Consensus on Demand

R e

Jakub Sliwinski, Yann Vonlanthen, Roger Wattenhofer

ETH Zurich - Distributed Computing Group

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshi mx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

Why do we need a blockchain?

D—>F

>l A— B

A—C

Why do we need a blockchain?

| A>B > > | E—F

A—C

Prevent Double-Spending

Why do we need a blockchain?

| A>B > > | E—F

Prevent Double-Spending

Why do we need a blockchain?

| A>B > > | E—F

Prevent Double-Spending

Total Order

Why do we need a blockchain?

| A>B > > | E—F

Prevent Double-Spending

Total Order = Consensus

Why do we need a blockchain?

| A>B > > | E—F

Prevent Double-Spending

Total Order = Consensus

Why do we need a blockchain?

~ ~ D=l N
== ' A—>C,/x] ==

Prevent Double-Spending

Total Order = Consensus

Online Payments
Without Consensus

Online Payments
Without Consensus

by

Saurabh Gupta

A Thesis Presented in Partial Fulfillment
of the Requirements for the Deg;
Master of ce

in,

g Model

g

-entralized Financial Transaction Processing Model
with Support for Efficient Auditing

by

wabh Gupta

/ 1esis Presented in Partial Fulfillment
of the Requirements for the D
Master of

Online Payments
Without Consensus

Jakub Sliwinski and Roger Wattenhofer

JTH Zurich
{jsliwinski,wattenhofer}@ethz.ch

3 one may wonds

We introduce ¢ block
ablishing c

sterministic
and does not rely
work.
Without establishing consensus, ABC cannot support certain applica-

Online Payments
Without Consensus

by

Saurabh Gupta

The Consensus Number of a Cryptocurrenc

Rachid Guerraoui
id guerraoui@epfl.ch

Petr Kuznetsov
petrkuznetsov@telecom-paristech.fr

Matteo Monti
matteo.monti@epfl.ch

EPFL LTCL, Télécom Paris, IP P: EPFL

Lausanne, Switzerland

Matej Pav

Lausanne, Switzerland

ABSTRACT

Many blockchain-based algorithms, such as Bitcoin, implement a

decentralized asset transfer system, often referred to as a cryptocur-

ated in the original paper by Nakamoto, at the heart of

e systems lies the problem of preventing double-spending; this

is usually solved by achieving consensus on the order of transfers

among the participants. By treating the asset transfer problem as a

concurrent object and determining its consensus number, we show
1t double-spendin

first consider the problem as defined by Nakamoto, where

only a single process—the account owner—can withdraw from each

that consensus is not necessary to prev

kub Sliw

Paris, France

witzerland

dragos-adrian.seredinschi@epfl.ch

Lausanne, Switzerland

KEYWORDS
distributed computing, distributed asset transfer, blockchain, con-
sensus

ACM Reference Format:

Rachid Guerraoui, Petr Kuznetsov. Matteo Monti, Matej Pavlovic, and Dragos-
s Number of a Cryptocurrency. In

aposium on Principles of Distributed Computing (PODC"19)
ugust 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3293611.3331589

‘The Consensu

1ski and Roger Wattenhof

ETH Zurich
{jsliwinski,wattenhofer}@ethz.ch

Abstract. There is a pr
But con

s permis
BC feature
work.

Without establishing consensus, ABC c

hain architecture
nsensus, and comes with an arr

nception that a bloc

nsus is a powerful distributed property with a remarkably high

price tag. So one may wonder whethe

We introduc

despite not establishing c

tages: ABC
nchrony

consensus is at all neede
alled ABC that functi

of ad

‘ministic, and resilient to complete
finality and does not rely on co

ly proof-of-

nnot support certain applic

asynchronous communication

byzantine failures

Confirmed = more than %4 signatures

What benefits do we have?

e Low latency
e Parallel execution -
Horizontal scaling

(@

(U

(L

(g

(e
® ®

(
NO-GCONSENSUS

What can we do with this system?

A specific type of
online payments!

- e6

F QQ'Q

| Any Turin_g complete
computation!

Only a specific type

/ of online payments!

- 0®

F QQ'C

| Any Turin.g complete
computation!

Only a specific type

/ of online payments!

- 0®

I l

\

F QQ‘Q

Any Turing complete
computation!

Only a specific type
of online payments!

/

- 0®

I l

Only done when
necessary!

onsensus on

Demand

Consensus on Demand

Jakub Sliwinski, Yann Vonlanthen, and Roger Wattenhofer

ETH Zurich, Switzerland

Abstract. Digital mon n be implemented efficiently by avoiding
consensus. However, no-consensus implementations have drawbacks
they cannot support smart contracts, and (even more fundamentally)
they cannot deal with conflicting transactions.

We present a novel protocol that combines the benefit

chronous, broadcast-based digital currency, with the capacity to perform
consensus. This is achieved by selectively performing consenst

teriori, i.e., only when absolutely necessary. Our on-demand cons
comes at the price of restricting the Byzantine participants to b

than a one-fifth minority in the system, which is the optimal threshold.
We formally prove the correctness of our system and present an open-
source implementation, which inherits many features from the Etherenm
ecosystem.

Keywords: Blockchain - Byzantine fault tolerance - Consensus - (
tocurrencies - Reliable broadcast.

Propose transaction
for which most acks
were observed.

— —

X

%
©
® ,

in fully asynchronous model:

Confirmed

more than % signatures

The Best of Both Worlds

Fast Path

e Low latency
e Parallelization

e + Lower message complexity
o No need for BRB!

)
)

(L
(L
(@
(L
(L

e Arbitrary Turing complete computation

Consensus

o Enables smart contracts

CQQ e

Why do we need n 2 5f + 17

Let's assume n = 5f

- - =) - =
®® ®» @

spes ¥
& & &b &b

— -) - s
M ® .

Slow path must agree ‘

with fast path!

PP
& & &

5

How can we guarantee agreement?

- - -) - e
®» e ®» @

Slow path ‘

Fast path

srpees ¥
& & & &b &b

A modular approach, different alternatives exist!

A modular approach, different alternatives exist!

In case of any conflict,
propose most observed
transaction after (n+3f)/2

observed acks.

A modular approach, different alternatives exist!

Propose own ack after
observing a confilict.

A modular approach, different alternatives exist!

No need to participate in
Consensus if fast path
succeeds.

@

Implementation ‘
Multishot

consensus

smart-contract
Rinkeby testnet

Ethereum
node
(Infura)

N
@Q
7/

H ethereum/ go-ethereum pubiic ®©watch 22k ~ ¥ Fork 154k v Y star 402k ~

<> Code (Issues 298 {9 Pullrequests 85 [Projects [0 Wiki @ Security 9 |~ Insights

$* master ~ ¥ 28 branches 208 tags Go to file Add file - About

Official Go implementation of the

” 4 authors all: implement EIP-1153 transient storage (#26003) ... @ bdea2bf 2 minutesago @ 13,794 commits Ethereum protocol
B github .github: add CL client to issue template (#25814) 2 months ago & geth.ethereum.org
BB accounts all: use github.com/deckarep/golang-set/v2 (generic set) (#26159) 2 days ago go | ethereum ' blockchain = ' p2p
geth
I build build: make ios work again (#26052) 20 days ago
B ond all: implement EIP-1153 transient storage (#26003) 2 minutes ago [Readme
-3.0, -3.0 licenses foun

&8 LGPL-3.0, GPL-3.0 li found

B common common/Iru: add generic LRU implementation (#26162) 2 days ago . .
ecurity poli

& Security policy
B consensus all: use github.com/deckarep/golang-set/v2 (generic set) (#26159) 2 days ago ¥ 40.2k stars
s console all: fix some typos (#25551) 3 months ago ® 2.2k watching

15.4k forks

B contracts/checkpointoracle contracs/checkpointoracle: fix directives (#24944) 6 months ago ¥
B core all: implement EIP-1153 transient storage (#26003) 2 minutes ago

Releases 165
s crypto crypto/bls12381: docs - fix broken links to references (#26095) 13 days ago

Paravin (v1.10.26) | Latest

B docs docs/postmortems: remove wrong parentheses (#26066) 15 days ago ©

13 days ago

P

[]
s] —»

New Block

Peerset

[

Unpack block into transactions

validAck

Y

OO O

*

<« < > > 2
<« <« ‘
Broadcast block
Blockchain
‘ A - A -
> >

SICEEE

New transaction

Dep)

User

unconfirmed transactions

O

validTransaction

O
O <€
O <
acked nonces 3 I:‘
> [
L]

> [

validToAck

Group and include in next block

Y

confirmed transactions

— e 0—

Apply to current State

.

&

Sign block (mining)

Y

> L 4
*

Broadcast block

rHTMWm 4 aoy

rﬁr&m& x4 aoy

\ 74 I \ mv.wm@ ﬁw
,gm@otwgm

l2 I/ rﬁd\mm

[91] Aypogg P

\Q N\ Nvﬂ.ﬁ.ﬂO.Mwa

[re]
@O&OQO&:O

\Nm.\ Wing
19]

v

v

Energy-efficient

Deterministic

finality

Permissionless

Leaderless

Asynchronous

Parallelizable

Consensus

We provide a wrapper that minimizes the
accesses to Consensus!

Thank you! Merci!

3 <
8o Q& ?‘.,

yvonlanthen@ethz.ch

ETH Zurich - Distributed Computing Group

