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Abstract—The Internet has developed into the primary
means of communication, while ensuring availability and sta-
bility is becoming an increasingly challenging task. Traffic
monitoring enables network operators to comprehend the
composition of traffic flowing through individual corporate
and private networks, making it essential for planning, re-
porting and debugging purposes. Classical packet capture and
aggregation concepts (e.g. NetFlow) typically rely on centralized
collection of traffic metadata. With the proliferation of network
enabled devices and the resulting increase in data volume,
such approaches suffer from scalability issues, often prohibiting
the transfer of raw metadata as such. This paper describes
a decentralized approach, eliminating the need for a central
collector and storing local views of network traffic patterns
on the respective devices performing the capture. In order to
allow for the analysis of captured data, queries formulated
by analysts are distributed across all devices. Processing
takes place in a parallelized fashion on the respective local
data. Consequently, instead of continually transferring raw
metadata, significantly smaller aggregate results are sent to
a central location which are then combined into the requested
final result. The proposed system describes a lightweight and
scalable monitoring solution, enabling the efficient use of
available system resources on the distributed devices, hence
allowing for high performance, real-time traffic analysis on
a global scale. The solution was implemented and deployed
globally on hosts managed and maintained by a large managed
network security services provider.
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I. INTRODUCTION

Network monitoring is an important tool that allows a net-
work operator to have a better understanding of its network
infrastructure. Monitoring enables problem diagnosis, capac-
ity planning and attack analysis, by allowing transparent and
efficient access to the abundance of information produced in
the network. A network operator can query the server, or the
server can actively raise an alarm if a potential anomaly is
detected. As such the operator can detect early if, e.g., a
switch is down or slow (failure detection), routing should
be improved by means of traffic engineering (efficiency),
or whether there is an ongoing distributed denial of service
attack (security).

Even in a relatively small network it is not feasible to
send all the traffic information to the server. Traditionally,
network analysis tools make use of network probes exporting
traffic information, using, e.g., the NetFlow standard. In

a typical NetFlow infrastructure packets routed through a
monitor located in the network are analyzed and combined
into sets of packets that share the same attributes, called
flows, and transferred to a central collector for later inspec-
tion.

Nevertheless, if a network is large enough, even aggre-
gated flow information produced by NetFlow systems poses
a scalability problem. In this paper we propose a new
architecture called goProbe that gives real-time access to
the collected information while scaling with the number of
monitored networks. In goProbe, the data is stored locally
at the probing nodes, and the central server is requesting
the network data whenever needed. We show that goProbe
scales well, even to global networks with thousands of
nodes. Since aggregated flow information is only transmitted
when needed, we can generally save considerable network
bandwidth. This eliminates the passive background traffic
that would be needed to ship flow information to a central
collector. In addition, flow information is not lost should
the connectivity to the operator be interrupted at any time,
restoring forensic analysis capabilities once the connectivity
has been re-established.

On the other hand, data analysis queries are distributed to
the network routers on which the relevant data is retrieved
from the respective local databases. Significantly smaller
aggregated results are returned to the query coordinator
which collects the aggregated results and performs post
processing operations.

The system was fully implemented, including a network
probe that captures individual packages from the monitored
interfaces and collates them into flows, a columnar database
for simple and fast storage of flow information, as well as
a comprehensive querying system that makes use of a Map-
Reduce like framework to distribute queries to hosts holding
relevant information. The proposed system was deployed in
the network of a large managed network security services
provider. The evaluation shows that goProbe outperforms
classical, centralized monitoring solutions with respect to
scalability and generated traffic.

II. COLLECTION OF NETWORK TRAFFIC INFORMATION

In this section we give an overview on how network traffic
information is captured and analyzed in classical monitoring



solutions and introduce our specific scenario, which lead to
the design of goProbe.

The first step for any monitoring solution is to gain access
to raw packets sent and received by a single host. This
is achieved through a packet capture process attached to
one or more network interfaces which records the packets
flowing in and out of it. The hosts under discussion are
usually installed in central locations of corporate networks
as well as branch offices and thus typically experience traffic
far beyond the amount of commodity end user devices.
These hosts are firewalls, secured gateways or proxies,
which process thousands of packets per seconds. To analyze
traffic on a per-packet level would be infeasible due to
the amount of routed data. A first aggregation is to only
consider metadata of the communication between endpoints,
ignoring the payload. This significantly reduces the amount
of information that needs to be stored, yet allows for
complex analysis. It also implies that packets need to be
classified based on a set of attributes such that traffic patterns
can be established. An existing standard which sets out to
achieve this is the NetFlow standard [1]. With NetFlow the
packets are grouped into flows based on attributes they share,
which, in the case of a network flow, comprise the following:
network interface, source and destination IP address, IP
protocol, source and destination port (if available) and type
of service. Each flow maintains counters which track the
data volume and the amount of packets being recorded. In
addition, flows are assigned a lifetime which will mark the
flow as expired once it is exceeded.

In order to track traffic information over longer periods of
time, NetFlow data needs to be archived and made available
for later analysis. Companies implementing NetFlow usually
follow an exporter-collector model. Once a flow expires,
either by timing out or being closed explicitly, it is exported
by sending it to a central location, the NetFlow collector,
which stores all received flow records in a central database.
The situation is outlined in Figure 1.

Operators of the networks query the collector for infor-
mation to analyze the flow records received by it. This
enables analysts to formulate high-level queries regarding
the most active endpoints or most abundant applications on
the network in terms of traffic volume or packet rates. These
queries are processed by the collector, returning the desired
result and providing a clear picture about the network traffic
composition based on its key features.

The export of NetFlow records generates additional traffic
on the network paths between exporter and collector. For
networks in which sufficient bandwidth is available and
in networks that are geographically proximal this may not
present any issues. However, if NetFlow exporter and col-
lector are situated at two entirely different locations across
the customer WAN and are possibly connected over lossy
links, NetFlow records may be lost. Moreover, additional
network traffic can impose additional costs on links which
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Figure 1. General scheme for NetFlow exporting and collection. The
exporters are placed in their respective networks and capture traffic and
aggregate it in NetFlow records. The records are exported to a central
collector possibly placed in a different network. The grey arrows indicate
the path of the NetFlow records. The collector receives these records and
stores them in a storage back end.

are provisioned by traffic volume rather than by bandwidth,
e.g., when using satellite links in remote locations.

Centralized flow and cross-customer collection becomes
infeasible as thousands of hosts spread around the globe
are monitored. Most of the networks in which the hosts are
deployed are owned by the companies which make use of the
provided hardware. Consequently a part of the customer’s
bandwidth would be used for NetFlow exports in a classic
scenario. Furthermore, the handling of export traffic from a
large number of hosts would require substantial bandwidth
and accumulate large amounts of traffic on the collector side.
This requires the availability of a redundant high-bandwidth
link to allow for stable NetFlow collection, which does not
scale well with the number of monitored networks.

Open Systems AG provides managed network security
services to a wide variety of companies, ranging from small
startups to globally operating companies and NGOs. In this
context, the capability to monitor customer networks for
debugging, provisioning and threat analysis & mitigation is
central to operations.

Due to the large number of networks which are managed
the monitoring solution needs to scale with the number
of deployed service locations. In addition the monitored
networks are owned by the customers making it prohibitive
to send and receive large amounts of data, as this would
effectively be consuming customer bandwidth. This is com-
pounded by the fact that some customers are connected over
expensive satellite links or over lossy links, resulting in
additional costs to the customer or flow information being
lost in transit to a central collector.

The solution we propose is to decentralize the flow
collection and provide local views of the data. This entails
flow capturing and storage be performed on the same device,
alleviating the need for export and collection functionality.
Since flow data only has to be accessed in order to satisfy
an analytic query, only then should it leave the boundaries
of its network – condensed, in the form of an aggregate end
result.

goProbe enables high-performance retrieval and analysis
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Figure 2. An overview of the architecture including goProbe for the capture, the local goDB database, the local goQuery instance and the global goQuery
aggregator.

of the data while keeping the impact on system resources
minimal. Reliable traffic capture is guaranteed without inter-
ference with other operationally critical services running on
the device and an acceptable memory footprint is maintained
by only reserving memory for processing and storage of the
essential attributes used for the flow logic.

To enable a real time analysis of the recorded flow data,
database queries are executed quickly and efficiently. The
database stores data in a way that facilitates efficient load-
ing of data. Furthermore, the database features concurrent
and independent processing of data in order to accelerate
query execution by fully utilizing the available computing
resources.

The database may not grow indefinitely as disk space is
limited on the hosts. As a remedy, information lifecycle
management is necessary, which results in the retention
of the last d days of data and the deletion of outdated
entries. Data compression is employed to further reduce the
database size on disk. Additionally compression can be used
to alleviate disk I/O limitations when data is loaded into
memory. If less data is loaded from disk it can be processed
in memory sooner and faster query execution times can be
achieved [2].

III. SYSTEM DESIGN

In order to address the described scenario, a comprehen-
sive data capturing and processing system for flow data was
implemented. The solution enables real time queries against
captured data, yet is lightweight enough to run alongside op-
erationally critical services. The system comprises a number
of specialized components:
• goProbe, performing capture of packets, collation into

flows and storage management on local disk;

• goDB, a columnar database library that manages flow
data on disk;

• goQuery, allowing for Map-Reduce-like query process-
ing of queries against the data on the hosts;

These components run on the network device that is being
monitored, keeping information local and responding to
incoming queries from the central coordinator. Both goProbe
and goQuery are not CPU bound, with goProbe polling
for incoming packets and goQuery loading the necessary
information from disk. In order to exploit the blocking nature
of these tasks the system was implemented in go, which
supports cooperative routines, called goroutines, that actively
yield control of the processor to other goroutines upon
blocking operations. Furthermore, goroutines are lighter than
OS level threads and allow greater control over the impact
the tool has on operationally critical applications by limiting
memory consumption and restricting of capture operations
to a single processor core.

A. goProbe

The goProbe tool is used for capturing packets, extraction
of packet attributes and to perform maintenance of the
processed information in a flow table. It relies mainly on
the information obtained from the packet headers, effec-
tively reducing the amount of data that has to be captured.
Furthermore, packets are immediately discarded after the
relevant information has been extracted. The primary design
goal of goProbe was to store only the absolute minimum
amount of information necessary to maintain flow records
and consequently reduce the flow tracking complexity. This
was achieved by implementing a simplified flow format.

goProbe runs as a single process being capable of han-



dling the capture of packets on multiple interfaces. The
design features a lightweight deep packet inspection (DPI)
engine called libprotoident [3], which only requires
minimal payload information to correctly infer the applica-
tion layer protocol in a large number of cases.

In the text, the following variables will be used to describe
attributes of a packet: Is for the source IP address, Id for
the destination IP address, Ps for the source port, Pd for
the destination port, PI for the IP protocol and L7 for the
application layer protocol.

Packet capture on an interface is performed using
libpcap [4], a library which provides a C API interface
to raw packets captured from the network hardware by the
underlying operating system. The libpcap library supports
packet filtering on kernel level. A widely used filter is the
Berkeley Packet Filter (BPF) [5]. For the given use case,
the following filter was used in order to exclude address
resolution (ARP) and monitoring traffic (ICMP, ICMP6):

not arp and not icmp and not icmp6

Both of these protocols are frequently observed in a
network and can create large amounts of small and hence
inefficient flows conveying only small amounts of actual in-
formation with little analytical value. Hence, these protocols
were chosen to be ignored.

The kernel has the ability to directly truncate captured
packets, which means that only the first few bytes are made
available via libpcap. This parameter is called snaplength
and is useful when mostly the headers of a packet are
examined, as is the case with goProbe. A smaller snaplength
implies that more packets can be held in the kernel packet
buffer and thus, a higher packet rate is possible before pack-
ets have to be dropped by the kernel. Consequently, more
packets can be processed by libpcap. The snaplength is
set to 90 bytes in order to ensure that the packet headers
are completely captured as well as parts of the payload are
available for deep packet inspection.

In addition to the packet data, libpcap stores meta
information about each packet, such as a capture timestamp,
the amount of bytes captured and the length of the original
packet. The Linux kernel uses a flag specifying the direction
in which a packet traverses the network interface. Although
libpcap in its current implementation uses this flag to
filter inbound or outbound traffic, it does not expose it via
the API. Identification of the packet direction is crucial for
the identification of global traffic flow patterns throughout
the network. In order to make the flag available to goProbe,
libpcap was patched and the data structure storing the
capture meta information extended by a corresponding field,
set if an observed packet was inbound w.r.t. the network
interface. The benefit of identifying the packet direction
at capture time is that no additional correlation with the
network topology is needed in later stages of an analysis.

A capture routine in goProbe is attached to a single

interface. As an extension to this concept, multiple capture
routines are run concurrently. This is achieved by execution
of the respective code in a goroutine for each interface
taken into account. Each of the capture routines stores a local
flow table which holds all flows for the respective interface.

A flow is defined through packet attributes, packet coun-
ters, data volume counters and the application layer protocol.
The packet and data volume counters describe the total
amount of packets that were observed in the flow and
the cumulative traffic volume of these packets, respectively.
Four counters exist in total, covering the number of packets
received and sent as well as the traffic volume for both di-
rections. The counters are incremented independently based
on the direction flag set for the respective packet.

For a packet pti captured at time ti, the attributes uniquely
identifying origin and destination of the packet can be
summarized in a 5-tuple [6]:

hp
ti = (Is, Id, Ps, Pd, PI)

If no corresponding flow for pti is found in the flow table, a
new entry fti is allocated and initialized with the respective
metadata, identified by its attribute tuple:

hf
ti ← hp

ti .

A packet ptj captured at time tj > ti matches flow fti if
and only if hp

tj = hf
ti . In that case, the counters for flow fti

are updated depending on the value of the inbound flag.
To incorporate return packets into a flow an additional

check is necessary. For a return packet ptj , the source and
destination attributes from the initial packet pti are reversed,
implying that hp

ti 6= hp
tj . Consequently, a reverse tuple r was

introduced, which was computed for every packet and for
which source and destination attributes were exchanged. For
a given packet ptj both hp

tj and rptj were validated against the
flows in the flow table. The matching condition can thus be
formulated as follows: a packet ptj captured at time tj > ti
matches flow fti if and only if the following holds:

(hp
tj = hf

ti) ∨ (rptj = hf
ti).

The goProbe flow table was implemented using a map
data structure. The attribute tuple of the flow was used as
map key, while the counters, the application layer protocol
and the direction flag designated the map value. go makes
use of Advanced Encryption Standard (AES) [7] native
instructions to hash all keys in a map, making lookups in
the flow map highly efficient due to the hardware-accelerated
implementation of AES instructions in most modern CPUs.

When packets from an ongoing connection between two
endpoints are captured, it is not clear by which endpoint
it was initiated since source and destination attributes in a
packet are always set relative to the sending endpoint. By
setting source and destination attributes in a flow relative
to the endpoint which initiated the conversation correct
identification of the origin of the packets was made possible.



Many network applications implement a client-server
model where one endpoint requests information, while the
other one provides it in the form of a response. The endpoint
which provides information usually listens for incoming
connections on a designated port. Often the application uses
ports from the range 1 to 1023 [8], which are system ports
used for well-known types of network services such as SSH
or HTTPS. If a packet with such a low destination port is
captured, a well-known network service is assumed to be
addressed and the source IP of the packet coincides with
the initiator of the conversation. In that case, the source port
will mostly be chosen from the range of dynamic ports, i.e.,
those above 49152 [6].

A heuristic procedure was implemented in goProbe in
order to establish whether a packet is a return packet or
was sent by the initiator of the conversation between the
two respective endpoints. The latter is chosen as the packet
direction if any of the following conditions are met:
• (PI ∈ {TCP,UDP}) ∧ (Pd < 1024) ∧ (Ps > 20000)
• (Id = 224.0.{0, 1}.x) ∨ (Id = 255.255.255.255),

where 0 <= x < 256. If the IP protocol is neither UDP nor
TCP, a port based packet heuristic is not possible. The bound
for the dynamic source port range was lowered to 20000
as source ports below 49152 were observed frequently in
the use case environment. The second condition addresses
situations where a broadcast or multicast IP address was
the recipient of a packet. As these addresses are used to
describe a set of hosts, the source IPs in the reply packets
will originate from individual hosts instead of a multicast
address, and will be tracked in separate flows. The direction
of these packets was stored by goProbe in a corresponding
flag, which was set to zero in the above case. The packet is
tagged as a return packet if the following applies:
• (PI ∈ {TCP,UDP}) ∧ (Ps < 1024) ∧ (Pd > 20000)

In this case the described flag is set to one to indicate that
the packet originated from the recipient of the initial packet.

The direction of a flow was set according to the packet
flags and designated as unknown per default. The direction
heuristic was run on every packet until it was possible to
establish from which end the communication was initiated.
This information was stored and if the flag was set to one,
the flow attributes specifying source and destination were
reversed upon writeout of the flow, reflecting the reversed
flow direction.

In addition to the packet headers from which most at-
tributes were extracted, the packet payload was used to
identify the OSI model application layer protocol. In contrast
to other engines which require the inspection of the entire
packet payload, libprotoident only uses the first four
bytes of the payload and uses heuristics which correlate
the partial payload with information about the port, IP and
payload length. Consequently, the attribute tuple which is
established by the capture routine can be passed directly to

the library along with four bytes of the payload.
For each supported protocol, libprotoident con-

tains a module defining specific validation rules and byte
pattern against which the payload is checked. If a module
does not return a positive match the next module is checked
until a match is found or no further modules remain. The
modules are prioritized depending on the prevalence of the
application described by it.

In libprotoident application layer protocol detection
is always performed on bidirectional flows which explicitly
distinguish between request packets that were sent by one
endpoint and response packets sent by the other endpoint.
In order to satisfy the bidirectional flow structure, a sliding
window approach was implemented in goProbe. If a packet
was added to an already existing flow, the attributes, payload
lengths and payload bytes from the two most recent packets
were passed to the engine. If a new flow was created by a
packet, the response payload bytes and payload length were
not set. Matching was performed until an application layer
protocol was identified by libprotoident, otherwise the
flow application protocol was classified as unknown.

Several conversations between two identical endpoints
may involve different application layer protocols but occur
on the same destination port (e.g. protocol multiplexing).
The source port, however, is unique for each conversation
and can be used to distinguish different protocols in different
flows. If two flows describe different application content, the
source port is necessary to quantify this difference since the
application layer protocol is not part of a flow’s attribute
tuple.

Prior to writing flows to the database, the source port
information is discarded, while for the aggregation of flows
the application layer information is taken into account.
Flows sharing all attributes and application layer information
but the source port are merged into a single flow. The
aggregation is performed in memory.

Aggregated flows are written out to disk in regular
intervals. A timer structure sends a write signal to the
interface capture routines every five minutes. The capture
routines respond to the signal by aggregating flows in the
respective flow tables. Each flow field is stored in an array,
following a columnar structure. The attributes, flow counters
and application layer information thus produce nine arrays
in total and each store a block of flow data corresponding
to a time frame of five minutes. The prepared block is
tagged with a timestamp tw and the interface from which
the data originated is specified. The timestamp is defined as
the time of data write out, implying that the data block holds
flow data acquired during the interval [tw − 300s, tw]. The
prepared block is passed on to a database writer, appending
the individual arrays to separate binary column files. Once a
flow table is written out to disk a new, empty table is created
which is filled over the next 5 minutes.



B. goDB
The goDB database backend provides a lightweight

database with a custom query format and data storage model
tailored to the acquired flow data with respect to storage and
data access.

It can be shown that columnar databases are suited for sce-
narios in which data is written often and queried rarely [9].
Additionally, a file based database exhibits a well-arranged
storage concept for the kind of data under consideration and
a generally simpler process model. goDB does not provide
a complex, continuously running service and is only run
upon query execution, within a single process. Furthermore,
data is stored in binary format in columnar files, where
one file is created per flow field per day. This way of
data partitioning is useful in query scenarios that span time
intervals, based on which folders can be excluded that only
store data created outside of this interval. Furthermore, data
lifecycle management is simplified, since the least recent
day can be discarded on file system level by removing the
corresponding folder, incurring close to zero overhead.

Within the columnar files maintained by goDB, data is
partitioned into compressed blocks. A block-wise partition-
ing of data is advantageous with respect to both preselection
and parallel processing. Since only a subset of all blocks
has to be loaded into memory simultaneously, the memory
footprint of the query process is greatly reduced. goDB
allows for an arbitrary number of entries to be stored within a
block to accommodate flow tables of different size acquired
during the respective time intervals.

Concurrent processing of data is imperative to reducing
query runtime and provides the fundamental building block
of goDB for both data writing and processing during queries.
The database solution introduces worker and merge modules
for query workload distribution in a Map-Reduce like frame-
work, where blocks are processed in parallel and partial
results are read by a central merge routine, producing a
consolidated result and performing sort and limit operations.

Flow data accumulated within a five minute time interval
is passed to goDB in the form of column arrays. Each of
these arrays is appended to a designated file corresponding
to the respective flow field. Timestamp information is used to
locate the folder holding the files into which the data has to
be written. All column blocks were concurrently compressed
and written to the respective files. Compression is applied on
block level, i.e. every column array is passed to a compressor
routine returning the compressed data in the form of a byte
array. The compressed binary data is then appended to the
columnar file for the respective flow field. The compression
algorithm in use is LZ4 [10] which employs dictionary based
encoding. One of the advantages of LZ4 is that very fast
compression and in particular decompression speed can be
achieved while maintaining a high compression ratio.

The goProbe file (gpf) format: To enable access to
specific blocks inside a flow field file decompressor routines

64
bi

t

Compressed
Block i

ai−1 aiti ai li

Figure 3. Structure of the gpf file. The i-th block is written at position
ai−1+1, which is retrieved prior to writing. Upon completion of the write
operation, the block information is inserted at the corresponding positions
in the header.

need information about which part of the file to decompress.
Thus, each gpf file contains a file header describing the
consecutive stored data. This header is divided into three
parts:
• Identification: provide information whether the block

written at time tw is present in the file
• Localization: provide the locations within the file at

which data from block tw starts and ends
• Description: provide the length of the uncompressed

block for efficient decompression
Within one day, 288 five minute blocks are written to the

database files. The header sections reserve 512 slots for their
description, where the remaining 224 slots are reserved in
case additional data writes are triggered in goProbe. The
block identifier t is a 64 bit unsigned integer in which
the timestamp of the written block is stored. The block
localizer a is a 64 bit address which stores the location of
the last byte of the written block. The following block is
then inserted one byte after its preceding block localizer.
The block descriptor l stores the size of the uncompressed
block in a 64 bit unsigned integer. This variable 3-tuple is
computed after every block write and only stored in the
header if writing is successful. Incompletely written data
would thus be overwritten during the next write process.

Consider the i-th block of length li which is prepared for
write out at time ti. Figure 3 illustrates how information is
written to the file and how the header is updated.

It is noteworthy that writing can be executed in paral-
lel since the different flow fields, i.e., the columns, are
written independently to their respective gpf files. Correct
alignment of the blocks can be verified by examining the
timestamp values for all flow fields and checking whether
all header fields match at a given position i.

C. goQuery

The command line tool goQuery enables real-time queries
against the data collected by goProbe on each individual
host. Queries are processed in a two step Map-Reduce like
framework. goQuery consists of two components: a global
coordinator distributing queries on remote hosts and a local
processor running on the capture hosts processing queries
based on the local data.

Upon receiving a query from a user, it is analyzed by the
global coordinator, identifying the relevant target hosts for



the query, i.e. all hosts which store information relevant for
the query. The actual query parameters are then distributed
to the individual hosts using the Balu [11] message routing
system.

The goQuery processor on the capture host receives the
query from the global coordinator and starts a first Map-
Reduce step. Similarly to writing, data read operations are
performed in a block wise fashion. The local query manager
analyzes the incoming query and identifies the timespan and
set of fields that are necessary. It then locates the blocks
that are to be read by inspecting the headers of the gpf
files. Should the timestamp of a given block coincide with
the query time span then its location and its uncompressed
length is added to a block loading plan, grouping blocks by
gpf file. Each group results in a new worker goroutine being
instantiated to load and process the data from disk, reducing
the number of long seeks and maximizes disk throughput by
transferring this task to the I/O scheduler of the operating
system. Since for each block the uncompressed length is
known the byte array in which the decompressed information
will be stored can be pre-allocated without the need for
dynamic resizing.

After loading the required fields from disk, the map step
is performed by filtering flows based on their attributes,
projecting flows according to the query and merging flows
that are projected on the same result. The block result table is
filled in analogy to the flow table in goProbe. An in-memory
map is created in which the projection of the fields is used
as a key and the aggregation results are used as values.

Once a block result table has been computed it is sent to
a local merger routine, which then performs the first reduce
step by collecting all block result tables from the workers
and by computing the local result table. An in-memory local
result table is allocated and for each block result a lookup
in the local result table is performed. Should the local result
entry not exist it is initialized, otherwise the result is added
to the result for aggregation. Finally, the local result table
is streamed to the global coordinator as JSON container
making use of Balu.

A second Map-Reduce step is performed by the global
coordinator routines. Incoming local results are received
from the local processors and final filtering, aggregation,
sorting and cropping of the results is performed before
returning the result to the user issuing the original query.

A schematic outline of the entire system can be found in
Figure 2.

IV. EVALUATION

The proposed system was implemented and deployed
on the infrastructure of a large managed network security
service provider, which services customers ranging from
small startups to global companies and NGOs. One cus-
tomer network was chosen for the evaluation of goProbe.
The customer’s infrastructure comprises 290 routers in a

variety of networks, each running the goProbe software. The
collected data covers the internal network interface servicing
the corporate network on each of the routers.

During the measurement period of a week the routers
transferred a total of 99.5 TB. goProbe collated the individ-
ual packets into flows and stored the metadata of the flows,
resulting in a goDB database with a cumulative size of 5.2
GB. A single database thus requires a mere 18.4 MB per
router on average. If a centralized collector had been used
this data would have to be transferred over the customer’s
network, adding to potential congestion. With goProbe no
traffic is produced until the information needs to be accessed.

Notice that above comprises data of a single interface on
each router. A typical router has between 4 and 300 inter-
faces which would also be monitored, resulting in propor-
tionally larger datasets. Furthermore, the 5.2 GB constitute
the compressed size of the flow metadata, while the network
traffic resulting from a exporter-collector infrastructure is far
higher. In total, goProbe runs on 3164 globally dispersed
routers. Considering only the outgoing interface of these
routers, it records and stores metadata of 4.4 PB of raw
traffic over a period of 90 days, resulting in a cumulative
database size across all routers of only 340.0 GB.

In order to gauge the gains in scalability the system was
assessed by comparing a decentralized analysis of the data
with a centralized analysis. To perform this test the flow data
collected during the measurement period was transferred
from the respective hosts to a central location in which
it was merged into a single goDB database. To compare
the performance gains achieved by distributing the query
processing over a large number of devices with respect
to the centralized collector, a single query was executed
multiple times in both scenarios. The used query covered
the aggregation of all unique (Is, Id, Pd, PI) tuples, thereby
representing a processing intensive query, since the majority
of database columns are involved in it, maximizing the
amount of data to be read from disk.

In the decentralized scenario the query was distributed to
the individual hosts which then calculated the partial results
which were merged upon receipt at the central location. In
the centralized scenario, the query was executed directly
against the central database without performing any network
operations.

The hosts on which distributed queries were run featured
commodity hardware, whereas the central database host fea-
tured more specialized hardware w.r.t. to processing capacity
and available memory. The test host was equipped with eight
cores and queries were executed in parallel making use of
all cores. All of the used devices used a conventional hard
disk drive (HDD) for data storage.

The primary metrics recorded were the overall execution
time of the query and the amount of data that was necessary
to transfer from the hosts in order to obtain the final result.
In the centralized solution, the query was run a total of five
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Figure 4. Cumulative density function of sub-result arrivals over time.
The number of arriving results per unit of time is aggregated in bins of
0.5 seconds and shown on the right axis. The separator line indicates how
many hosts were reachable.

times, yielding a mean recorded execution time of

(159.3± 4.7) s

The response time distribution of the query sub-results in
the distributed case is shown in Figure 4. In this case, the
overall query runtime incorporates the query execution time
on the individual hosts, the round trip times for the messages
sent with Balu and the final merge step. Out of 290 hosts,
284 were reachable at the time of querying and returned
their results in under 30 seconds. It can be seen that over
95% of the sub-results were received and processed within
6.5 seconds.

In contrast to the centralized case, the cumulative amount
of data transferred from the hosts involved in the distributed
query case amounted to only 294.9 kB of compressed JSON
data, which constitutes just over 1 kB transferred per host on
average. Depending on query type and frequency of queries
being issued, goProbe achieves several orders of magnitude
lower bandwidth consumption to arrive at the same result.

To gauge the system footprint of goProbe we compared
it with nProbe, another popular monitoring solution imple-
menting NetFlow. The system footprint is important since,
unlike the classical NetFlow probe which taps into routers
from a dedicated system, goProbe runs on the networking
infrastructure itself. nProbe and goProbe were run on a test
system, while identical test traffic was generated using a
traffic generator. Figure 5 visualizes the memory reserved
by the probes over time. Due to the simplified flow model
and expiration logic, goProbe needs to reserve far less
memory. Furthermore, its memory consumption is stable
over time, which simplifies provisioning. The regular spikes
in memory consumption are due to aggregation and to disk
write operations.

In order to evaluate the performance of the proposed
database solution, a direct comparison with a different,
widely used columnar database solution was performed.
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Figure 5. Comparison of the memory usage of goProbe and nProbe
over time. The regular spikes in goProbe’s usage show the database write
operations every five minutes in which additional memory is required for
source port aggregation.

As benchmark FastBit [12] was chosen for its similarity
and consequently its comparability to goDB. The Fast-
Bit database management system (DBMS) is a file based,
columnar data store, primarily developed to support data
warehousing scenarios in which bulks of scientific data have
to be consolidated and evaluated. The database also consists
of several files where one file is used per database attribute.
Column data is stored in a binary format in an append-only
fashion, without the support for compression techniques. The
FastBit database was divided into daily partitions to enable
a direct comparison between the database implementations.

The core criteria of the database evaluation were the
runtime of a query, the memory footprint of the involved
process(es), the utilization of the CPU and the hard disk I/O
performance during a typical aggregation query performed
on an identical set of 7.8 GB of raw data using both DMBS.
The tests were performed on a machine with 4 CPU cores
and a standard HDD.

The query runtime was recorded in wall-clock time,
which measured the total elapsed seconds that the involved
database processes needed to invoke the query, execute it
and produce the output data.

The memory footprint was obtained by measuring the
physical reserved memory by the database process(es). This
observable served as an indicator to how extensively the
tested DBMSs used the available memory.

The CPU usage was measured with regard to how much
of the available processing power the DBMS effectively
harnessed to execute a query. The user and system based
CPU utilization of the involved database process(es) were
accumulated and recorded as process CPU utilization. This
observable gave an indication of the efficiency of paral-
lel processing capabilities and the ability to process data
without prolonged wait periods due to disk I/O limiting the
availability of data. Notice that in order to limit interference
with operationally critical applications goProbe is limited
to using fewer CPUs than are available and with reduced
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Figure 6. Comparison of key metrics between goDB and FastBit DBMS.
Covered are query runtime, CPU and memory consumption, and disk I/O.
The maximum possible CPU usage was 400%. As can be seen, goDB
outperforms FastBit in each aspect.

scheduling priority.
Regarding I/O performance, the total number of bytes read

from and written to disk within the time frame of query
execution was measured in order to quantify disk read and
write efficiency and additionally served as indicator of the
data compression if supported by the respective database.

The results in each category for both goDB and FastBit
can be found in Figure 6, corroborating the fact that goDB
outperforms FastBit in each metric. Since the proposed
database solution loads attributes block-wise into memory,
processing can begin after the first block has been loaded,
while FastBit requires the full dataset to be loaded prior to
processing, which can be seen in the higher CPU utilization
for goProbe. This processing model also reduces the overall
memory consumption, since only blocks currently being pro-
cessed have to be kept in memory. In addition, compressed
data was accessed which accelerated the loading process
and decreased the the number of necessary I/O operations.
Lastly, goDB supports a parallel processing model making
use of goroutines, hence increasing the CPU usage at the
benefit of runtime significantly.

To demonstrate the capabilities of goProbe, we present
the results of a real world query from the productive system.
Figure 7 shows a breakdown of the ports and protocols used
on the internal and external interface of one of the routers
in production.

V. RELATED WORK

The NetFlow standard is discussed in [13]. In [14], Deri
proposes a software based NetFlow exporter, nProbe, which
can be deployed on other devices. Inacio and Trammell [15]
discuss the benefits of flow collection and exporting for
analytical purposes.

Enhancements of NetFlow by means of incorporating ap-
plication layer information are further covered by Danelutto
et al. [16]. Bujlow provides a broad overview of the tools
used for application layer detection and the challenges that
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Figure 7. IP Protocol/destination port distribution for one day for
the external network (top row) and internal network (bottom row). The
percentages are computed with respect to the total traffic volume observed
for the protocol.

come with it in [17]. Alcock [3] proposes an application
layer detection based on limited payload inspection.

Abadi et al. discuss the use of columnar databases for
data storage [9], showing large improvements over row-
based solutions. A file based column store for bulks of
scientific data is proposed by Wu et al. in [12]. Slezak
and Eastwood show state-of-the art query processing and
indexing strategies for a popular columnar database in [18].

Distributed sensor data collection has been extensively
researched in the past. Some of these efforts concentrate
on reducing the data size shipped to the central collector,
e.g., [19], [20], [21], but the analysis is still performed
on the collector, whereas goProbe enables a distributed
query model, utilizing data locality and otherwise unused
resources. Other systems, such as Star [22], Astrolabe [23]
and DIPStorage [24], enable distributed query processing,
but they focus on aggregating results on the return paths in
order to minimize aggregate bandwidth needs. However, due
to the nature of the networks managed by Open Systems
AG it is not advisable to perform on path aggregations:
forwarding an intermediate result to another device, over the
Internet, increases the consumed bandwith on that device,
and thus cost on some connections, e.g., satellite links.
Additionally, lossy or slow links on the return path would
cause a substantial part of the result being lost or delayed.
Finally, systems like NG-MON [25] split the monitoring
process into distinct parts that may be distributed, however
unlike our scenario their main concern is to distribute the
processing load, at the expense of high bandwidth.

In the context of data acquisition from the hosts main-



tained by Open System, Seebacher discusses a flexible
messaging infrastructure in [11]. In spirit goProbe is similar
to other Wide-Area Big-Data systems, e.g., [26] and [27],
however its ability to be deployed on existing hardware
running mission critical tasks and connected through high
latency links is unique.

VI. CONCLUSION

In this paper we presented a distributed network monitor-
ing architecture specifically designed to scale with the size
and number of networks being monitored. The increased
scalability with respect to classical monitoring solutions is
a result of various improvements: Traffic is captured and
stored directly on the respective devices throughout the
network, making use of tailored compression techniques
optimized for fast decompression. Analytic queries are dis-
tributed from a central coordinator to these devices for
processing. In a first Map-Reduce step data is processed in
a parallelized and selective fashion based on the parameters
required for the actual query. The consolidated results are
transmitted back to the central coordinator, where a second
Map-Reduce step is performed to obtain the global result.

Compared to a classical NetFlow approach the amount of
data archived and transferred during analysis is considerably
reduced. Temporary interruption of connectivity to the net-
work devices no longer results in the loss data due to the
localized storage model. In addition to increased scalability
of the data storage, a considerable query speedup was
achieved by making use of otherwise unused and already
present resources, resulting in true real-time queries.

The proposed system is fully operational and has been
integrated into the productive environment of Open Systems
AG.Both goProbe and goDB were designed to be standalone,
lightweight, yet versatile components, and runs on com-
modity hardware. The project has been open sourced and
released on GitHub1 for public use and further development.
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