Fast and Robust GPS Fix Using One Millisecond of Data

Pascal Bissig, <u>Manuel Eichelberger</u>, Roger Wattenhofer IPSN 2017 – Pittsburgh

Problem I

1 day with GPS: 6 hours

Problem I

GPS on one slide

Why are people still doing research on this topic?

$$\|\mathbf{p}_{r} - \mathbf{p}_{s,i}\|_{2} + \Delta t \cdot c = (t_{r,i} - t_{t,i}) \cdot c$$

GPS signals

Correlation

Timing & Decoding

- 50 bps
- Time stamp sent every 6 seconds

Sub-ms time sync

- We already have some time information
- $t_{transmit} = k * 1 ms$

Coarse-Time Navigation (CTN)

Known approximate position → whole ms time sync

Challenge II

Sum over satellites

Signals from all satellites ble, not only over time have to be aligned!

Increased SNR

Hypotheses

- Receiver state (x,y,z,t)
- Satellite ranges known → signal alignment known

Infinitely many hypotheses?

- M
- Number of search space

thes proportional to size of

Discretization of search space: 1D

Discrete samples → discrete positioning resolution

Discretization of search space: 2D

Off-by-one error

- Oversampling: triangular peak
- 8 Msps \rightarrow ~1/8 lower \rightarrow 0.6 dB
- Loss incurred only for some satellites

Challenge III

- 4D search
- Time offset → Satellite position error
- 10 km * 10 km * 1 km * 1 min, 8 Msps
 - → 2.8 billion hypotheses

Exhaustive search

- Possible, but slow
- ~ 20 k evaluations / s
- Parallelizable

Branch and bound

- Explore promising regions first
- Discard "bad" regions
- Runtime: a few seconds (single thread, good SNR)

Related Work

- Liu et al. "Energy Efficient GPS Sensing with Cloud Offloading" (SenSys'12, Best Paper)
 - CTN, suffer from noise
- Collective Detection
 - Various papers: 1) slow or 2) not optimal
 - Closas et al. "Maximum likelihood estimation of position in GNSS" (IEEE Signal Processing Letters, 2007)
 - Mathematical analysis of the superior robustness of "direct positioning"

Accuracy: 3D vs. 2D

Our method

Liu et al. (2D, 2ms)

Accuracy: Average of k fixes

Tracking

- Branch-and-bound for initial fix
- First fix results in small search space
- Brute force subsequently

Sneak peek

- 23 x 19 mm
- Snapshot energy: 25 ms @ 100 mA = 2.5 mAs
- 140 mAh coin cell
- Energy for 3360 fixes

Fast and Robust GPS Fix Using One Millisecond of Data

