previous transaction. This way, the address owning
the bitcoins used for the input is determined.

2.2 Bitcoin Cryptography

Bitcoin uses digital signatures to ensure that bitcoins can only be spent by their
owner. Ownership of bitcoins is determined by the Bitcoin addresses. The owner
of a Bitcoin address holds the private key associated with this address. When
creating a transaction to transfer bitcoins from this address, the owner has to



prove that she has the right to do so by providing a signature created with the
matching private key. As we have seen, a transaction can have multiple inputs.
For a transaction to be valid, the owner must provide a valid signature for each
input, thus proving that she has the rights to transfer all of the funds.

The Bitcoin protocol prescribes the use of the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) in order to sign and verify transactions. This class of
cryptographic signature algorithms uses algebraic operations on elliptic curves
over finite fields. The public key is derived by multiplying the base point of the
curve by the private key. The base point of the curve is defined by the curve pa-
rameters. Bitcoin uses the secp256kl curve defined in the standards for efficient
cryptography [4]. The security of ECDSA depends on the fact that even though
the base point and the public key are public knowledge, it is infeasible to derive
the private key from this information.

The primitives provided by ECDSA are sign() and verify(). The first can be
used to calculate a signature S given a message M and the signer’s private key
Pa, while the latter allows to verify an existing signature given the message and
the public key g, of the signer.

S = sign(pa, M)
verify(qa, S, M) = {true,false}

In Bitcoin, the transaction without any signatures in the inputs is used as
the message, hence the signature establishes authenticity and integrity, i.e., the
transaction cannot be changed without invalidating the signature attached to
the inputs:

S = sign(pa, M) N M" # M — verify(q,, S, M') = false

In order to create secure ECDSA signatures, a random parameter k is nec-
essary. It is important to select a different k for each signature that is created
with the same private key. Otherwise, the private key can be obtained through
mathematical backtracking. For example, Sony’s implementation of elliptic curve
cryptography on their gaming console Play Station 3 failed to do so, resulting
in a compromised private key and full access to the system [5].

3 BlueWallet

The main purpose of BlueWallet is to sign Bitcoin transactions and thus au-
thorize the transfer of bitcoins. In Bitcoin, transactions are usually created by
the owner of the transferred bitcoins. It is however possible for another entity
to prepare an unsigned transaction that tries to spend these bitcoins. While any
entity may create such a transaction, only the owner of the bitcoins can provide
the signatures needed to authorize the transaction.

By delegating the preparation of the unsigned transaction to another entity,
BlueWallet does not have to be connected to the Bitcoin network. This allows
us to build a device with a low power consumption and with small memory
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requirements. The user’s private key needed to sign a transaction is safely stored
on BlueWallet. The private key never leaves BlueWallet and is only unlocked if
the user correctly enters her PIN.

There are two applications for BlueWallet. Firstly, it can be used in com-
bination with the user’s home computer or smart phone, similar to e-banking
solutions. The user can create a Bitcoin transaction on a device which is con-
nected to the Bitcoin network and use BlueWallet to sign it. The private key
needed to access the user’s funds is no longer stored on her personal computer
or smart phone, which is compromised more easily.

The second application is fundamentally different from the first. The transac-
tion is created by an untrusted third party and BlueWallet acts as an electronic
wallet. An example of this third party could be the POS in a store, a restaurant
or any other place where one would normally pay with cash, debit or credit
card. Since the transaction is created by an untrusted party, additional security
measures have to be implemented in BlueWallet to minimize the risk incurred
by the user. In addition to the signing ability of BlueWallet, the user may review
and authorize the transaction independently from the POS and BlueWallet has
to ensure that only the authorized bitcoins are transferred.

We will subsequently focus on the second application since it is more chal-
lenging. If BlueWallet manages to meet all the necessary requirements for the
use with an untrusted POS, it can be used in conjunction with a computer or
smart phone owned by the user.

3.1 Creating a Transaction

Assuming a customer in a shop intends to make a payment to the POS using
BlueWallet. The POS is connected to the Bitcoin network and will be tasked
with the creation of the unsigned payment transaction. In order for the POS to
create the transaction, it first needs to learn the customer’s address. This is the
address whose corresponding private key is stored in the BlueWallet. The POS
therefore contacts the BlueWallet and retrieves the address.

Once the POS has the customer’s address it scans its local copy of the trans-
action history for outputs that may be claimed by the address, i.e., earlier trans-
actions that funded the address. The POS will then create a transaction incre-
mentally selecting the found outputs until the desired amount is covered and
adding inputs referencing them in the payment transaction. Table 1 shows an
example of an unsigned transaction in the same format as it would be transferred
from the POS to the BlueWallet. Two outputs are added to the transaction, one
transferring the payment amount to the POS, destined to the POS’ address
(tz_out[1]), and the other totaling the remaining bitcoins that are sent back to
the address of the BlueWallet (tz_out/0]). Should the POS be unable to locate
enough outputs to claim the desired amount, it will return an error and abort
the transaction creation.

The transaction will be completed by adding the default values for the lock-
time (0 to lock the transaction immediately) and the sequence in the inputs
(Oxffffffff to disallow replacement). It should be noted that the signature
fields scriptSig length and scriptSig are set to an empty string with length 0.



version 01 00 00 00
tx-in count 01
prev. output hash [13 cb 3b 56 7d ef 7f fa dc aa 69 de 20 cb 19 09 00 29 02
8b 05 d8 a9 73 d1 5d b5 cf 43 37 ab al
tx_in[0] [prev. output index|00 00 00 00
scriptSig length |00
scriptSig <empty>
sequence ff ff ff ff
tx_out count 02
value c0 2a 99 1c 00 00 00 00
tx_out[0][pkScript length |19
pkScript 76 a9 14 29 4f db {5 26 0a be 18 48 9b 48 07 {7 ba {0 62
07 70 c3 b7 88 ac
value 80 96 98 00 00 00 00 00
tx_out[1]|pkScript length |19
pkScript 76 a9 14 8e e6 Ta 65 55 28 b6 1d e2 29 4 5f c0 16 a0 Of
08 3 cc 32 88 ac
locktime 00 00 00 00

Table 1. The complete unsigned transaction as prepared by the POS.

Once the unsigned transaction is created, the POS will contact the BlueWal-
let and transfer the previous transactions as well as the newly created unsigned
transaction.

3.2 Unsigned Transaction Verification

Since BlueWallet does not have any connection to the Bitcoin network, it has
to take precautions to make sure that the untrusted POS has created a correct
transaction.

Once an output has been referenced in a confirmed transaction it is marked as
claimed and cannot be claimed again. This means that the entire value associated
with an output is always spent in the claiming transaction. This is why bitcoin
transactions usually have at least two outputs. One for the address to which a
certain amount of bitcoins shall be transferred, and one returning the remaining
funds as a new output.

If we have an untrusted party like the POS creating the transaction for us,
this could be an issue. If we take a look at a the raw transaction illustrated in
Table 1, we observe that the value of an input is not stated in Bitcoin transac-
tions. Therefore, BlueWallet cannot infer the value of the inputs only from the
unsigned transaction the POS sent to BlueWallet. Since we do not know how
many of our bitcoins are going to be transferred, we would have to rely on the
POS to return the correct amount of bitcoins back to our address.

The value of the inputs is usually determined by looking at the outputs of
the referenced previous transactions. However, BlueWallet is not connected to
the Bitcoin network and cannot look up the previous transactions on its own.
Therefore, the POS is required to also send us all of the prior transactions that
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are referenced in the inputs of the current transactions. By looking at the outputs
of the prior transactions, BlueWallet can determine the sum of all inputs, i.e.,
how many bitcoins we are going to transfer. BlueWallet compares this sum to
the total value of all the outputs. The value of the bitcoins returned to us should
be the sum of all our inputs minus the amount of bitcoins transferred to the
POS minus an acceptable transaction fee.

BlueWallet, however, has no way to verify that the previous transactions
the POS sent were confirmed by the Bitcoin network. How can we make sure
the POS did not just change the output values in the prior transactions it sent
BlueWallet? To check the correctness of prior transactions, BlueWallet hashes
all the received prior transactions. These hashes are compared to the previous
output hashes in the inputs of the current transaction.

If all the hashes match, we know that the POS sent unmodified prior trans-
actions. Even one single byte-change in a prior transaction would lead to a
completely different hash, and thus a rejection of the current transaction.

But what if the POS changed the previous output hashes in the current
transaction in order to match the hashes of the modified previous transactions?
In that case, BlueWallet accepts the current transaction. The Bitcoin network,
however, would reject the transaction, since the modified previous output hashes
do not reference existing prior transactions. In the end, the POS would not
receive any bitcoins at all.

This is a strong incentive for the POS to send us the correct prior transactions
and to return the correct amount of bitcoins to our address.

3.3 Signing Transactions

Creating the required signatures to authorize a transaction is a rather involved
process. To sign a transaction, the owner of the transferred bitcoins has to create
a valid signature for every one of the inputs. To create a valid signature for an
input, the following steps have to be taken.

First, BlueWallet creates a temporary copy of the unsigned transaction,
which is needed to generate the signature. This temporary copy is then modi-
fied. The scriptSig of the input we want to create the signature for has to be
filled with the pkScript of the referenced output we want to claim. Remember,
the input references a previous transaction’s output and this output contains a
pkScript. This pkScript includes the Bitcoin address which owns the output.

Since the output of the previous transaction is owned by the BlueWallet’s
Bitcoin address, this is a pkScript containing our Bitcoin address. The pkScript
is exactly the same for all outputs owned by our address. In this case, we already
encountered it in Table 1. It is included in the transaction change output, since
this output will also be owned by our address.

In order to create the signature for the input, BlueWallet replaces scriptSig
of tz_in[0] in Table 1 with the pkScript containing our Bitcoin address, and
updates scriptSig length.

Before BlueWallet can create the signature, it will have to append a so called
hash type field to the copy of the unsigned transaction. The default value of this
four byte field is 1. This hash type is called SIGHASH_ALL and indicates that



version 01 00 00 00

tx-in count 01

prev. output hash [13 cb 3b 56 7d ef 7f fa dc aa 69 de 20 cb 19 09 00 29 02
8b 05 d8 a9 73 d1 5d b5 cf 43 37 ab al

tx_in[0] [prev. output index|00 00 00 00

scriptSig length  [6b

scriptSig 48 30 45 02 21 00 b7 28 96 62 40 49 55 c0 87 50 57 2f 8b
6a f4 f4 cf 69 60 c7 67 78 17 64 fd 53 6e f1 99 dO d8 50
02 20 27 22 90 02 e4 42 a6 le 8d 98 2a 09 22 57 8f fb 8a
cc aa d6 6e 13 d6 e4 80 88 03 6f 71 88 e4 76 01 21 02 84
db aa 32 5f 58 f1 4f 3¢ 95 c9 55 78 ff 0a 57 10 25 05 eb
b8 4c 28 a5 19 f4 {0 €5 07 {8 f4 da

sequence ff ff ff ff
tx_out count 02
value c0 2a 99 1¢ 00 00 00 00
tx_out[0]|[pkScript length |19
pkScript 76 a9 14 29 4f db f5 26 Oa be 18 48 9b 48 07 {7 ba f0 62
07 70 c3 b7 88 ac
value 80 96 98 00 00 00 00 00
tx_out[1][pkScript length 19
pkScript 76 a9 14 8e e6 Ta 65 55 28 b6 1d e2 29 4 5f ¢0 16 a0 Of
08 £3 cc 32 88 ac
locktime 00 00 00 00

Table 2. The complete signed transaction created by BlueWallet.

all the outputs are signed. Therefore, each output can only be claimed by its
rightful owner. There are also other hash types, but they are not relevant to our
use-case.

The modified copy of the unsigned transaction is now double-SHA256 hashed,
and the resulting hash is signed with the private key corresponding to our Bitcoin
address. The result is a DER-encoded signature [6]. To this signature a one-byte
hash type has to be added. As the name suggests scriptSig is a script that
wraps the DER-encoded signature. It starts with a byte indicating the length
of the DER~encoded signature including the hashtype-byte. This is followed by
the signature and the hashtype-byte itself. Next comes one byte containing the
length of the public key. Finally, the public key is added. The final scriptSig is
shown in the first input in Table 2.

In case the transaction has more than one input, a signature has to be created
for every single input. This is done one signature at a time. For every signature
a copy of the unsigned transaction is created and only the scriptSig of the input
we want to create the signature for is temporarily filled with the corresponding
pkScript. The other inputs are left as is, with empty scriptSig.

The valid signed transaction is then created by adding the scriptSig generated
with the modified copy of the unsigned transaction to the original unsigned
transaction shown in Table 1. The empty scriptSig field is replaced by the newly
generated scriptSig, and the scriptSig length field is updated accordingly. The
complete signed transaction as created by BlueWallet is illustrated in Table 2.
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3.4 Verifying Transactions

Once all signatures have been added to the transaction, it is sent back to the
POS, which will then verify the transaction’s validity.

The POS has to check that its address and the correct value is still listed
in the outputs of the signed transaction it received from the BlueWallet. To
verify a Bitcoin transaction, its signatures have to be verified. The necessary
steps to verify a signature are similar to the steps taken to create a signature.
From the signed transaction a transaction equal to the modified copy of the
unsigned transaction has to be created. This transaction is then also double-
SHA256 hashed, which will lead to the hash that was originally used to create
the signature. Using a cryptographic verification algorithm and the public key
from the signed transaction, it can now be determined, whether the signature
was created from this hash.

If the transaction is not valid, the POS is not going to receive any bitcoins,
since the transaction would be rejected by the Bitcoin network. In case the
transaction is invalid, the POS aborts the payment process.

If the transaction is found to be valid, the POS releases it into the Bitcoin net-
work. The transaction is verified by other peers and eventually confirmed by the
Bitcoin network. A transaction is confirmed when it ends up in the blockchain,
the public ledger of the Bitcoin network. This process may take between 10 and
40 minutes. Since waiting this long to complete the payment process is neither in
the interest of the POS nor the customer, the POS will have to accept so-called
fast payments [7]. Here, the POS does not wait for confirmation by the Bitcoin
network. It accepts payments as soon as it sees the transaction being forwarded
in the network. Fast payments build upon trusting a transaction to be eventually
confirmed by the network. But this might not always be the case.

By accepting fast payments the POS becomes susceptible to double-spend
attempts. A double-spend attempt is an attack where the attacker tries to acquire
a good or service from a merchant without paying for it. From the POS’ view, we
could be such an attacker. Our double-spend attempt would include the following
steps. Upon receiving the unsigned transaction by the POS, we create a second
transaction using the same previous outputs as inputs. The second transaction
may transfer the bitcoins to another address, which could be our own. We then
sign the original transaction and send it to the POS. If we manage to release the
second transaction into the Bitcoin network at the same time, it will be verified
by peers in the network and could later be confirmed by the Bitcoin network.
Since outputs can only be spent once, the transaction that is supposed to pay
the POS will then eventually be rejected by the network. By then, we would
have long left the store with the goods.

In order to prevent such double-spend attacks, the POS constantly moni-
tors the Bitcoin network for other transactions spending the outputs chosen for
the payment transaction. Furthermore, to secure fast payments the POS could
implement the techniques described by [8]. The POS is always connected to a
large amount of other peers in the network. For a fast payment transaction to
be accepted, a certain percentage of the connected peers must have seen the
transaction after a couple of seconds.
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Fig. 2. System overview with contributing components.

4 Implementation

In this section, we illustrate how we created a prototype of BlueWallet with the
previously mentioned capabilities.

Figure 2 illustrates the POS scenario and shows the main components of Blue-
Wallet. For communication with the POS BlueWallet incorporates a Bluetooth
Low Energy (BLE) module. Compared to classic Bluetooth it provides a consid-
erably reduced power consumption. To process and sign transactions quickly and
to improve security, BlueWallet features a co-processor. This co-processor con-
sumes more power than the other parts of the system and therefore immediately
enters the stand-by mode whenever it is not used.

4.1 BlueWallet Prototype

The user interface of BlueWallet consists of an OLED display and four buttons.
The display is used to show relevant information to the user, the buttons are
required for user input. The four buttons are placed next to the four corners of
the display. On the right side of the display, we have an OK button, used to
confirm user input and transactions and a CANCEL button, used to cancel user
input and reject transactions. On the left side of the display, there is an UP and
a DOWN button, used for selection purposes and for choosing the digits when
entering the PIN code.

The Bluetooth Low Energy module is a Bluegiga BLE113 with integrated
microcontroller and Bluetooth radio. The BLE113 is the heart of BlueWallet. It is
capable of communicating over Bluetooth Low Energy with the POS, interfaces
with the microcontroller needed for cryptographic calculations, reacts to user
input and controls the display.

The integrated microcontroller in the BLE113 is a 8-bit CC2541 by Texas
Instruments. It is a power-optimized chip for BLE applications. The BlueWal-
let application running on the CC2541 chip is the major building block of our
device and implements the state machine, which handles the different states of
BlueWallet. It was developed using the BLE software development platform by
Texas Instruments.
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Fig. 3. The important states for the payment process.

For data communication with the POS, BlueWallet uses the Generic At-
tribute (GATT) layer of the BLE protocol stack. Using a GATT profile Blue-
Wallet is able to provide access to GATT characteristics. These characteristics
contain values that can be written and read by a connected device, depending
on the characteristics’ properties.

In order to sign transactions, BlueWallet requires more computational re-
sources than the CC2541 could provide. Initial tests with an implementation of
ECDSA on this power-saving chip resulted in run-times for a single signature of
over 90 seconds, which might be acceptable for non time critical scenarios such
as e-Banking, but not for the POS scenario.

Thus, BlueWallet features an STM32F205RE co-processor (STM), a 32-bit
microcontroller by STMicroelectronics, that is used for all cryptographic opera-
tions. It provides approximately two orders of magnitude speedup, verifying and
signing transactions with one input in under a second.

Moreover, by separating the cryptographic domain from the Bluetooth do-
main, we can improve the overall security of BlueWallet. By only storing the
private key needed for signature generation on the STM, we can make sure that
even if the Bluetooth connection is compromised the private key is not. Eventu-
ally we will use a tamper resistant cryptoprocessor, so that even physical access
to BlueWallet would not give access to the encrypted private key. At the time
of writing no such processor exists due to the choice of the secp256kl curve in
the Bitcoin protocol.
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The BLE113 and the STM communicate over UART via a direct connection.
In addition, the BLE113 has the ability to wake up the STM from standby mode.
This is necessary because the STM has a significantly higher power consumption
when in run mode. The typical supply current when the chip is clocked at 120
MHz lies between 33 and 61 mA. In standby mode the chip only draws around
4 pA. Since BlueWallet is powered by a battery, we generally want to use as
little power as possible and thus make use of the standby mode of the STM.
The application running on the STM implements the Bitcoin signature scheme
described in Section 3.3. It acts like a simple state machine that only reacts to
commands and data it receives from the BLE113.

Figure 3 shows the important states for the payment process. Upon start-
ing BlueWallet, the state machine enters the HOME state. BlueWallet is now
advertising over Bluetooth and the POS is able to establish a Bluetooth Low
Energy connection. When a new payment process is started, the POS connects
to BlueWallet and the state machine switches to the CONNECTED state.

The POS reads the public key of the BlueWallet’s owner (characteristic
0xfff1) and builds the unsigned transaction as specified in Section 3.1. Once the
device state (0xf££5) indicates that BlueWallet is ready to receive data the POS
sends the unsigned (0xf££3) and the corresponding prior transactions (0xf££7).
The BLE113 forwards the transactions to the STM which verifies the unsigned
and the prior transactions and sends the transaction information back.

The state machine switches to the TX VERIFY state and BlueWallet dis-
plays the transaction information to the user. In addition to the automatic ver-
ification of the unsigned transaction that is done by the STM, the user has to
manually confirm the correctness of the transaction. Looking at the display, she
can verify the address she is going to transfer bitcoins to, the amount of bitcoins
that are transferred and also check the transaction fee.

If the transaction information is correct, the user accepts the transaction and
the state machine switches to the ENTER PIN state. Each transaction has to
be authorized by the owner of BlueWallet with her PIN. This ensures that, even
when BlueWallet is lost or stolen, a third party is unable to make payments.

Upon entering the PIN, the BLE113 instructs the STM to sign the transac-
tion. The STM signs the unsigned transaction with the user’s private key and
returns the signed transaction. The BLE113’s state machine switches to the
WAIT POS state. Now that the signed transaction is ready, which is again sig-
naled by the device state characteristic, the POS reads the signed transaction
(0x£f££2) and uses the user’s public key to verify it. If everything is in order,
the POS informs BlueWallet that the payment has been accepted by writing the
POS state (0xff£6) characteristic and closes the Bluetooth connection. This
causes the state machine to return to the HOMFE state.

For the BlueWallet prototype we created a printed circuit board (PCB) which
physically supports and connects all the components. The size of the PCB is
restricted by the size of our final device. There are several constraints for the size
of the device: the display needs to be large enough to accommodate the necessary
information and the buttons should be easily reachable, yet BlueWallet should
be small enough to be carried around by the user. The PCB for the prototype
has a size of 65 x 30 mm. The buttons and the display are placed on the top
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Fig. 4. The top and bottom views of the PCB.

of the PCB, whereas the two microcontrollers and most of the other electrical
components are located on the bottom of the PCB.

To determine how much current BlueWallet would draw at most, we summed
up the maximum supply currents of the two microcontrollers and the OLED
display. The OLED display has a maximum operating current of 28.9 mA, the
BLE113 needs 18.2mA and the STM 61mA at most [9-11]. This results in a total
maximum supply current needed for BlueWallet of 108.1mA. Therefore, we chose
a lithium polymer battery with a capacity of 110mAh to power BlueWallet. This
way, BlueWallet will at least run one hour before having to be charged again. A
payment process does generally not take longer than 30 seconds. Thus, a user
can complete around 100 payment processes before having to charge BlueWallet
again. It should be noted that we looked at the maximum operating current of
each component. Generally, each component should draw less current resulting
in an even longer battery life.

Eventually, the battery will be discharged. To provide the user with a simple
way of recharging the battery, we added a micro-USB connector and a battery
charger circuit to BlueWallet.

For the prototype, we chose a multi-layer PCB with four layers. It consists of
the top and the bottom layer which will hold the electrical components, a power
plane, and a ground plane. Components can be connected to these planes using
through-hole vias.

The bottom layer of the PCB with the components in place is shown in
Figure 4. It should be noted that even though the display is located on the top
layer of the PCB, the pads to connect the display are placed on the bottom layer.
The display’s pins are located on a flexible flat cable. The cable is soldered to
the pads on the bottom layer of the PCB and then bent around the edge of the
PCB. As a result, the display will come to rest on the top layer of the PCB.

On the top layer illustrated in Figure 4, there are only a few electrical com-
ponents. Soldered to the top layer are the four buttons, the micro-USB port
needed for charging the battery and a 2-pin connector for the battery.

Evaluating the prototype, we found that it takes approximately 1.5 seconds
to send the unsigned transaction and one previous transaction to BlueWallet.
Upon receiving the transaction details, they are displayed almost instantly by
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Fig. 5. The final device including the case for the printed circuit board.

BlueWallet. A thorough review of the transaction details can be done in about
10 seconds. The time it takes to enter the PIN code depends on the length
of the PIN code, but generally does not take longer than 10 seconds. The co-
processor signs a transaction in less than one second. Then, it again takes around
1.5 seconds to return the signed transaction to the POS. A complete payment
process at a POS should therefore take around 20 seconds.

4.2 Point of Sale

To test the BlueWallet in the POS scenario, we implemented the POS on a com-
puter using a CSR 4.0 USB dongle to for Bluetooth Low Energy communication.
To establish a connection with the Bitcoin network, our POS uses bitcoind, a
variant of the reference client. The bitcoind client provides a JSON-RPC API.
Our POS application makes use of this RPC interface and is also able to access
the Bluetooth Low Energy functions of the USB dongle.

When the POS has established the connection to BlueWallet and read our
Bitcoin address, it uses bitcoind to look up the balance of the address and find
possible outputs of previous transactions associated to this address that can
be used as inputs for the new transaction. With this information it creates the
new unsigned transaction. Furthermore, for each input the POS has to send the
complete previous transaction to BlueWallet. The POS serializes the previous
transactions as illustrated in Figure 6. The total number of previous transactions
is followed by the first previous transaction. If there is more than one input in
the unsigned transaction, the POS adds the additional previous transactions as
well. This data is written to the prior transaction characteristic of BlueWallet.
Then, the POS sends the unsigned transaction to BlueWallet.

first prev. tx second prev. tx

tx_prev. | previous | previous | previous : previous !
count |tx length tx tx length | tx |
I

Fig. 6. Previous transactions serialized by the point of sale.
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To know when BlueWallet has signed the transaction, the POS subscribes to
the device state characteristic. The POS will be notified by BlueWallet when the
characteristic changes its value. If the value indicates that the transaction has
been signed, the POS reads the signed transaction characteristic. Then, again
using bitcoind, the POS verifies the correctness of the signed transaction and
sends it to the Bitcoin network.

5 Related Work

The security of using Bitcoins for fast payment scenarios, like using Bitcoin
at a point of sale, where payment confirmation is required immediately, was
first analyzed by Karame et al. [7]. The use of Bitcoin at a point of sale using
near field communication to exchange payment information with a smart phone
was examined by Bronleewe [12]. A proof of concept for a point of sale sce-
nario implementing and expanding upon fast payment security was developed
by Bamert et al. [8].

The increase of malware attacks on Bitcoin clients resulting in compromised
private keys and theft of bitcoins is discussed by Barber et al. [13]. An analysis of
German and US law with regards to theft of bitcoins was conducted by Boehm
et al. [14]. They found that traditional criminal law is not well equipped to
handle the theft of virtual goods. These findings show that it is vital to protect
private keys. Litke and Stewart describe the best practices for storing private
keys, including hardware tokens [15]. The benefits of hardware tokens supporting
public-key cryptography with regards to e-banking are discussed by Hiltgen [16].

An approach to public-key cryptography called elliptic curve cryptography
was proposed independently by Koblitz and Miller [17,18]. Elliptic curve cryp-
tography is the foundation for the Elliptic Curve Digital Signature Algorithm
(ECDSA) which is used by the Bitcoin protocol to sign transactions and is de-
scribed in detail by Johnson and Menezes [19]. A review of ECDSA in practice
to reveal vulnerabilities was done by Bos et al. [20]. They found that repeated
per-message signature secrets led to compromised private keys of Bitcoin users.

The benefits of Bluetooth Low Energy when it comes to low energy devices
are described by Gomez et al. [21]. Kamath and Lindh measure Bluetooth Low
Energy power consumption of a CC2541 chip by Texas Instruments [22].

6 Conclusion

BlueWallet can be used to sign and authorize transactions that are created by the
user’s computer or smart phone. Using Bluetooth Low Energy to communicate
with the entity creating the unsigned transaction we were able to build a device
that features a low power consumption and thus is well equipped to be used
on the go. Furthermore, by delegating the creation of the unsigned transaction
to another entity BlueWallet can directly be used as an electronic wallet in
combination with a point of sale. Implementing several security precautions,
BlueWallet makes sure that transactions created by an untrusted point of sale
can be used to make Bitcoin payments in a store. We found that signing Bitcoin
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transactions with BlueWallet is secure and fast. A user can simply pay with
Bitcoin by reviewing the transaction information on the screen of BlueWallet
and entering her PIN code. Therefore, our electronic wallet is a viable alternative
to card based payment methods and cash.
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