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Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.
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asynchronous communication

byzantine failures




Confirmed = more than %4 signatures










What benefits do we have?

e Low latency
e Parallel execution -
Horizontal scaling
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What can we do with this system?
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Abstract. Digital mon n be implemented efficiently by avoiding
consensus. However, no-consensus implementations have drawbacks
they cannot support smart contracts, and (even more fundamentally)
they cannot deal with conflicting transactions.

We present a novel protocol that combines the benefit

chronous, broadcast-based digital currency, with the capacity to perform
consensus. This is achieved by selectively performing consenst

teriori, i.e., only when absolutely necessary. Our on-demand cons
comes at the price of restricting the Byzantine participants to b

than a one-fifth minority in the system, which is the optimal threshold.
We formally prove the correctness of our system and present an open-
source implementation, which inherits many features from the Etherenm
ecosystem.

Keywords: Blockchain - Byzantine fault tolerance - Consensus - (
tocurrencies - Reliable broadcast.









Propose transaction
for which most acks
were observed.

— —

X

%
©
® ,
















in fully asynchronous model:

Confirmed

more than % signatures




The Best of Both Worlds

Fast Path

e Low latency
e Parallelization

e + Lower message complexity
o No need for BRB!
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e Arbitrary Turing complete computation

Consensus

o Enables smart contracts
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Let's assume n = 5f
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How can we guarantee agreement?
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A modular approach, different alternatives exist!
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In case of any conflict,
propose most observed
transaction after (n+3f)/2

observed acks.




A modular approach, different alternatives exist!

Propose own ack after
observing a confilict.




A modular approach, different alternatives exist!

No need to participate in
Consensus if fast path
succeeds.
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Asynchronous

Parallelizable
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We provide a wrapper that minimizes the
accesses to Consensus!



Thank you! Merci!
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