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Abstract—In this paper we study the problem of monaural
music source separation, where a piece of music is to be separated
into its main constituent sources. We propose a simple yet
effective deep neural network architecture based on a ResNet
autoencoder. We investigate several data augmentation and post-
processing methods to improve the separation results and outper-
form various state of the art monaural source separation methods
on the DSD100 and MUSDB18 datasets. Our results suggest that
in order to further push the state of the art in monaural music
source separation we need more data, better data augmentation
methods, as well as more effective post-processing methods; and
not necessarily ever more complex neural network architectures.

I. INTRODUCTION

Most people are familiar with the so-called cocktail party
problem, where a number of people are talking simultaneously,
but one only wants to follow a particular conversation. Such
a source separation is a classic problem for humans as well
as in digital signal processing: Given a mixture of signals, the
objective is to recover its original components. The human
ears record each source in stereo with a short time offset
(depending on the angle of the source), such that stereo source
separation is trivial for most humans [1].

Source separation becomes more difficult, for humans as
well as machines, if we only have a single input channel (a
monaural or monophonic signal, often just mono), since the
valuable spatial information is missing in the input. While
nowadays many audio recordings are in stereo, there are
still numerous exceptions. For example, most smartphones
and many digital cameras only have a mono microphone.
These undirected microphones are often of relatively low
quality and thus recording fidelity suffers, especially in noisy
environments. Monaural audio source separation can help here,
in that it separates the signal of interest from the remainder,
e.g., voice from noise. We focus on music source separation,
an important problem on its own with many applications such
as automatic music transcription, lyrics recognition and pitch
estimation.

Recently, data-driven methods (in particular deep neural net-
works) have outperformed classical methods in many domains,
including music source separation. One of the advantages of
deep learning is that salient features are automatically learned,
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alleviating the need for feature-engineering. In this paper we
exploit this end-to-end learning capability for monaural music
source separation. In particular, we aim to separate monaural
music into four sources: singing voice, bass, drums, and other
instruments. The caveat with deep learning methods is that
one is tempted to build complex network architectures, giving
rise to vague explanations of why some particular architecture
might work. But in essence, deep neural networks are general
function approximators, often requiring only little tuning in
terms of architecture hyper parameters. Along this line we
show that a simple architecture can improve upon the state
of the art in monaural music source separation. We further
provide insights into data augmentation and post processing
methods and introduce a new post processing method based
on energy thresholding. In order to facilitate future research
and promote reproducibility, we open source our code.1

II. RELATED WORK

Audio source separation is a fundamental problem in signal
processing and has been studied for well over 50 years.
Before the advent of deep learning methods some of the
most widely used techniques included non-negative matrix
factorization (NMF), independent component analysis (ICA)
or probabilistic latent component analysis (PLCA). Recently,
data-driven methods, in particular methods based on deep
learning, mostly outperformed non data-driven approaches.
This trend is exemplified by the latest Signal Separation
Evaluation Campaigns (SiSEC) [2], [3] where deep learning
based methods achieved significantly higher scores. The body
of existing work is extensive, and hence we focus only on
recent deep learning approaches. For a more comprehensive
overview we refer the interested reader to [4], [5].

Most deep learning approaches are based on supervised
learning, that is, they make use of labeled data. Supervised
methods can further be split into single-channel (monaural)
and multi-channel (usually stereo) methods. In this work we
focus on monaural source separation. One of the earliest
applications of deep learning to monaural source separation
was introduced in [6]. In this work, Huang et al. use feed-
forward and recurrent neural networks (RNNs) to output time-
frequency masks (TF masks) for each source, which are then

1https://github.com/sveinnpalsson/sourceseparation



applied to the spectrogram of the original mixture to perform
source separation. Using a TF mask to constrain the sum of
predicted sources to equal the original mixture is a technique
commonly used by model and learning based source separation
methods and we adapt this idea in some of our experiments.
In [7], they further improve their method and apply it to
additional tasks such as singing voice separation and speech
noise reduction. Miron et al. [8] combine TF masking with
convolutional neural networks (CNNs) to separate sources in
classical music. Chandna et al. [9] show the advantages of
using CNNs instead of multi-layer perceptrons (MLPs) in
an autoencoder based architecture, both in terms of resulting
signal quality and runtime. Mimilakis et al. [10] introduce an
approach based on RNNs that learns the parameters of the TF
mask computation, instead of specifying it as a deterministic
function, which helps reduce interference between sources.
Drossos et al. [11] additionally regularize the RNN to improve
the learning of long-term dependencies, and achieve state
of the art results in singing voice separation. While we
focus on separating not only voices but also the remaining
instruments, we nevertheless achieve better results on singing
voice separation. The state of the art in monaural music source
separation was introduced by Li et al. [12]. They proposed a
complex model that first uses an encoder based on CNNs and
RNNs to learn latent features, and then an MLP to perform
source decoupling in the latent space before using a CNN
decoder to reconstruct the separated sources. In contrast to
[12], we propose a simpler, ResNet [13] based, autoencoder
model that still achieves source separation in the latent space.
Our quantitative results are superior to [12]. In contrast to [12],
we also provide audio samples to show the limitations of our
method.

While we specifically target mono source separation, there is
a substantial amount of successful work in the stereo domain.
The current state of the art is achieved by a family of models
based on densely connected CNNs [14], [15]. Park et al. [16]
introduce a method based on stacked hourglass networks and
achieve results comparable to state of the art. Stoller et al. [17]
introduce an architecture based on U-Net [18] and show that
it is possible to directly work on raw audio waves without
performing an explicit fourier transform. Note that source
separation from a stereo signal is easier due to the spatial
information available. We therefore do not directly compare
against these methods.

III. DATASET AND PERFORMANCE METRICS

We evaluate our methods on the DSD100 [2] and
MUSDB18 [19] datasets. DSD100 contains 100 professionally
produced recordings with a pre-defined train/test split of
50/50. MUSDB18 is a superset of DSD100 with 50 additional
recordings and a train/test split of 100/50. Each recording
consists of 4 stereo source signals: vocals, drums, bass and
other. The other category contains a mixture of everything that
is not vocals, bass or drums. We convert the audio samples
to mono by averaging both input channels. To evaluate source
separation performance, the current best practice is to report

the signal-to-distortion ratio (SDR), signal-to-interference ratio
(SIR) and signal-to-artifact ratio (SAR), which can be calcu-
lated as follows (see [20] for details):

SDR = 10log10(||starget||2
/
||einterf + enoise + eartif ||2)

SIR = 10log10(||starget||2
/
||einterf ||2)

SAR = 10log10(||starget + einterf + enoise||2
/
||eartif ||2)

where starget = 〈ŝ, s〉s/||s||2. s and ŝ are the reference
and estimated sources. einterf , enoise, eartif are the distortions
corresponding to interference, noise and artifacts, respectively.
The most important metric is the SDR, which measures the
overall target signal energy actually contained in the source
estimate compared to everything else (distortion). It is gener-
ally believed that SDR correlates best with human perception
of quality. The other metrics, SIR and SAR, measure the
presence of other sources and external artifacts in the estimate,
respectively. We use the python implementation from [3] to
compute the metrics.

Computing these metrics for the whole dataset at once is not
computationally feasible. Even for single songs the memory
consumption is usually too high. Therefore the test recordings
are split into windows of fixed length (e.g., 1s or 30s) and the
metrics are then computed for each window. The final result
is computed by taking the mean or median over the windows.
The median is a more robust measure of performance in
this case due to outliers that come from windows that have
low signal energy (near silent) where small distortions in the
estimate result in high negative SDR values.

IV. METHODS

Audio source separation is the process of recovering one or
more source signals from an observed mixture signal x(t) =∑J
j=1 s

(j)(t), where s(j) ∈ RL are the signal sources and L
is the number of signal channels. For mono source separation
we have L = 1.

The most common approach to source separation is to work
with signals in the time-frequency domain via the short-time
Fourier transform (STFT). We denote the STFT of a signal
source as S(j)(τ, f) = STFT(s(j)(t)), where τ and f are
the indices for the time and frequency frames, respectively.
Because the STFT is an additive transformation, the mixture
signal in the time-frequency domain is

X(τ, f) =

J∑
j=1

S(j)(τ, f)

A. Architecture

The source separation task can be stated as a supervised
learning problem, where we have samples (mixture signals)
and targets (separated sources). We train an autoencoder with
a ResNet-based [13] latent separation network to estimate the
individual sources from the mixture. The architecture of our
model is depicted in Figure 1. The idea is to map inputs to
a latent space via an encoder and then through a residual
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Fig. 1: Architecture of our model. The input is a complex valued spectrogram segment of a mixture signal. The encoder outputs
a lower dimensional latent representation. A residual net then processes the latent representation further into 4 separate latent
sources, one for each source of the mixture. Each of these separated latent sources is then independently fed to the decoder
to produce the estimates of the separated sources.

Part of model Function Output dimension Parameters for
J = 4,K = 256,T = 140,F = 513

Input Spectogram Xi T × F × 2
CNN Encoder E(Xi) = h T

4
× F

4
×K 1,486,208

Latent separator (ResNet) R(h) = hs = [h
(0)
s , h

(1)
s , ..., h

(J)
s ] J × T

4
× F

4
× K

J
7,084,032

CNN Decoder Ŝ
(j)
i = D(h

(j)
s ) T × F × 2 605,608

TABLE I: The main parts of our model architecture along with their respective output dimensions. The input to the model is
a segment of time-frequency data with T time frames and F frequency bins. The input has 2 channels, corresponding to the
real and imaginary parts of the data. We also give an example, in the last column, of the number of parameters for each part
of the model, with the configuration we use in our baseline model.

network to J separated latent representations. The resulting
separated latent representations are then passed through a
shared decoder that reconstructs an estimate of the correspond-
ing source spectograms.

More formally, we segment the input mixture X(τ, f) along
the time axis into segments of length T . Each segment contains
F frequency bands, covering the full frequency range. We
denote one such segment as Xi, with i ∈ {1, ..., N}, where N
is the number of segments in the dataset. The mixture signal is
complex valued, but can also be thought of as two real valued
signals by looking at the real and imaginary part separately.
The resulting input dimension of Xi is then T × F × 2,
where the 2 stems from the real and imaginary part of the
segment. In this way we also preserve phase information.
The input mixture Xi is first passed through the encoder E
which creates the first latent representation h = E(Xi). The
encoder is a 3-layer CNN with batch normalization and ReLU
activations on each layer. The output of the encoder has shape
T
4 ×

F
4 ×K, where K is a hyper parameter that we discuss

later in this section. This first latent representation h is then
passed through a residual network R to produce J new latent
representations, one for each of the J sources in the mixture,
R(h) = hs =

[
h
(1)
s , ..., h

(J)
s

]
. The dimensions of hs are the

same as h, but along the last dimension we partition the K
channels into J segments. Each of the J segments of hs
has shape T

4 ×
F
4 ×

K
J and is the latent representation of its

corresponding source. The residual network is a ResNet [13]
with 6 residual blocks. Now, for each of the h

(j)
s , the j-th

source is estimated by a decoder D as Ŝ(j) = D(h
(j)
s ). The

decoder is a 4-layer CNN with batch normalization and ReLU
activations on all layers, except for the output layer. Note that
we share the decoder among sources, as we expect the sources
to already be separated in the latent space. The decoder’s task
is simply to map the latent representation into a corresponding
spectogram. We also evaluate using four separate specialized
decoders instead of one shared decoder (see Section V-E). The
experimental results presented in Section V are achieved with a
single shared decoder, except for the MUSDB18 experiments,
where we used separate decoders.

We train our model to minimize the squared L2 norm of
the difference between the real and estimated sources in the
time-frequency domain. Formally the loss function is:

L =
1

N

N∑
i=1

J∑
j=1

||S(j)
i − Ŝi

(j)
||2

For the STFT, we compute the 1024-point FFT, using Hann
windows of size 1024 that overlap by 75%. Since the input
data has a sampling rate of 44100 Hz, the frequency range
is 22050 Hz and represented by F = 513 frequency bands.
We choose the model’s time context to be T = 140 in
our experiments, which corresponds to about 0.8 seconds of



Fig. 2: Original audio signal (left) and the tempo augmented
version (right). One can see that the pitch stays unaffected,
while the signal is stretched in time.

the original audio waveform for each input sample Xi. For
the encoder output depth, we choose K = 256. The model
is implemented in Tensorflow [21] and the loss function is
minimized via the SGD based Adam optimizer [22] with a
learning rate of α = 5 · 10−5. Table I lists various output
dimensions and number of parameters of our architecture. We
refer the interested reader to our openly available source code
for further implementation details.

B. Time Frequency Masking

Source separation models often contain a post processing
step called the time-frequency mask (TF mask). The TF mask
ensures that the sum of estimated sources is exactly equal to
the original mixture. The TF mask is defined for each source
as Mj = ||Ŝ(j)||α

/∑J
j=1 ||Ŝ(j)||α and the final estimate of

source j is then computed as element-wise multiplication of
the input mixture with Mj as S̃(j) = X � Mj . In [23],
the most appropriate value of α was shown to be around 1,
corresponding to amplitude-based masking. Although masking
has been found to improve separation quality in some cases,
we did not consistently observe positive effects.

C. Data augmentation

In our experiments we initially observed a large gener-
alization error, i.e., our model managed to fit the training
data, but then struggled to generalize to unseen samples.
This is a typical problem when using high-capacity neural
networks, and suggests that more data is required. Since we
are restricted to the MUSDB18 dataset and gathering more
data is highly non-trivial, we resort to data augmentation to
close the generalization gap.

The first augmentation method consists of stretch-
ing/compressing the signals in time, i.e., changing the tempo of
the music. We provide a visual illustration of this augmentation
method in Figure 2. Stretching/compressing could be achieved
by changing the sampling rate, but the result would be pitch
shifted. A phase vocoder provides a better way of separating
temporal and spectral modifications of audio signals. Given
an STFT of an audio signal, the time stretched signal can
be created by simply applying the inverse FFT with different
spacing between FFT windows. This alone would produce

phase artifacts, which the phase vocoder resolves by scaling
the phase of the reconstructed signal by the same factor
as the time expansion (see also [24]). This augmentation
method was introduced in [25] in the context of singing
voice detection. We sample the stretch factor from the values
[0.5, 0.75, 1, 1.25, 1.5, 1.75, 2], whereas 1 (i.e., no stretching)
is sampled with probability 2

5 , and the remaining values
are sampled uniformly. This choice was made heuristically
without any tuning based on the idea that we want to retain
more of the unaltered songs relative to the stretched songs.

The second method we employ was proposed in [26] and
consists of creating new mixtures by combining sources from
different songs. More specifically, we load one batch of
original mixture segments and then construct new mixture
segments by randomly recombining the sources, where we
make sure that the created mixtures contain each source type
at most once.

D. Post Processing

Here we describe two post processing methods that can be
used to improve the quality of the source separation.

1) Overlapping Input Segments: At test time we apply the
model to input audio recordings sequentially, and we can thus
choose to overlap consecutive segments Xi for more robust
estimates. Let γ be the overlap factor, and n the number of
time frames in the STFT representation of the input recording.
Then the number of segments will be 1

(1−γ)
n
T . The overlap can

vary from γ = 0 (no overlap) to γ = T−1
T (maximum overlap).

The final output spectrogram at a certain time t is computed
by averaging all of the overlapping segments at time t. This
method was also used in [12] with γ = 0.3.

2) Signal Energy Thresholding: We note that the output
of the model will generally not be exactly zero and always
contain some noise or artifacts, even if the ground truth source
is actually silent. When listening to the separated sources
however, it is often evident when a source should be silent.
Hence, it should be easy to improve the sound quality by
setting the sources to exactly zero in these cases. We therefore
model a source S

(j)
i as a continuous valued signal C

(j)
i

multiplied by a binary signal P (j)
i , i.e., S(j)

i = P
(j)
i · C(j)

i .
The binary valued signal P (j)

i is either one, if the source is
estimated to be present in the mixture, or zero if not. We
can thus use P

(j)
i to switch sources on or off. We found

that a very simple model of P (j)
i yields better audio quality,

both perceptually and in terms of SDR, than applying no
thresholding at all. Despite its simplicity, we are unaware of
any related work using a similar thresholding post processing
step.

Specifically, we propose to estimate the presence of a
signal by simply looking at the signal energies, ej and em,
corresponding to the energy of the j-th source estimate and
the energy of the mixture, respectively:

P
(j)
i =

{
1, if ej ≥ tj and em ≥ tm
0, otherwise



Augmentation Source SDR SIR SAR

None

Vocals 3.98 9.63 6.07
Drums 3.89 12.21 4.96
Bass 1.85 6.46 4.78
Other 0.86 5.31 4.03

Tempo

Vocals 3.68 9.14 6.07
Drums 3.73 10.63 5.18
Bass 1.50 5.71 5.04
Other 0.73 5.43 3.81

Shuffle

Vocals 3.82 8.24 6.73
Drums 3.88 9.66 5.91
Bass 1.65 5.91 5.19
Other 1.58 5.92 4.68

Shuffle +
Tempo

Vocals 4.57 10.04 6.67
Drums 4.28 11.55 5.59
Bass 1.84 6.28 5.06
Other 1.37 6.25 4.15

TABLE II: Comparison of augmentation methods on DSD100.
Values are in [dB].

where tm and tj correspond to thresholds that need to
be determined. Note that tm can be chosen individually for
each source type. In our experiments, we choose conservative
threshold values without any tuning.

Here we want to highlight an innate problem with the com-
monly used evaluation metrics, especially when calculating
the performance metrics with short 1-second windows, as
suggested in the SiSec 2018 campaign [3]: When a signal
is estimated as silent in a whole 1s window, the result will
be log(0) = NaN , and the window will then be excluded
from the evaluation. Thus, in order to achieve very high scores
one could simply choose high threshold values to exclude all
segments with low signal energy, which will also exclude most
negative SDR outliers. However, this increase in SDR would
likely not reflect audible quality, as the resulting signals would
be heavily fragmented, i.e., only a few remaining segments
with high signal energy will remain. When using longer
evaluation windows of, e.g., 30 seconds, such as in the SiSec
2016 campaign [2], a very high threshold would be needed to
exclude the whole window from the evaluation. We therefore
report our results for both evaluation methods, to allow a fair
comparison to future work. Despite the unintended effect on
the metric, we found audible quality to improve as well for
our conservative threshold choice. We would like to make an
appeal to the research community at this point to not blindly
rely on the SDR/SIR/SAR results reported without checking
the audible quality.

V. EXPERIMENTS AND RESULTS

We evaluate the performance of our model for different
data augmentation methods and post processing steps. We then
compare our results directly to current state of the art monau-
ral source separation methods on DSD100 and MUSDB18.
Finally, we investigate our architecture choice and hint at a
current limitation. All experiments have the following setup
unless stated otherwise: We train the models on the training set
of the DSD100 or MUSDB18 datasets and report performance

γ SDR SIR SAR sec/song
0 3.24 9.23 5.43 28
0.95 3.47 9.09 5.86 300

TABLE III: Effect of using overlapping input segments at
test time. SDR, SIR and SAR values are the means over all
sources. γ indicates the overlap factor. Values are in [dB].

Method Source SDR SIR SAR

No thresholding

Vocals 3.98 9.63 6.07
Drums 3.89 12.21 4.96
Bass 1.85 6.46 4.78
Other 0.86 5.31 4.03

With thresholding

Vocals 4.69 11.45 5.60
Drums 4.52 13.14 4.72
Bass 2.62 6.76 3.60
Other 3.01 5.40 4.12

TABLE IV: Effect of signal energy thresholding on DSD100.
Values are in [dB].

on the whole test set. The performance metrics (SDR, SIR and
SAR) are computed by matching 30 second long windows,
overlapping by 50%, and then computing the median. NaN
values are excluted from the computation of the median. NaN
values occur when a reference source is silent in a given
window and thus the ratios are undefined. We note that the
median is a more robust measure than the mean since the
evaluation method is prone to large negative outliers. Such
outliers occur when a particular reference signal has very low
energy but is estimated with some noise of higher energy,
which results in large negative SDR values.

A. Data Augmentation

We train a baseline model with each of the augmentation
methods introduced earlier to measure their effects. The results
are shown in Table II. Surprisingly, when applying the data
augmentation methods individually, only small improvements,
or even slight degradation, can be observed. However, when
combining both methods, the improvements are quite substan-
tial. Only the bass source does not get a significant boost
in SDR. This suggests that data augmentation is important,
or correspondingly, larger data sets are needed to train better
models.

B. Post Processing Methods

The effect of using overlapping input segments during test-
ing is shown in Table III. Results are shown for evaluating our
baseline model with γ = 0 and γ = 0.95. Using overlapping
windows during testing indeed seems to improve performance,
albeit at the cost of increased computation time proportional
to the overlap factor.

Table IV shows the results of the energy based thresholding.
For all sources we choose

tj = 0.001 tm = 0.001

except for other, where we set

tj = 0.0001 tm = 0



Method Source SDR SIR SAR

DRDNN

Vocals 3.15 9.39 7.66
Drums 3.23 7.35 6.59
Bass 3.41 3.14 7.17
Other 1.87 1.97 6.81

RA

Vocals 3.46 8.94 5.89
Drums 4.63 12.26 5.74
Bass 3.21 7.60 5.60
Other 2.27 4.97 3.99

RA+th

Vocals 3.58 8.87 5.90
Drums 4.80 11.50 5.79
Bass 3.26 7.29 5.62
Other 2.27 4.97 4.00

TABLE V: Comparison to prior state of the art (DRDNN [12])
on DSD100 with 10-fold cross validation. Values are in [dB].

Method SDR SIR
MIM-NINF 3.63 7.06
STO2 3.92 6.75
RA 3.98 9.63
JEO2 4.07 6.09
MIN-RINF 4.2 7.94
MadTwinNet 4.57 8.17
RA+aug 4.57 10.04
RA+aug+mask 4.99 9.37
RA+aug+mask+th 5.66 11.31
RA+aug+mask+th+o 5.70 11.57

TABLE VI: Singing voice separation of monaural methods on
DSD100. Values are in [dB]. The comparison results are taken
from [11].

The simple thresholding step substantially improves SDR
and SIR, while SAR gets slightly worse for most sources.
The additional artifacts likely stem from the sharp transitions
in the output spectrogram introduced by the thresholding.
Nevertheless, since SDR is generally regarded as the most
important metric, this indicates that our thresholding method
is effective, which is also reflected in the audible quality of
the separated sources.2

C. Evaluation on DSD100

For the remainder of the evaluation we show results of
multiple versions of our model. The baseline is denoted as RA
(ResNet Autoencoder). The use of data augmentation (tempo
and shuffling) is denoted by aug. Time frequency masking
(see Section IV-B) is denoted by mask and we indicate the
use of energy thresholding and overlapping input segments by
th and o, respectively. In this section we show our models’
performance along with other recent state-of-the-art methods.
The method we compare with for complete source separation
is DRDNN [12]. We further compare against multiple methods
that are specialized in monaural singing voice separation,
including MadTwinNet [11], the current state of the art in
this domain.

Li et al. [12] evaluate DRDNN with 10-fold cross validation
to obtain more robust performance estimates. That is, they

2Audio samples of our approach are available here: https://github.com/
sveinnpalsson/sourceseparation

Method Source SDR SIR SAR

RA

Vocals 4.28 10.74 6.00
Drums 5.00 12.95 6.11
Bass 2.53 7.14 5.78
Other 1.12 6.11 3.80

RA+aug

Vocals 5.22 11.94 6.83
Drums 5.75 14.12 6.77
Bass 2.93 7.7 6.31
Other 1.85 7.34 4.07

RA+aug+th

Vocals 5.20 13.95 6.40
Drums 5.62 14.81 6.64
Bass 3.65 8.70 5.44
Other 3.25 7.38 4.09

RA+aug+th+o

Vocals 5.22 12.91 6.64
Drums 5.83 14.13 7.46
Bass 3.74 9.42 5.82
Other 3.29 7.69 4.42

TABLE VII: MUSDB18 results for 30s windows using four
separate decoders. Values are in [dB]

split the training set of DSD100 into 10 folds to train 10
models and then average the results. This approach deviates
from the standard evaluation method for DSD100 as stated
in [2], where a 50/50 train/test split is recommended. We
conducted tailored experiments to match the setup in [12].
However, we did not train our model to its full capacity due
to the large computational effort required by this evaluation
method. In particular, we trained 10 models for 125,000 steps
each, which translates to 720 hours of GPU time in total for
this experiment alone. In the other experiments we trained
our model for up to 500,000 iterations, which is necessary
particularly if data augmentation is applied. Table V shows
the comparison of our method with DRDNN. As can be seen,
we clearly outperform DRDNN in terms of signal to distortion
ratio (SDR) in 3 out of the 4 sources already with our baseline
model. Note that this is with a not fully trained model and
without any augmentation. As post processing we overlap the
segments with an overlap factor of γ = 0.3, as was done by
Li et al. [12]. If we additionally use thresholding, we get even
better results. The improvement over DRDNN is especially
apparent when we look at the average SDR across sources,
which is 2.92 for DRDNN, 3.40 for our baseline and 3.48 for
our baseline with thresholding.

To compare against the state of the art in singing voice
separation, we choose models that perform best for the vocals
source. The results are shown in Table VI. Our baseline model
is already competitive with most previous methods. When
adding augmentation and/or thresholding, our model clearly
outperforms the previous state of the art.

D. Evaluation on MUSDB18

To ensure direct comparability of our results to future work
we provide results on MUSDB18 using both 1s and 30s
windows for the evaluation, as proposed in SiSec 2016 and
SiSec 2018 respectively. The results are shown in Tables VII
and VIII. Clearly, the added amount of training data helps
(see Tables II and V). Also, in agreement with the evaluations
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Fig. 3: t-SNE visualization of sources in the latent space with a shared decoder (a) and specialized decoders (b). Vocals (blue),
drums (magenta), bass (yellow) and other (cyan)

Method Source SDR SIR SAR

RA

Vocals 3.05 9.71 4.12
Drums 4.23 10.26 4.96
Bass 3.24 5.85 4.54
Other 1.71 4.39 2.91

RA+aug

Vocals 3.52 11.79 4.7
Drums 4.64 10.87 5.52
Bass 3.59 6.47 5.03
Other 2.02 5.68 3.21

RA+aug+o

Vocals 3.52 11.29 4.74
Drums 4.86 10.5 5.98
Bass 3.72 6.51 5.46
Other 2.08 5.56 3.72

TABLE VIII: MUSDB18 results for 1s windows using four
separate decoders. Values are in [dB].

presented earlier, data augmentation as well as post processing
further increase performance for all sources measured by all
metrics. As is apparent from Table VIII, the performance is
greatly underestimated when using 1 second windows due to
negative outliers. Note that we do not show the results of
thresholding in this case, because it could exclude a large
number of the evaluation windows and the results would not
be directly comparable to other methods. Note that before
performing the final experiments on MUSDB18 we found that
using separate specialized decoders instead of a single shared
decoder yields slightly better results (see also Section V-E.
Hence the results on MUSDB18 were achieved using separate
decoders.

E. Investigating our Architecture Choice

We base our architecture on the idea of separating sources in
the latent representation. However, one might also argue that
this is not necessary, as one could also train a separate decoder
for each source. Intuitively, a shared decoder forces the en-

Method Source SDR SIR SAR

Shared
Decoder

Vocals 5.06 11.36 6.69
Drums 5.53 14.34 6.42
Bass 2.77 7.56 6.13
Other 1.62 7.57 3.83

Separate
Decoders

Vocals 5.22 11.94 6.83
Drums 5.75 14.12 6.77
Bass 2.93 7.70 6.31
Other 1.85 7.34 4.07

TABLE IX: Test performance of our baseline model trained
on MUSDB18 with shared and specialized decoders. Values
are in [dB].

coder and residual network to perform better source separation
in the latent space. On the other hand, separate decoders
specialize on one type of source (e.g., singing voice), and are
thus less prone to wrongly mixing different sources together.
We evaluate this design choice by comparing two models
trained on MUSDB18: Our baseline model with a shared
decoder and a version with specialized decoders. Table IX
shows an increase in most performance metrics when using
specialized decoders. This means that our results on DSD100
might even be better if we had used separate decoders. To
further investigate the source separation in the latent space,
we visualize the latent vectors via t-distributed Stochastic
Neighbor Embedding (t-SNE) [27], shown in Figure 3. The
visualization is created by mapping the test set to the latent
space and then computing t-SNE with two components. As
expected, the latent vectors of the sources seem to cluster
closer together in the case of a shared decoder, which suggests
better latent source separation. In the case of specialized
decoders the separation is still clear, albeit slightly more
spread out. The potential benefit of a (slightly) better latent
separation seems to be outweighed by the separate decoders’



specialization on source types. Furthermore, we note that our
comparatively simple architecture achieves strong separation
in the latent space, suggesting that more complex architectures
specifically focusing on latent separation, such as in [12],
are not necessary and we should instead focus on improving
the reconstruction performance of the decoders, and devising
better post processing and data augmentation methods.

VI. CONCLUSION

We present a simple yet effective method for monaural
music source separation based on a ResNet autoencoder. With
it we show that state of the art performance is achievable
without complex engineering of a specialized architecture.
Rather, performance of deep neural networks for monaural
music source separation is limited by the size of the data set
and whether post processing is applied. We show the effect of
several data augmentation methods and post processing tools,
which can help to alleviate this problem. Finally, we provide
audio samples from our models to show that the increase in
SDR indeed translates to better audio quality.
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