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Complexity Theory

P NP

Prove
In polynomial time

Verify
In polynomial time
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Let's get Distributed

• Is 𝑛 even?

• Θ(𝑛) rounds in the -model

• rover assigns 1 bit -> erify in 1 round

• Other way to think of it: 1 bit of non-determinism

• General question: How many bits necessary/sufficient?
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Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
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Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
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Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
– rover chose the wrong proof

– Property does not hold
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Some Related Work

• [Naor and Stockmeyer, STOC 1993]:
What can be computed locally?

• [Göös and Suomela, PODC 2011]: 
Locally Checkable Proofs (LCP)

• [Korman et al., ICDCN 2006, …]: 
Proof Labeling Schemes (PLS)

• [Fraigniaud et al., FOCS 2011,…]: 
Nondeterministic Local Decision (NLD)
– [Fraigniaud et al., DISC 2012,…]: “Randomization”

• Another way to think of it [Blin et al., SSS 2014]:
– “any mechanism insuring silent self-stabilization is essentially 

equivalent to a proof-labeling scheme”



“No Strings attached”

• No knowledge of 𝑛

• No identifiers

• No port numbers

• No relaying of messages - just one round



Graphs and Communication

• (Weakly) Connected graphs 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝑛
– Yes instances G ∈ Y & No instances G ∉ Y

• Undirected: U(v) for every v ∈ 𝑉
– multiset of labels of all neighbors

• Directed: D1(v) for every v ∈ 𝑉
– Multiset I of labels of all incoming-neighbors

• Directed: D2(v) for every v ∈ 𝑉
– two multisets (I,O) of labels of all 

• incoming-neighbors
• outgoing-neighbors
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Local Checkability

• rover gets as input G ∈ Y
– Assigns a labels ℓ(v) for every v ∈ 𝑉

• erifier is a distributed algorithm that gets as 
input at node v both ℓ(v) & U(v) (or D1(v) / D2(v))

– Outputs either Yes or No

• A Prover-Verifier pair ( , is correct for Y if:
– G ∈ Y & labels from : outputs Yes at all nodes
– G ∉ Y: outputs No for at least one node



Prover-Verifier Pairs

• We investigate if there are correct ( , for some Y
– (abbreviated by U-PVP, D1-PVP, D2-PVP)

• The quality of a PVP is its proof size 
– 𝑓 𝑛 , if the PVP uses at most 𝑓 𝑛 bits for each label in 

any Yes instance with at most 𝑛 nodes

• The U-proof size of Y is the smallest proof size for
which there exists a correct U-PVP
– Analogous for D1-proof size / D2-proof size

• In this talk: All logarithms are of base 2 and rounded up to be of integer value
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Undirected vs Directed Communication

• The different models can induce different 
amount of bits required in the proof size

– Or might even render a problem impossible

• Example problem Y : CYCLE
– U-CYCLE: all undirected graphs containing a cycle

– D-CYCLE: all directed graphs containing a directed cycle
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D-CYCLE: Is there a D1-PVP?

A B𝐺:

YesYesYesYes

𝐻: A BB

YesYesYes

There is no D1-PVP for D-CYCLE 

c1c2 a b

a bb’



CYCLE

Problem Directed one-way Directed two-way Undirected

CYCLE Impossible
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D-CYCLE: Is there a D2-PVP?

• rover labels nodes as follows:
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– (in the underlying undirected graph)
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D-CYCLE: Is there a D2-PVP?

• erifier returns Yes

– For nodes vc with label ℓ(vc)=0 if for (I,O) holds:

• 0 ∈ O and 0 ∈ I

– For the other nodes v with label ℓ(v) if

1. There is a label ℓ(u) in (I,O) with ℓ(v)=ℓ(u)+1, and

2. There is no label ℓ(u′) in (I,O) with ℓ(v)>ℓ(u′)+1
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Is the described D2-PVP correct?

• Yes instances labeled by :
– Only nodes in directed cycles labeled with 0 -> Yes

– All other nodes: Label is defined by minimum 
distance to a directed cycle -> Yes

• No instances:
– Is there a node with label 0? Follow “0-path” -> No

– No node with label 0, but one with label k?
• Follow “descending path” -> No



D2-proof size: Ω log 𝑛 bits
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D2-proof size: Ω log 𝑛 bits
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CYCLE

Problem Directed one-way Directed two-way Undirected

CYCLE Impossible Θ(log 𝑛)



U-proof size: At least 2 Bits
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U-PVP for CYCLE with 2 bits

• rover labels nodes as follows:
• In a cycle? -> 3

• Else: Remove all cycles, remaining graph is a forest
– For each tree T: 

» Create a root r adjacent to a cycle in 𝐺 with label 0

» Other nodes: Distance to r modulo 3

• Proof size: 2 bits
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U-PVP for CYCLE with 2 bits

• erifier returns Yes

– For nodes vc with label ℓ(vc)=3 if holds:

• Two neighbors with label 3 exist

– For the other nodes v with label ℓ(v) ∈ 0,1,2 if

1. There is no neighbor with label ℓ(v) , and

2. Exactly one neighbor exists with label ℓ(v)−1 mod 3 
or at least one neighbor with label of 3



Is the described U-PVP correct?

• Yes instances labeled by :

– Only nodes in cycles labeled with 3 -> Yes

– Without the cycles, all other nodes are in a tree with 
labels as distance to root mod 3, and root is adjacent 
to a cycle -> Yes
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Is the described U-PVP correct?

• Yes instances labeled by :

– Only nodes in cycles labeled with 3 -> Yes

– Without the cycles, all other nodes are in a tree with 
labels as distance to root mod 3, and root is adjacent 
to a cycle -> Yes

• No instances (without a cycle):

– Is there a node with label 3? They form a forest, 
consider any leaf-> No

– Else: follow “descending path” -> No
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CYCLE, ACYCLIC, TREE

Problem Directed one-way Directed two-way Undirected

CYCLE Impossible Θ(log 𝑛) 2

TREE Θ(log 𝑛)* Θ(log 𝑛) Θ(log 𝑛)*

ACYCLIC Θ(log 𝑛) Θ(log 𝑛) same as Tree

*: [Korman et al., Distributed Computing 2010]: Proof labeling schemes

Idea for Tree: 
• Label root as 0
• Other nodes: Label is distance from root

Idea for Acyclicity: 
• Label nodes without incoming edges as 0
• Other nodes: Max. incoming label plus 1
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𝑠 − 𝑡 Reachability

• Is there a (directed) path from 𝑠 to 𝑡?

“To ask meaningful questions about connectivity […] we have
the promise that there is exactly one node with label 𝑠 and
exactly one node with label 𝑡.“

[Göös and Suomela, PODC 2011]

• We thus assume that there are two nodes with the unique 
labels 𝑠 and 𝑡

• U-proof size of 1 bit (e.g., [Immermann, 1999]):
– Label nodes along a shortest 𝑠 − 𝑡 path with 1, else 0



Directed 𝑠 − 𝑡 Reachability

• D2-PVP with port numbers: 𝑂 log Δ bits
– With Δbeing max degree

– Idea: “Point at successor and predecessor” along a 
shortest 𝑠 − 𝑡 path

• Open question: 

“Is there a proof labelling scheme 
with O(1)-bit proofs?”

[Göös and Suomela, PODC 2011]



D1-PVP for 𝑠 − 𝑡 Reachability

• We don’t have port numbers…

• Idea: Take a shortest 𝑠 − 𝑡 path 𝑠, v1, … vj, 𝑡

– Label according to distance to 𝑠 along the path

– All other nodes: Label of 0

• Proof size of log 𝑛
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D1-proof size: Ω log 𝑛 bits

𝑠
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A
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A BB

C C

𝐺: 𝐻:

There is no D1-PVP with 𝒇(∆) bits! 



D2-PVP for 𝑠 − 𝑡 Reachability

• As we don’t have port numbers, we could use 
the D1-PVP with log 𝑛 bits

• With port numbers: 𝑂 log Δ bits

• Let us create port numbers!



D2-PVP for 𝑠 − 𝑡 Reachability

• Idea: A 2-hop coloring needs ≤ ∆²+1 colors

– Encoding each color: 𝑂 log Δ bits

• 2-hop coloring can be checked locally

– All colors in the 1-hop neighborhood different?

• Thus, we can point “back and forth” along edges, by 
emulating port numbers with 𝑂 log Δ bits

𝑠 𝑡



Conclusion

• Summary
– All three models of communication differ
– Our lower bound examples have constant degree

• Can drop the 1 round restriction and go local

– Directed 𝑠 − 𝑡 reachability: 
• One-Way: Proof size of Θ(log 𝑛) bits, 𝑓(Δ) bits don’t suffice
• Two-Way: Emulating port numbers -> 𝑂(log Δ) bits proof size

• Open Questions
– What happens in biologically inspired systems?

• E.g., no multisets but sets & finite automata verifier?

– What is the correct answer to D2 𝑠 − 𝑡 reachability?
– Can similar techniques be deployed in production networks?
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