Local Checkability,
No Strings Attached

o

Klaus-Tycho Forster, Thomas Liidi, Jochen Seidel, Roger Wattenhofer
January 06, 2016 @ ICDCN 2016 - Singapore

ETH Zurich — Distributed Computing — www.disco.ethz.ch

Decidin

Towards Robust Distributed Systems

Eric A. Brewer
UC Berkeley and Inktomi

Current distributed systems, even the ones that work, tend to be very
fragile: they are hard to keep up, hard to manage, hard to grow, hard to
evolve, and hard to program. In this talk, I look at several issues in an
attempt to clean up the way we think about these systems. These issues
include the fault model, high availability, graceful degradation, data consis-
tency, evolution, composition, and autonomy.

These are not (yet) provable principles, but merely ways to think about
the issues that simplify design in practice. They draw on experience at
Berkeley and with giant-scale systems built at Inktomi, including the system
that handles 50% of all web searches.

Prove

Deciding vs Checking

Towards Robust Distributed Systems

Eric A. Brewer
UC Berkeley and Inktomi

Current distributed systems, even the ones that work, tend to be very
fragile: they are hard to keep up, hard to manage, hard to grow, hard to
evolve, and hard to program. In this talk, I look at several issues in an
attempt to clean up the way we think about these systems. These issues
include the fault model, high availability, graceful degradation, data consis-
tency, evolution, composition, and autonomy.

These are not (yet) provable principles, but merely ways to think about
the issues that simplify design in practice. They draw on experience at
Berkeley and with giant-scale systems built at Inktomi, including the system
that handles 50% of all web searches.

Prove

Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services

Seth Gilbert and Nancy Lynch
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
sethg@mit.edu, lynch@theory.lcs.mit.edu

Abstract

When designing distributed web services, there are three properties that are commonly
desired: consistency, availability, and partition tolerance. It is impossible to achieve all
three, In this note, we prove this conjecture in the asynchronous network model, and
then discuss solutions to this dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer!, in an invited talk [2], made the following conjecture: it is impossible for
a web service to provide the following three guarantees:

o Consistency
o Availability

e Partition-tolerance

Verify

Complexity Theory

P NP

Prove Verify

In polynomial time In polynomial time

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Conclusion

Let's get Distributed

* Isneven?
* Q(n) rounds, even with unique identifiers in the LO¢F4#.£-model

Let's get Distributed

Is n even?

* Q(n) rounds, even with unique identifiers in the LO¢F4#.£-model
* Prover assigns 1 bit

Let's get Distributed

* Isneven?
* O(n) rounds in the LOEZ4L-model
* Prover assigns 1 bit -> Zerify in 1 round

Let's get Distributed

Is n even?

®(n) rounds in the LOE#L-model

2rover assigns 1 bit -> Zerify in 1 round

Other way to think of it: 1 bit of non-determinism
General question: How many bits necessary/sufficient?

Accepting a proof

Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

Accepting a proof

Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

— 2rover chose the wrong proof

Accepting a proof

Every node outputs Yes -> Proof accepted

One node outputs No -> Proof rejected
— 2rover chose the wrong proof
— Property does not hold

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Conclusion

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Conclusion

Some Related Work

[Naor and Stockmeyer, STOC 1993]:
What can be computed locally?

[GOOs and Suomela, PODC 2011]:
Locally Checkable Proofs (LCP)

[Korman et al., ICDCN 2006, ...]:
Proof Labeling Schemes (PLS)

Fraigniaud et al., FOCS 2011,...]:
Nondeterministic Local Decision (NLD)

— [Fraigniaud et al., DISC 2012,...]: “Randomization”

“No Strings attached”

No knowledge of n

No identifiers

No port numbers

No relaying of messages - just one round

Graphs and Communication

(Weakly) Connected graphs G = (V,E) with |[V| =n
— Yes instances G € Y & No instances G € Y
[0] [1]

Undirected: U(v) foreveryv € IV

— multiset of labels of all neighbors

Directed: D,(v) foreveryv € IV [0] []
— Multiset I of labels of all incoming-neighbors

Directed: D,(v) foreveryv € V
— two multisets (I,0) of labels of all

* incoming-neighbors

* outgoing-neighbors

Local Checkability

o Drover 2 getsasinputGeY
— Assigns a labels £(v) foreveryv € V

e “erifier 7 is a distributed algorithm that gets as
input at node v both £(v) & U(V) (orb,(v) / D,(v))

— Qutputs either Yes or No

* A Prover-Verifier pair (2,7) is correct for Y if:
— G € Y &labels from 2: 7 outputs Yes at all nodes
— G & Y: 7 outputs No for at least one node

Prover-Verifier Pairs

We investigate if there are correct (2,7) for some Y
— (abbreviated by U-PVP, D,-PVP, D,-PVP)

The quality of a PVP is its proof size

— f(n), if the PVP uses at most f(n) bits for each label in
any Yes instance with at most n nodes

The U-proof size of Y is the smallest proof size for
which there exists a correct U-PVP

— Analogous for D-proof size / D,-proof size

In this talk: All logarithms are of base 2 and rounded up to be of integer value

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Outlook

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Outlook

Undirected vs Directed Communication

* The different models can induce different
amount of bits required in the proof size

— Or might even render a problem impossible

* Example problem Y : CYCLE

— U-CYCLE: all undirected graphs containing a cycle
— D-CYCLE: all directed graphs containing a directed cycle

D-CYCLE: Is there a D,-PVP?

O—O—@—O®

Cy a b

D-CYCLE: Is there a D,-PVP?

e S

Cq

G:

D-CYCLE: Is there a D,-PVP?

e S

Cq

G:

D-CYCLE: Is there a D,-PVP?

D O O O
FE

O—0—®

G:

0 O O
H—O—C

b’ a b

D-CYCLE: Is there a D,-PVP?

9@ 0 O

G:
O 0O O
H: (B) (A) (B)

There is no D;-PVP for D-CYCLE

\
.

CYCLE

Directed one-way Directed two-way Undirected

CYCLE Impossible

D-CYCLE: Is there a D,-PVP?

D-CYCLE: Is there a D,-PVP?

e Drover 2 labels nodes as follows:

* |n a directed cycle? ->0

* Else: Minimum distance to a cycle
— (in the underlying undirected graph)

* Proof size: logn bits

D-CYCLE: Is there a D,-PVP?

e Drover 2 labels nodes as follows:

* |n a directed cycle? ->0

* Else: Minimum distance to a cycle
— (in the underlying undirected graph)

* Proof size: logn bits

D-CYCLE: Is there a D,-PVP?

* Zerifier ¥ returns Yes
— For nodes v, with label £(v¢)=0 if for (I,0) holds:
*0€0and0 el

— For the other nodes v with label £(v) if
1. Thereis alabel #(u) in (I,0) with £(v)=¢(u)+1, and
2. Thereis nolabel £(u") in (I,0) with £(v)>f(u")+1

D-CYCLE: Is there a D,-PVP?

* Zerifier ¥ returns Yes
— For nodes v, with label £(v¢)=0 if for (I,0) holds:
*0€0and0 el

— For the other nodes v with label £(v) if
1. Thereis alabel #(u) in (I,0) with £(v)=¢(u)+1, and

Is the described D,-PVP correct?

* Yes instances labeled by 2:

— Only nodes in directed cycles labeled with 0 -> Yes

— All other nodes: Label is defined by minimum
distance to a directed cycle -> Yes

* No instances:
— Is there a node with label 0? Follow “0O-path” -> No

— No node with label 0, but one with label k?
* Follow “descending path” -> No

D,-proof size: Q(logn) bits

G: @@CX)

Vi Vi Ve Vitr Vi

D,-proof size: Q(logn) bits

P

G: @@CX)

Viiit Vie

Vi Jl VJZ

D,-proof size: Q(logn) bits

H: (A G@B G@

Ui Ui Ui U4 U; U U, U'js

D,-proof size: Q(logn) bits

H: (A G@B G@

Ui Ui Ui U4 U; U U, U'js

CYCLE

Directed one-way Directed two-way Undirected

CYCLE Impossible O (logn)

U-proof size: At least 2 Bits

G1: OmO0=0
6: QOO0
G3: (O—(O—)

G4: (O—0)—)

U-PVP for CYCLE with 2 bits

» Zrover 2 labels nodes as follows:
* Inacycle?->3
* Else: Remove all cycles, remaining graph is a forest
— For each tree T:

» Create a root r adjacent to a cycle in ¢ with label O
» Other nodes: Distance to r modulo 3

3 ~(0)- 3
2 \J} 3

* Proof size: 2 bits

1

U-PVP for CYCLE with 2 bits

o Zerifier ¥ returns Yes

— For nodes v, with label £(v¢)=3 if holds:
* Two neighbors with label 3 exist

— For the other nodes v with label #(v) € {0,1,2} if

1. There is no neighbor with label £(v), and

2. Exactly one neighbor exists with label £(v)—1 mod 3
or at least one neighbor with label of 3

Is the described U-PVP correct?

* Yes instances labeled by 2:

— Only nodes in cycles labeled with 3 -> Yes

— Without the cycles, all other nodes are in a tree with
labels as distance to root mod 3, and root is adjacent
to a cycle -> Yes

Is the described U-PVP correct?

* Yes instances labeled by 2:

— Only nodes in cycles labeled with 3 -> Yes

— Without the cycles, all other nodes are in a tree with
labels as distance to root mod 3, and root is adjacent
to a cycle -> Yes

* No instances (without a cycle):

— Is there a node with label 3? They form a forest,
consider any leaf-> No

— Else: follow “descending path” -> No

CYCLE, ACYCLIC, TREE

Directed one-way Directed two-way Undirected

CYCLE Impossible O (logn)

CYCLE, ACYCLIC, TREE

Directed one-way Directed two-way Undirected

CYCLE Impossible O (logn)
TREE O(logn)* O(logn) @(log n)*
ACYCLIC O(logn) O(logn) same as Tree

Idea for Tree:
e LabelrootasO
 QOther nodes: Label is distance from root

Idea for Acyclicity:
e Label nodes without incoming edges as 0
e Other nodes: Max. incoming label plus 1

*: [Korman et al., Distributed Computing 2010]: Proof labeling schemes

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Conclusion

Overview

Introduction

Background & model

Undirected vs directed communication
Study of s — t reachability

Conclusion

s — t Reachability

* |sthere a (directed) path from s to t?

“To ask meaningful questions about connectivity [...] we have
the promise that there is exactly one node with label s and
exactly one node with label t.”

[GOOs and Suomela, PODC 2011]

 We thus assume that there are two nodes with the unique
labels s and t

* U-proof size of 1 bit (e.g., [Immermann, 1999]):
— Label nodes along a shortest s — t path with 1, else O

Directed s — t Reachability

 D,-PVP with port numbers: O(log A) bits
— With A being max degree

— ldea: “Point at successor and predecessor” along a
shortest s — t path

* Open gquestion:

“Is there a proof labelling scheme
with O(1)-bit proofs?”

[GO6s and Suomela, PODC 2011]

D,-PVP for s — t Reachability

 We don’t have port numbers...

* Idea: Take a shortest s — t path s,v,, ...vj, t

— Label according to distance to s along the path
— All other nodes: Label of 0

* Proof size of logn

D,-proof size: Q(logn) bits

D,-proof size: Q(logn) bits

D,-proof size: Q(logn) bits

D,-proof size: Q(logn) bits

D,-proof size: Q(logn) bits

D,-proof size: Q(logn) bits

D,-PVP for s — t Reachability

* As we don’t have port numbers, we could use
the D,-PVP with log n bits

* With port numbers: O(log A) bits

* Let us create port numbers!

D,-PVP for s — t Reachability

e |dea: A 2-hop coloring needs < A%+1 colors
— Encoding each color: O(log A) bits

e 2-hop coloring can be checked locally
— All colors in the 1-hop neighborhood different?

* Thus, we can point “back and forth” along edges, by
emulating port numbers with O(log A) bits

O—-O-0—@—-0O—0

Conclusion

* Summary
— All three models of communication differ

— Our lower bound examples have constant degree
* Can drop the 1 round restriction and go local

— Directed s — t reachability:
* One-Way: Proof size of @(logn) bits, f(A) bits don’t suffice
* Two-Way: Emulating port numbers -> O(log A) bits proof size

* Open Questions

— What happens in biologically inspired systems?
e E.g., no multisets but sets & finite automata verifier?

— What is the correct answer to D, s — t reachability?
— Can similar techniques be deployed in production networks?

Thank you

S a o
R 3

Klaus-Tycho Forster, Thomas Liidi, Jochen Seidel, Roger Wattenhofer
January 06, 2016 @ ICDCN 2016 - Singapore

ETH Zurich — Distributed Computing — www.disco.ethz.ch

