
Mechanism Design by Creditability?

Raphael Eidenbenz, Yvonne Anne Oswald, Stefan Schmid, and Roger Wattenhofer

Computer Engineering and Networks Laboratory
ETH Zurich, Switzerland

Abstract. This paper attends to the problem of a mechanism designer seeking to
influence the outcome of a strategic game based on her creditability. The mech-
anism designer offers additional payments to the players depending on their mu-
tual choice of strategies in order to steer them to certain decisions. Of course, the
mechanism designer aims at spending as little as possible and yet implementing
her desired outcome. We present several algorithms for this optimization prob-
lem both for singleton target strategy profiles and target strategy profile regions.
Furthermore, the paper shows how a bankrupt mechanism designer can decide
efficiently whether strategy profiles can be implemented at no cost at all. Finally,
risk-averse players and dynamic games are examined.

1 Introduction

The quest for a deeper understanding of our world and its highly interconnected sys-
tems and processes often requires a huge amount of computational resources which can
only be obtained by connecting thousands of computers. Similarly to agents in socio-
economic systems, the computers in such networks often operate on a decentralized
control regime, and represent different stake-holders with different objectives. There-
fore, in addition to mere technical challenges, a system designer often has to take into
account sociological and economic aspects as well when reasoning about protocols for
maximizing system performance.

Game theory is a powerful tool for analyzing decision making in systems with au-
tonomous and rational (or selfish) participants. It is used in a wide variety of fields such
as biology, economics, politics, or computer science. A major achievement of game the-
ory is the insight that networks of self-interested agents often suffer from inefficiency
due to effects of selfishness. The concept of the price of anarchy allows to quantify
these effects: The price of anarchy compares the performance of a distributed system
consisting of selfish participants to the performance of an optimal reference system
where all participants collaborate perfectly. If a game theoretic analysis of a distributed
computing system reveals that the system has a large price of anarchy, this indicates
that the protocol should be extended by a mechanism encouraging cooperation.

In many distributed systems, a mechanism designer cannot change the rules of in-
teractions. However, she may be able to influence the agents’ behavior by offering pay-
ments for certain outcomes. On this account, we consider a mechanism designer whose

? Supported in part by the Swiss National Science Foundation (SNF).

2

power is to some extent based on her monetary assets, primarily, though, on her cred-
itability. That is, the players trust her to pay the promised payments. Thus, a certain
subset of outcomes is implemented in a given game if, by expecting additional non-
negative payments, rational players will necessarily choose one of the desired outcomes.
A designer faces the following optimization problem: How can the desired outcome be
implemented at minimal cost? Surprisingly, it is sometimes possible to improve the
performance of a given system merely by creditability, i.e., without any payments at all.

This paper presents several results for this problem. The first correct algorithm for
finding an exact, incentive compatible implementation of a desired set of outcomes is
given. We also show how a bankrupt mechanism designer can decide in polynomial time
if a set of outcomes can be implemented at no costs at all, and an interesting connection
to best response graphs is established. We propose and analyze efficient heuristic al-
gorithms and demonstrate their performance. Furthermore, we extend our analysis for
risk-averse behavior and study dynamic games where the mechanism designer offers
payments in each round.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Our model and some basic game theory definitions are introduced in Section 3. In Sec-
tion 4, algorithms for computing exact and non-exact implementations are proposed.
Section 5 presents simulation results. Risk-averse players and dynamic games are stud-
ied in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

The mathematical tools of game theory have become popular in computer science re-
cently as they allow to gain deeper insights into the socio-economic complexity of to-
day’s distributed systems. Game theory combines algorithmic ideas with concepts and
techniques from mathematical economics. Popular problems in computer science stud-
ied from a game theoretic point of view include virus propagation [1], congestion [3],
network creation [7], among many others.

The observation that systems often perform poorly in the presence of selfish players
has sparked research for countermeasures [6,10]. For example, Cole et al. [4,5] have
studied how incentive mechanisms can influence selfish behavior in a routing system
where the latency experienced by the network traffic on an edge of the network is a
function of the edge congestion, and where the network users are assumed to selfishly
route traffic on minimum-latency paths. They show that by pricing network edges the
inefficiency of selfish routing can always be eradicated, even for heterogeneous traffic
in single-commodity networks.

In [11], Monderer and Tennenholtz consider an interested third party who attempts
to lead selfish players to act in a desired way. The third party can neither enforce behav-
ior nor change the system, she can only influence the game’s outcome by announcing
non-negative monetary transfers conditioned on the behavior of the agents. The authors
show that the interested third party might be able to induce a desired outcome at very
low costs. In particular, they prove that any pure Nash equilibrium of a game with com-
plete information has a zero-implementation, i.e., it can be transformed into a dominant
strategy profile at zero cost. Similar results hold for any given ex-post equilibrium of a

3

frugal VCG mechanism. Moreover, the paper addresses the question of the hardness of
computing the minimal cost.

This paper extends [11] in various respects. Several new algorithms are provided,
for instance a polynomial time algorithm for deciding whether a set of strategy pro-
files has a 0-implementation. In addition, we suggest polynomial-time heuristic algo-
rithms and simulate their performance. Connections to graph-theoretic concepts are
pointed out and we generalize the theorem by Monderer and Tennenholtz on the cost
of Nash equilibria. Their algorithm for computing an optimal exact implementation is
corrected, and we provide evidence that their NP-hardness proof of deciding whether a
k-implementation exists is wrong. Furthermore, the concept of implementation is gen-
eralized for other game theoretic models. We examine players aiming at maximizing the
average payoff and show how the mechanism designer can find such implementations.
As another contribution, this paper considers the case of risk-averse players as well as
the resulting complexity of computing the optimal implementation cost, and initiates
the study of mechanism design by creditability in round based dynamic games.

Our work is also related to Stackelberg theory [12] where a fraction of the entire
population is orchestrated by a global leader. In contrast to our paper, the leader is not
bound to offer any incentives to follow her objectives. Finally, in the recent research
thread of combinatorial agencies [2], a setting is studied where a mechanism designer
seeks to influence the outcome of a game by contracting the players individually; how-
ever, as she is not able to observe the players’ actions, the contracts can only depend on
the overall outcome.

3 Model

Game Theory A strategic game can be described by a tuple G = (N,X,U), where
N = {1, 2, . . . , n} is the set of players and each Player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is denoted
by X := X1 ×X2 × . . .×Xn. In the following, a particular outcome x ∈ X is called
strategy profile and we refer to the set of all other players’ strategies of a given Player i
by X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn. An element of Xi is denoted by xi,
and similarly, x−i ∈ X−i; hence x−i is a vector consisting of the strategy profiles of
xi. Finally, U = (U1, U2, . . . , Un) is an n-tuple of payoff functions, where Ui : X → R
determines Player i’s payoff arising from the game’s outcome. Let xi, x

′
i ∈ Xi be

two strategies available to Player i. We say that xi dominates x′i iff Ui(xi, x−i) ≥
Ui(x′i, x−i) for every x−i ∈ X−i and there exists at least one x−i for which a strict
inequality holds. xi is the dominant strategy for Player i if it dominates every other
strategy x′i ∈ Xi\{xi}. xi is a non-dominated strategy if no other strategy dominates
it. By X∗ = X∗1 × . . .×X∗n we will denote the set of non-dominated strategy profiles,
whereX∗i is the set of non-dominated strategies available to the individual Player i. The
set of best responses Bi(x−i) for Player i given the other players’ actions is defined as
Bi(x−i) := {xi|Ui(xi, x−i) = maxxj∈Xi\{xi} Ui(xj , x−i)}. A Nash equilibrium is a
strategy profile x ∈ X such that for all i ∈ N , xi ∈ Bi(x−i).

Mechanism Design by Creditability This paper acts on the classic assumption that
players are rational and always choose a non-dominated strategy. Additionally, it is

4

assumed that players do not cooperate. We examine the impact of payments to players
offered by a mechanism designer (an interested third party) who seeks to influence the
outcome of a game. These payments are described by a tuple of non-negative payoff
functions V = (V1, V2, . . . , Vn), where Vi : X → R+, i.e. the payments depend on
the strategy Player i selects as well as on the choices of all other players. Thereby,
we assume that the players trust the mechanism designer to finally pay the promised
amount of money, i.e., consider her trustworthy (mechanism design by creditability).
The original game G = (N,X,U) is modified to G(V) := (N,X, [U + V]) by these
payments, where [U + V]i(x) = Ui(x) + Vi(x), that is, each Player i obtains the
payoff of Vi in addition to the payoffs of Ui. The players’ choice of strategies changes
accordingly: Each player now selects a non-dominated strategy in G(V). Henceforth,
the set of non-dominated strategy profiles of G(V) is denoted by X∗(V). A strategy
profile set – also called strategy profile region – O ⊆ X of G is a subset of all strategy
profiles X , i.e., a region in the payoff matrix consisting of one or multiple strategy
profiles. Similarly to Xi and X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈
O} and O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}.

The mechanism designer’s main objective is to force the players to choose a certain
strategy profile or a set of strategy profiles. For a desired strategy profile region O, we
say that payments V implement O if ∅ ⊂ X∗(V) ⊆ O. V is called a k-implementation
if, in addition

∑n
i=1 Vi(x) ≤ k, ∀x ∈ X∗(V). That is, the players’ non-dominated

strategies are within the desired strategy profile, and the payments do not exceed k for
any possible outcome. Moreover, V is an exact k-implementation of O if X∗(V) = O
and

∑n
i=1 Vi(x) ≤ k ∀x ∈ X∗(V). The cost k(O) of implementing O is the lowest

of all non-negative numbers q for which there exists a q-implementation. If an imple-
mentation meets this lower bound, it is optimal, i.e., V is an optimal implementation
of O if V implements O and maxx∈X∗(V)

∑n
i=1 Vi(x) = k(O). The cost k∗(O) of

implementing O exactly is the smallest non-negative number q for which there exists
an exact q-implementation of O. V is an optimal exact implementation of O if it im-
plements O exactly and requires cost k∗(O). The set of all implementations of O will
be denoted by V(O), and the set of all exact implementations of O by V∗(O). Finally,
a strategy profile region O = {z} of cardinality one – consisting of only one strat-
egy profile – is called a singleton. Clearly, for singletons it holds that non-exact and
exact k-implementations are equivalent. For simplicity’s sake we often write z instead
of {z} and V (z) instead of

∑
i∈N Vi(z). Observe that only subsets of X which are in

2X1 × 2X2 × . . . × 2Xn ⊂ 2X1×X2×...×Xn can be implemented exactly. We call such
a subset of X a convex strategy profile region.1

4 Algorithms and Analysis

4.1 Exact Implementation

Algorithm and Complexity Recall that in our model each player classifies the strate-
gies available to her as either dominated or non-dominated. Thereby, each dominated

1 These regions define a convex area in the n-dimensional hyper-cuboid, provided that the strate-
gies are depicted such that all oi are next to each other.

5

strategy xi ∈ Xi\X∗i is dominated by at least one non-dominated strategy x∗i ∈ X∗i .
In other words, a game determines for each Player i a relation MG

i from dominated
to non-dominated strategies MG

i : Xi\X∗i → X∗i , where MG
i (xi) = x∗i states that

xi ∈ Xi\X∗i is dominated by x∗i ∈ X∗i . See Fig. 1 for an example. When imple-

0 1 4

5 5 1

4 10 4

0 0 10

4 5 4

4 0 0a

b
d*a

c
e*b

d*
c f*

e*
X\X* X*

f*

Fig. 1. Game from a single player’s point of view with corresponding relation of dominated
(Xi\X∗i = {a, b, c}) to non-dominated strategies (X∗i = {d∗, e∗, f∗}).

menting a strategy profile region O exactly, the mechanism designer creates a mod-
ified game G(V) with a new relation MV

i : Xi \ Oi → Oi such that all strate-
gies outside Oi map to at least one strategy in Oi. Therewith, the set of all newly
non-dominated strategies of Player i must constitute Oi. As every V ∈ V∗(O) de-
termines a set of relations MV := {MV

i : i ∈ N}, there must be a set MV for
every V implementing O optimally as well. If we are given such an optimal rela-
tion set MV without the corresponding optimal exact implementation, we can com-
pute a V with minimal payments and the same relation MV , i.e., given an optimal
relation we can find an optimal exact implementation. As an illustrating example, as-
sume an optimal relation set for G with MG

i (x∗i1) = oi and MG
i (x∗i2) = oi. Thus,

we can compute V such that oi must dominate x∗i1 and x∗i2 in G(V), namely, the con-
dition Ui(oi, o−i) + Vi(oi, o−i) ≥ maxs∈(x∗i1,x∗i2)

(Ui(s, o−i) + Vi(s, o−i)) must hold
∀o−i ∈ O−i. In an optimal implementation, Player i is not offered payments for strat-
egy profiles of the form (ōi, x−i) where ōi ∈ Xi\Oi, x−i ∈ X−i. Hence, the condi-
tion above can be simplified to Vi(oi, o−i) = max(0,maxs∈{x∗i1,x∗i2} (Ui(s, o−i))) −
Ui(oi, o−i). Let Si(oi):={s ∈ Xi\Oi|MV

i (s) = oi} be the set of strategies where
MV corresponds to an optimal exact implementation of O. Then, an implementa-
tion V with Vi(ōi, x−i) = 0, Vi(oi, ō−i) = ∞ for any Player i, and Vi(oi, o−i) =
max

{
0,maxs∈Si(oi) (Ui(s, o−i))

}
− Ui(oi, o−i) is an optimal exact implementation

of O as well. Therefore, the problem of finding an optimal exact implementation V of
O corresponds to the problem of finding an optimal set of relationsMV

i : Xi\Oi → Oi.
Our algorithm ALGexact (cf. Algorithm 1) exploits this fact and constructs an im-

plementation V for all possible relation sets, checks the cost that V would entail and
returns the lowest cost found.

Theorem 1. ALGexact computes a strategy profile region’s optimal exact implementa-
tion cost in time O

(
|X|2 maxi∈N (|Oi|n|X

∗
i \Oi|−1) + n|O|maxi∈N (|Oi|n|X

∗
i \Oi|)

)
.

PROOF. ALGexact is correct as it checks all possible relations in the relation set MV =
{MV

i : X∗i (V)\Oi → Oi ∀i ∈ N} recursively by calling the subroutine ExactK in

6

Algorithm 1 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) :=∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current Player i
Output: k∗(O) for G(V)
1: if |X∗i (V)\Oi| > 0 then
2: s := any strategy in X∗i (V)\Oi; kbest :=∞;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i)));
6: k := ExactK(V +W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return kbest;
12: else if i > 1 then
13: return ExactK(V , i− 1);
14: else
15: return maxo∈O

∑
i Vi(o);

Line 6. Therefore, it must find the relation set which corresponds to an implementation
with optimal cost.

It remains to prove the algorithm’s runtime. Computing the non-dominated region
X∗ by checking for each strategy whether it is dominated takes time

∑n
i=1

(|Xi|
2

)
|X−i|

=O(n|X|2). The complexity of this computation asymptotically dominates the runtime
required by Lines 1 and 2. We next examine the complexity of subroutine ExactK.
Computing Line 1 costs |X|2, the two for-loops in Lines 3 and 4 are executed |O| times,
and ExactK is called |Oi| times (Line 6). Hence, we derive the following (asymptotic)
recursive equations for the runtime Ti(`) for ExactK(V, i) if i has yet ` strategies to
dominate:

Ti(`) =


|X|2 + |O|+ |Oi|Ti(`− 1) if (0 < ` < |X∗i \Oi|) ∧ (i ∈ N)
Ti−1(|X∗i−1 \Oi−1|) if ` = 0 ∧ i ∈ N
n|O| if ` = 0 ∧ i = 0

7

For `i = |X∗i \Oi|, we obtain Ti(`i) = |Oi|`i−1|X|2 + |Oi|`iTi−1(`i−1) if i > 1. Let
ai = |Oi|`i−1|X|2, bi = |Oi|`i and a = maxi∈N ai, b = maxi∈N bi; hence

Ti(`i) = ai + biTi−1(`i−1)

= a

 i∑
j=1

j−1∏
k=1

bk

+

[
i∏

k=1

bk

]
T1(0)

= a

i∑
j=1

bj−1 + bin|O|

= abi−1 + bin|O|

and the claim follows. 2

Note that ALGexact has a large time complexity. In fact, a faster algorithm for this
problem, called Optimal Perturbation Algorithm has been presented in [11]. In a nut-
shell, this algorithm proceeds as follows: After initializing V similarly to our algorithm,
the values of the region O in the matrix V are increased slowly for every Player i, i.e.,
by all possible differences between an agent’s payoffs in the original game. The algo-
rithm terminates as soon as all strategies in X∗i \Oi are dominated. Unfortunately, this
algorithm does not always return an optimal implementation. Sometimes, as we will
show in Appendix A, the optimal perturbation algorithm increases the values unnec-
essarily. In fact, we even conjecture that deciding whether an k-exact implementation
exists is NP-hard.

Conjecture 1. Finding an optimal exact implementation of a strategy region is NP-
hard.

Bankrupt Mechanism Designers Imagine a mechanism designer who is broke. At
first sight, it seems that without any money, she will hardly be able to influence the
outcome of a game. However, this intuition ignores the power of creditability: a game
can have 0-implementable regions.

Let V be an exact implementation of O with exact costs k∗(O). It holds that if
k∗(O) = 0, V cannot contain any payments larger than 0 in O. Consequently, for an
region O to be 0-implementable exactly, any strategy s outside Oi must be dominated
within the range of O−i by a oi, or there must be one oi for which no payoff Ui(s, o−i)
is larger than Ui(oi, o−i). In the latter case, the strategy oi can still dominate s by using
a payment V (oi, x−i) with x−i ∈ X−i\O−i outside O. Note that this is only possible
under the assumption that O−i ⊂ X−i ∀i ∈ N .
ALGbankrupt (cf. Algorithm 2) describes how a bankrupt designer can decide in

polynomial time whether a certain region is 0-implementable. It proceeds by checking
for each Player i if the strategies inX∗i \Oi are dominated or “almost” dominated within
the range of O−i by at least one strategy inside Oi. If there is one strategy without such
a dominating strategy,O is not 0-implementable exactly. On the other hand, if for every
strategy s ∈ X∗i \Oi such a dominating strategy is found,O can be implemented exactly
without expenses.

8

Algorithm 2 Exact 0-Implementation (ALGbankrupt)
Input: Game G, convex region O with O−i ⊂ X−i ∀i
Output: > if k∗(O) = 0, ⊥ otherwise
1: compute X∗;
2: for all i ∈ N do
3: for all s ∈ X∗i \Oi do
4: dZero := ⊥;
5: for all oi ∈ Oi do
6: b := >;
7: for all o−i ∈ O−i do
8: b := b ∧ (Ui(s, o−i) ≤ Ui(oi, o−i));
9: dZero := dZero ∨ b;

10: if ¬ dZero then
11: return ⊥;
12: return >;

Theorem 2. Given a convex strategy profile regionO whereO−i ⊂ X−i ∀i, Algorithm
ALGbankrupt decides whether O has an exact 0-implementation in time O

(
n |X|2

)
.

PROOF. ALGbankrupt is correct because it checks for each yet to be dominated strategy
s ∈ X∗i \Oi whether it can be dominated by one oi ∈ Oi at zero cost. This is the

property that makesO exactly 0-implementable. ComputingX∗ takes time O
(
n |X|2

)
.

All other costs are asymptotically negligible. 2

Best Response Graphs Best response strategies maximize the payoff for a player given
the other players’ decisions. For now, let us restrict our analysis to games where the sets
of best response strategies consist of only one strategy for each x−i ∀i ∈ N . Given a
game G, we construct a directed best response graph GG with vertices vx for strategy
profiles x ∈ X iff x is a best response for at least one player, i.e., if ∃i ∈ N such that
xi ∈ Bi(x−i). There is a directed edge e = (vx, vy) iff ∃i ∈ N such that x−i = y−i

and {yi} = Bi(y−i). In other words, an edge from vx to vy , indicates that it is better
to play yi instead of xi for a player if for the other players’ strategies x−i = y−i.
A strategy profile region O ⊂ X has a corresponding subgraph GG,O containing the
vertices {vx|x ∈ O} and the edges which both start and end in a vertex of the subgraph.
We say GG,O has an outgoing edge e = (vx, vy) if x ∈ O and y /∈ O. Note that
outgoing edges are not in the edge set of GG,O. Clearly, it holds that if a singleton x’s
corresponding subgraph GG,{x} has no outgoing edges then x is a Nash equilibrium.
More generally, we make the following observation.

Theorem 3. Let G be a game and |Bi(x−i)| = 1 ∀i ∈ N, x−i ∈ X−i. If a convex
region O has an exact 0-implementation, then the corresponding subgraph GG,O in the
game’s best response graph has no outgoing edges.

PROOF. Let V be an exact 0-implementation of O. Note that V (o) = 0 ∀o ∈ O, other-
wise the cost induced by V are larger than 0. Assume for the sake of contradiction that

9

GG,O has an outgoing edge. Let x ∈ O be a strategy profile for which its corresponding
vertex vx has an outgoing edge e to vy, y ∈ X\O. Since V (x) is 0, GG(V),O still has
the same outgoing edge e. This means that for one Player j it is better to play strategy
yj in G(V) than to play xj given that x−j = y−j . Since yj is not dominated by any
strategy in Oj , Player j will hence choose also strategies outside Oj and therefore V is
not a correct implementation of O, thus contradicting our assumption. 2

In order to extend best response graphs to games with multiple best responses, we
modify the edge construction as follows: In the general best response graph GG of a
game G there is a directed edge e = (vx, vy) iff ∃i ∈ N s.t. x−i = y−i, yi ∈ Bi(y−i)
and |Bi(y−i)| = 1.

Corollary 1. Theorem 3 holds for arbitrary games.

Note that Theorem 3 is a generalization of Monderer and Tennenholtz’ Corollary 1
in [11]. They discovered that for a singleton x, it holds that x has a 0-implementation if
and only if x is a Nash equilibrium. While their observation covers the special case of
singleton-regions, our theorem holds for any strategy profile region. Unfortunately, for
general regions, one direction of the equivalence holding for singletons does not hold
anymore due to the fact that 0-implementable regions O must contain a player’s best
response to any o−i but they need not contain best responses exclusively.

5
4

5
5

5
1

10
10

10
0

0
10

Fig. 2. Sample game G with best response graph GG. The Nash equilibrium in the bottom left
corner has no outgoing edges. The dotted arrows do not belong to the edge set of GG as the row
has multiple best responses.

4.2 Non-Exact Implementation

In contrast to exact implementations, where the complete set of strategy profilesO must
be non-dominated, the additional payments in non-exact implementations only have to
ensure that a subset of O is the newly non-dominated region. Obviously, it matters
which subset this is. Knowing that a subset O′ ⊆ O bears optimal costs, we could find
k(O) by computing k∗(O′). Apart from the fact that finding an optimal implementa-
tion includes solving the – believed to be NP-hard – optimal exact implementation cost
problem for at least one subregion of O, finding this subregion might also be NP-hard
since there are exponentially many possible subregions. In fact, a reduction from the
SAT problem is presented in [11]. The authors show how to construct a 2-person game
in polynomial time given a CNF formula such that the game has a 2-implementation
if and only if the formula has a satisfying assignment. However, their proof is not cor-
rect: While there indeed exists a 2-implementation for every satisfiable formula, it can

10

be shown that 2-implementations also exist for non-satisfiable formulas. E.g., strategy
profiles (xi, xi) ∈ O are always 1-implementable. Unfortunately, we were not able to
correct their proof. However, we conjecture the problem to be NP-hard, i.e., we assume
that no algorithm can do much better than performing a brute force computation of the
exact implementation costs (cf. Algorithm 1) of all possible subsets, unless NP = P.

Conjecture 2. Finding an optimal implementation of a strategy region is NP-hard.

For the special case of zero cost regions, Theorem 3 implies the following result.

Corollary 2. If a strategy profile region O has zero implementation cost then the cor-
responding subgraph GG,O in the game’s best response graph contains a subgraph
GG,O′ , O

′ ⊆ O, with no outgoing edges.

Corollary 2 is useful to a bankrupt mechanism designer since searching the game’s
best response graph for subgraphs without outgoing edges helps her spot candidates
for regions which can be implemented by mere creditability. In general though, the
fact that finding optimal implementations seems computationally hard raises the ques-
tion whether there are polynomial time algorithms achieving good approximations. As
mentioned in Section 4.1, each V implementing a region O defines a domination re-
lation MV

i : Xi \ Oi → Oi. This observation leads to the idea of designing heuristic
algorithms that find a correct implementation by establishing a corresponding relation
set {M1,M2, . . . ,Mn},Mi : X∗i \Oi → Oi where each x∗i ∈ X∗i \Oi maps to at least
one oi ∈ Oi. These algorithms are guaranteed to find a correct implementation of O,
however, the corresponding implementations may not be cost-optimal.

Our greedy algorithm ALGgreedy (cf. Algorithm 3) associates each strategy x∗i
yet to be dominated with the oi with minimal distance ∆G to x∗i , i.e., the maximum
value that has to be added to Ui(x′i, x−i) such that x′i dominates xi: ∆G(xi, x

′
i) :=

maxx−i∈X−i
max(0, Ui(xi, x−i) − Ui(x′i, x−i)). Similarly to the greedy approxima-

tion algorithm for the set cover problem [8,9] which chooses in each step the subset
covering the most elements not covered already, ALGgreedy selects a pair of (x∗i ,oi)
such that by dominating x∗i with oi, the number of strategies in X∗i \Oi that will be
dominated therewith is maximal. Thus, in each step there will be an oi assigned to
dominate x∗i which has minimal dominating cost. Additionally, ALGgreedy takes any
opportunity to dominate multiple strategies. ALGgreedy is described in detail in Al-
gorithm 3. It returns an implementation V of O; to determine V ’s cost, one needs to
compute maxx∗∈X∗(V)

∑
i∈N Vi(x∗).

Theorem 4. ALGgreedy returns an implementation of a convex strategy profile region
O ∈ X in time O

(
n|X|2 maxi∈N |X∗i \Oi|+ n|X|maxi∈N |X∗i \Oi|3

)
.

PROOF.ALGgreedy terminates since in every iteration of the while-loop, there is at least
one newly dominated strategy. The payment matrix V returned is an implementation of
O because the while-condition X∗i (V) * Oi turned false for all i ∈ N and thus, it
holds that X∗i (V) ⊆ Oi ∀i ∈ N .

Line 1 takes time O(|X|n). Asymptotically, computing X∗ costs O
(
|X|2n

)
. Set-

ting the payments Vi(oi, ō−i) to infinity (Line 4) for all players takes time O(n |X \O|).

11

The while-loop (Lines 5-18) is executed |X∗i \Oi| times, and evaluating the while-loop’s
condition takes at most time |X2|. One iteration of the while-loop takes time

|X∗i \Oi|︸ ︷︷ ︸
Line 7

·(|Oi||X−i|︸ ︷︷ ︸
Line 8

+ |O−i|︸ ︷︷ ︸
Line 9

+ |X∗i \Oi|︸ ︷︷ ︸
Line 12

(|X|+ |O−i|)︸ ︷︷ ︸
Line 13

) + O−i︸︷︷︸
Line17

Combining the above expressions yields the claim. 2

ALGred (cf. Algorithm 4) is a more sophisticated algorithm applying ALGgreedy.
Instead of terminating when the payment matrix V implements O, this algorithm con-
tinues to search for a payment matrix inducing even less cost. It uses ALGgreedy to
approximate the cost repeatedly, varying the region to be implemented. As ALGgreedy

leaves the while-loop if X∗i (V) ⊆ Oi, it might miss out on cheap implementations
where X∗i (V) ⊆ Qi, Qi ⊂ Oi. ALGred examines some of these subsets as well by
calling ALGgreedy for some Qi. If we manage to reduce the cost, we continue with
Oi := Qi until neither the cost can be reduced anymore nor any strategies can be
deleted from any Oi.

Theorem 5. Let Tg denote the runtime of ALGgreedy. ALGred returns an implemen-
tation of O in time O(n|O|maxi∈N |Oi|(|O|+ n+ Tg)).

PROOF. ALGred terminates because the condition of the while-loop does not hold any-
more if there are no more strategies left, and because in at most every maxi∈N |Oi|th
iteration at least one strategy is removed. Clearly, the while-loop is repeated at most
maxi∈N |Oi| · |O| times, as a removed strategy is never added again. We iterate over all
players (time n) and look for a strategy to be removed (time |O| in Line 5). Evaluating
the if-clause (Line 6) requires time n+ |Oi|. Finally in Line 10, the greedy algorithm is
called recursively, which is assumed to take time Tg . The time complexity of all other
operations can be neglected. 2

An alternative heuristic algorithm for computing a region O’s implementation cost
retrieves the region’s cheapest singleton, i.e., mino∈O k(o), where a singleton’s imple-
mentation cost is k(o) = mino∈O

∑
i∈N maxxi∈Xi

(Ui(xi, o−i)− Ui(oi, o−i)) [11].
The best singleton heuristic algorithm performs quite well for randomly generated
games as our simulations reveal (cf. Section 5), but it can result in an arbitrarily large
k in the worst case: Fig. 3 depicts a game where each singleton o in the region O con-
sisting of the four bottom left profiles has cost k(o) = 11 whereas V implements O at
cost 2.

This raises the following question: What characteristics are stringent for a game and
a corresponding desired strategy profile region O such that only non-singleton subre-
gions bear the optimal implementation cost? Clearly, we have to consider games where
at least one player has four or more strategies, at least two of which must not be in Oi.
Moreover, it must cost less to dominate them with two strategies in Oi than with just
one strategy in Oi.

5 Simulation

All our algorithms return correct implementations of the desired strategy profile sets and
– apart from the recursive algorithm ALGexact for the optimal exact implementation –

12

Algorithm 3 Greedy Algorithm ALGgreedy

Input: Game G, convex target region O
Output: Implementation V of O
1: Vi(x) := 0;Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: compute X∗;
3: for all i ∈ N do
4: Vi(oi, ō−i) :=∞ ∀oi ∈ Oi , ō−i ∈ X−i\O−i;
5: while X∗i (V) * Oi do
6: cbest := 0;mbest :=null; sbest :=null;
7: for all s ∈ X∗i (V)\Oi do
8: m := arg minoi∈Oi(∆G(V)(s, oi));
9: for all o−i ∈ O−i do

10: Wi(m, o−i):=max(0, Ui(s, o−i)− (Ui(m, o−i) + Vi(m, o−i)));
11: c := 0;
12: for all x ∈ X∗i \Oi do
13: if m dominates x in G(V +W) then
14: c+ +;
15: if c > cbest then
16: cbest := c ; mbest := m ; sbest := s;
17: for all o−i ∈ O−i do
18: Vi(mbest, o−i)+=max(0, Ui(sbest, o−i)− (Ui(mbest, o−i) + Vi(mbest, o−i)));
19: return V ;

G =

20
0

11
9

15
15

15
15

11
9

20
0

15
15

15
15

19
10

10
19

9
11

0
20

10
19

19
10

0
20

9
11

V =

0
∞

0
∞

0
0

0
0

0
∞

0
∞

0
0

0
0

1
1

1
1
∞

0
∞

0
1

1
1

1
∞

0
∞

0

Fig. 3. 2-player game where O ’s optimal implementation V yields a region |X∗(V)| > 1.

run in polynomial time. In order to study the quality of the resulting implementations,
we performed several simulations comparing the implementation costs computed by the
different algorithms. We have focused on two-person games using random game tables
where both players have payoffs chosen uniformly at random from the interval [0,max],
for some constant max. We have also studied generalized scissors, rock, paper games
(a.k.a., Jan Ken Pon games), that is, symmetric zero-sum games with payoff values
chosen uniformly at random from an interval [0,max]. We find that – for the same
interval and the same number of strategies – the average implementation cost of random
symmetric zero-sum games, random symmetric games, and completely random games
hardly deviate. This is probably due to the fact that in all examined types of random
games virtually all strategies are non-dominated. Therefore, in the following, we present
our results on symmetric random games only.

13

Algorithm 4 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O
1: [k, V] := greedy(G,O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {} ∀i;
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi (maxo−i∈O−i Ui(oi, o−i));
6: if (Oi * Ti) ∧ (¬cj∀j) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\{xi} (maxo−i∈O−i(Ui(oi, o−i)));
8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V] := greedy(G,O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := >;
15: return V ;

Non-Exact Implementation We observe that implementing the best singleton often
yields low costs. In other words, especially when large sets have to be implemented,
our greedy algorithms tend to implement too many strategy profiles and consequently
incur unnecessarily high costs. However, while this is often true in random games, there
are counter examples where the cheapest singleton is costly compared to the implemen-
tation found by the greedy algorithms; Fig. 3 depicts a situation where the greedy algo-
rithm computes a better solution. We presume thatALGred might improve relatively to
the best singleton heuristic algorithm for larger player sets.

Fig. 4 plots the implementation costs determined by the ALGgreedy, ALGred and
the singleton algorithm as a function of the number of strategies involved. On average,
the singleton algorithm performed much better than the other two, with ALGgreedy

being the worst of the candidates. In the second plot we can see the implementation
costs the algorithms compute for different payoff value intervals [0,max]. As expected,
the implementation cost increases for larger intervals.

Exact Implementation The observation that the greedy algorithm ALGgreedy imple-
ments rather large subregions of O suggests that it may achieve good results for exact
implementations. We can modify an implementation V of O, which yields a subset of
O, without changing any entry Vi(o), o ∈ O, such that the resulting V implements O
exactly.

Theorem 6. If O−i ⊂ X−i ∀i ∈ N , it holds that k∗(O) ≤ maxo∈O V (o) for an
implementation V of O.

PROOF. If V is a non-exact implementation of O, there are some strategies Oi domi-
nated by other strategies in Oi. A dominated strategy oi can be made non-dominated
by adding payments to the existing Vi for profiles of the form (oi, ō−i), where ō−i ∈

14

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

Strategies

k

Greedy Algorithm

Best Singleton Algorithm

Reducing Algorithm

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

Maximal Payoff Distance

k

Reducing Algorithm

Greedy Algorithm

Best Singleton Algorithm

Fig. 4. The average implementation cost k of sets O over 100 random games where |Oi| =
bn/3c. Left: utility values chosen uniformly at random from [0, 20]. For different intervals we
obtain approximately the same result when normalizing k with the maximal possible value. Right:
eight strategies are used; other numbers of strategies yield similar results.

X−i\O−i. Let a ∈ Oi dominate b ∈ Oi in G(V). The interested party can annihi-
late this relation of a dominating b by choosing payment Vi(b, ō−i) such that Player
i’s resulting payoff Ui(b, ō−i) + Vi(b, ō−i) is larger than Ui(a, ō−i) + Vi(a, ō−i) and
therefore a does not dominate b anymore. As such, all dominations inside Oi can be
neutralized even if |X−i \O−i| = 1. One must realize that the relation of domination
is irreflexive and transitive and therefore establishes a strict order among the strategies.
Let ō−i ∈ X−i\O−i be a column in Player i’s payoff matrix outsideO. By choosing the
payments Vi(oi, ō−i) such that the resulting payoffs Ui(oi, ō−i) + Vi(oi, ō−i) establish
the same order with the less-than relation (<) as the strategies oi with the domination
relation, all oi ∈ Oi will be non-dominated. Thus, a V ′ can be constructed from V
which implements O exactly without modifying any entry Vi(o), o ∈ O. 2

Theorem 6 enables us to use ALGgreedy for an exact cost approximation by simply
computing maxo∈O V (o) instead of maxx∈X∗(V) V (x). Fig. 5 depicts the exact imple-
mentation costs determined by ALGgreedy , ALGexact and the perturbation algorithm
from [11]. The first figure plots k as a function of the number of strategies, whereas the
second figure demonstrates the effects of varying the size of the payoff interval. Due
to the large runtime of ALGexact, we were only able to compute k for a small number
of strategies. However, for these cases, our simulations reveals that ALGgreedy often
finds implementations which are close to optimal and is better than the perturbation al-
gorithm. For different payoff value intervals [0,max], we observe a faster increase in k
than in the non-exact implementation case. This suggests that implementing a smaller
region entails lower costs for random games on average.

Furthermore, our simulations revealed that the variance of the cost found decreases
with the number of strategies for all algorithms, while it remains roughly constant for
intervals of various size. The variance of the singleton heuristic is typically smaller than
the variance of ALGgreedy and ALGred. The same holds for exact implementations,
where the perturbation algorithm has the largest variance.

15
11 11 3 2.01 2.25 3.56

 kReduce 4 2.6 2.93 4.4
12.06
32.73 5 3.45 4.06 5.8

51.6
67.3 6 3.65 4.38 5.88

85.17
102.97 7 4.33 5.03 6.7

120.7
139.19 8 4.93 5.68 7.75
156.64
175.42 9 5.64 6.27 9.25
195.49
215.65 10 6.02 6.78 9.2
236.23
257.19 11 6.65 7.69 10.24
278.35
299.81 12 7.27 8.46 11.91
321.24
342.93 13 8.01 9.52 11.92
364.97
387.49 14 8.16 9.78 12.74
409.69
432.74 15 9.07 10.05 13.92

455.8
479 16 9.03 10.49 14.04

502.84
526.56 17 10.19 11.51 15.3

550.7
574.72 18 10.83 12.56 16.31
599.15
623.76 19 11.88 13.56 18.74
648.73

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40

Strategies

k

Greedy Algorithm

Perturbation Algorithm

Recursive Algorithm

0

20

40

60

80

100

120

140

3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Maximal Payoff Difference

k

Recursive Algorithm

Greedy Algorithm

Perturbation Algorithm

Fig. 5. The average exact implementation cost k of sets O over 100 random games where |Oi| =
bn/3c. Left: utility values chosen uniformly at random from [0, 20]. For other intervals we obtain
approximately the same result when normalizing k with the maximal possible value. Right: eight
strategies are used; the plot is similar for other numbers of strategies.

Finally, we tested different options to choose the next strategy inALGgreedy (Line 8)
and ALGred (Lines 5 and 7). However, none of the alternatives we tested performed
better than the ones described in Section 4.

In conclusion, our simulations have shown that for the case of non-exact implemen-
tations, there are interesting differences between the algorithms proposed in Section 4.
In particular, the additional reductions by ALGred are beneficial. For the case of exact
implementations, our modified greedy algorithm yields good results. As a final remark
we want to mention that, although ALGgreedy and ALGred may find cheap implemen-
tations in the average case, there are examples where the approximation ratio of these
algorithms is large.

6 Variations

Mechanism design by creditability offers many interesting extensions. In this section,
two alternative models of rationality are introduced. If we assume that players do not
just select any non-dominated strategy, but have other parameters influencing their de-
cision process, our model has to be adjusted. In many (real world) games, players typ-
ically do not know which strategies the other players will choose. In this case, a player
cannot do better than assume the other players to select a strategy at random. If a player
wants to maximize her gain, she will take the average payoff of strategies into account.
This kind of decision making is analyzed in the subsequent section. Afterwards, risk-
averse players are examined. Finally, we take a brief look at the dynamics of repeated
games with an interested third party offering payments in each round.

6.1 Average Payoff Model

As a player may choose any non-dominated strategy, it is reasonable to compute the
payoff which each of her strategy will yield on average. Thus, assuming no knowledge
on the payoffs of the other players, each strategy xi has an average payoff of pi(xi) :=

1
|X−i|

∑
x−i∈X−i

Ui(xi, x−i) for Player i. Player i will then select the strategy s ∈ Xi

16

with the largest pi(s), i.e., s = arg maxs∈Xi
pi(s). If multiple strategies have the same

average payoff, she plays one of them uniformly at random. For such average strategy
games, we say that xi dominates x′i iff pi(xi) > pi(x′i). Note that with this modified
meaning of domination, the region of non-dominated strategies, X∗, differs as well.

The average payoff model has interesting properties, e.g., singleton profiles can be
implemented for free.

Theorem 7. If players maximize their average payoff, singleton strategy profiles are
always 0-implementable if there are at least two players with at least two strategies.

PROOF. Let z be the strategy profile to be implemented. In order to make Player i
choose strategy zi, the interested party may offer payments for any strategy profile
(zi, z̄−i) where z̄−i ∈ X−i\ {z−i} such that pi(zi) becomes Player i’s largest av-
erage payoff in G(V). Since each player has at least two strategies to choose from,
there is at least one z̄−i, and by making Vi(zi, z̄−i) large enough (e.g., Vi(zi, z̄−i) :=
maxxi∈Xi

∑
x−i∈X−i

Ui(xi, x−i) + ε) this can always be achieved. Therefore, z can
be implemented without promising any payments for z. 2

Theorem 7 implies that entire strategy profile regions O are 0-implementable as
well: we just have to implement any singleton inside O.

Corollary 3. In average strategy games where every player has at least two strategies,
every strategy profile region can be implemented for free.

Exact implementations can be implemented at no costs as well.

Theorem 8. In average strategy games where O−i ⊂ X−i ∀i ∈ N , each strategy
profile region has an exact 0-implementation.

PROOF. The mechanism designer can proceed as follows. Let µi := maxxi∈Xi{pi(xi)}.
We set Vi(oi, ō−i):=|X−i|(µi−pi(xi))−Ui(xi, x−i)+ ε, ∀oi ∈ Oi, ō−i ∈ X−i \O−i.
Consequently, it holds that for each Player i and two strategies xi ∈ Oi and x′i /∈ Oi,
pi(xi) > pi(x′i); moreover, no strategy xi ∈ Oi is dominated by any other strategy. As
payments in Vi(oi, ō−i) with oi ∈ Oi and ō−i ∈ X−i \ O−i do not contribute to the
implementation cost, Theorem 8 follows. 2

6.2 Risk-Averse Players

Instead of striving for a high payoff on average, the players might be cautious or
risk-averse. To account for such behavior, we adapt our model by assuming that the
players seek to minimize the risk on missing out on benefits. In order to achieve this
objective, they select strategies where the minimum gain is not less than any other
strategy’s minimum gain. If there is more than one strategy with this property, the
risk-averse player can choose a strategy among these, where the average of the ben-
efits is maximal. More formally, let mini := maxxi∈Xi

(minx−i∈X−i
(Ui(xi, x−i)))

and ∅X f(x) := 1
|X| ·

∑
x∈X f(x). Then Player i selects a strategy m satisfying

m = arg maxm∈M (∅X−i
Ui(m,x−i)), where M = {xi|∀x−i Ui(xi, x−i) = mini}.

Theorem 9. For risk-averse players the implementation cost of a singleton z ∈ X is
k(z) =

∑n
i=1 max(0,mini − Ui(z))

17

PROOF. We show how to construct V implementing z with cost k and then prove that
we cannot reduce the payments of V (z). Since in this model every Player i makes her
decision without taking into account the benefits other players might or might not ob-
tain, it suffices to consider each Vi separately. To ensure that Player i selects zi we have
to set Vi(zi, x−i) to a value such thatmini is reached inG(U+V) for each x−i. Conse-
quently we assign Vi(zi, x−i) = max(0,mini−Ui(zi, x−i)). We have to satisfy a sec-
ond condition such that zi is chosen, namely, zi = arg maxm∈M (∅X−i

Ui(m,x−i)).
This is achieved by setting Vi(zi, x−i) = ∞ ∀x−i 6= z−i. We repeat these steps for
all Players i. Clearly, V constructed in this manner implements z. Since the cost k
only comprises the additional payments in V (z) and lowering Vi(z) for any i results in
Player i choosing a different strategy, we can deduce the statement of the theorem. 2

For strategy profile regions, the situation with risk-averse players differs from the
standard model considerably.

Theorem 10. For risk-averse players the implementation cost for a strategy profile re-
gion O ⊂ X is k(O) = mino∈O

∑n
i=1 max(0,mini − Ui(o)).

PROOF. Since we have to add up the cost to reach the required minimum for every
strategy profile in X∗(V) it cannot cost less to exactly implement more than one strat-
egy profile, i.e., find V such that |X∗(V)| = 1. Thus V implementing the “cheapest”
singleton in O yields an optimal implementation for O, and the claim follows. 2

Algorithm 5 ALGriskRisk-averse Players: Exact Implementation
Input: Game G, target region O, Oi ∩X∗i = ∅ ∀i ∈ N
Output: V
1: compute X∗;
2: Vi(z) = 0 for all i ∈ N, z ∈ X;
3: for all i ∈ N do
4: Vi(xi, x−i):=∞ ∀xi ∈ Oi, x−i ∈ X−i \O−i;
5: Vi(xi, x−i) := max(0,mini − Ui(xi, x−i)) ∀xi ∈ Oi, x−i ∈ X−i;
6: if O−i = X−i then
7: if τ(Oi) > τ(X∗i) then
8: if |Xi|+ ε|Oi| > |Xi|+

∑
oi
δ(oi) then

9: Vi(oi, x−i):=Vi(oi, x−i) + δ(oi) ∀oi, x−i;
10: else
11: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
12: else
13: if ε|Oi| >

∑
oi

[ε+ δ(oi)] then
14: Vi(oi, x−i):=Vi(oi, x−i) + ε+ δ(oi) ∀oi, x−i;
15: else
16: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
17: return V ;

In Section 4, we conjectured the problem of computing k(O) to be NP-complete
for both general and exact implementations. This is not the case for risk-averse players,
as the following theorem states.

18

Theorem 11. ALGrisk computes k(O) in time O
(
n|X|2

)
, thus the problem of com-

puting k for risk-averse agents is in P.

PROOF. For the non-exact case this theorem follows directly from Theorem 10. In or-
der to prove Theorem 11 for exact implementations, we demonstrate how to compute
Vi(o) such that V implements the entire region O optimally. For a Player i and a set
of strategies Yi ⊆ Xi, we define τ(Yi):=maxxi∈Yi

(∅X−i
((U + V)i(xi, x−i))) to be

the maximum of the average benefits over all strategies. For each strategy of a Player
i, we define δ(xi):=max(τ(Oi), τ(X∗i)) − ∅X−i((U + V)i(xi, x−i))), for xi ∈ Xi,
to be the difference of the averages. Algorithm 5 constructs V if the target region O
and X∗ are disjoint. Analogously to the proofs above we can deal with each Player i
individually. The algorithm computes for all cases how much the interested party has to
offer at least for strategy profiles in O and sets Vi(xi, x−i) to infinity for all xi ∈ Oi,
x−i ∈ X−i \O−i (Line 4). Then, for each Player i, strategies Oi have to reach the min-
imum payoff of strategies in X∗i . This suffices for an exact implementation if Oi ⊂ Xi,
i.e. if there exists at least one strategy xi /∈ Oi. Otherwise, we determine whether it
costs more to exceed the minimum constraint or the average constraint for all Oi if Oi

covers whole columns and adjust Vi accordingly. Thus the algorithm ensures that only
strategies in O are chosen while all strategies in O are selected.

The algorithm can be extended easily to work for instances where X∗i ⊂ Oi. As
the extension is straight-forward and does not provide any new insights, we omit it.
The runtime of the algorithm can be determined to be O

(
n|X|2

)
, thus we can compute

k∗(O) = maxo∈O V (o) in polynomial time. 2

6.3 Round-based Mechanisms

The previous sections dealt with static models only. Now, we extend our analysis to
dynamic, round-based games, where the designer offers payments to the players after
each round in order to make them change strategies. This opens many questions: For
example, imagine a concrete game such as a network creation game [7] where all play-
ers are stuck in a costly Nash equilibrium. The goal of a mechanism designer could then
be to guide the players into another, better Nash equilibrium. Many such extensions are
reasonable; due to space constraints, only one model is presented in more detail.

In a dynamic game, we regard a strategy profile as a state in which the participants
find themselves. In a network context, each x ∈ X could represent one particular net-
work topology. We presume to find the game in an initial starting state sT=0 ∈ X
and that, in state sT=t, each Player i only sees the states she can reach by changing
her strategy given the other players remain with their chosen strategies. Thus Player i
sees only strategy profiles in XT=t

visible,i = Xi × {sT=t
−i } in round t. In every round t,

the mechanism designer offers the players a payment matrix V T=t (in addition to the
game’s static payoff matrix U). Then all players switch to their best visible strategy
(which is any best response Bi(sT=t

−i)), and the game’s state changes to sT=t+1. Before
the next round starts, the mechanism designer disburses the payments V T=t(sT=t+1)
offered for the newly reached state. The same procedure is repeated until the mecha-

19

nism designer decides to stop the game. We prove that a mechanism designer can guide
the players to any strategy profile at zero costs in two rounds.

Theorem 12. Starting in an arbitrary strategy profile, a dynamic mechanism can be
designed to lead the players to any strategy profile without any expenses in at most two
rounds if |Xi| ≥ 3 ∀i ∈ N .

In order to simplify the proof we begin with a helper lemma. Let XT=t
visible denote the

visible strategy profile region in round t, i.e., XT=t
visible =

⋃n
i=1X

T=t
visible,i.

Lemma 1. The third party can lead the players of a dynamic game to any strategy
profile outside the visible strategy profile region without any expenses in one round.

PROOF. Let s ∈ X be the starting strategy profile and e the desired end strategy profile
in the non-visible region of s. The designer can implement e in just one round by offer-
ing each Player i an infinite amount Vi(x) for the strategy profile x = (ei, s−i) and zero
for any other. Thus each player will switch to ei. Since Vi(ei, s−i) are the only positive
payments offered and since all x = (ei, s−i) are visible and e is non-visible from s, e
is implemented at no cost. 2

PROOF OF THEOREM 12. Consider an arbitrary starting strategy profile s and a
desired strategy profile e. If e is not visible from s, e is implementable at no cost in one
round, as seen in Lemma 1. If e is visible from s, the interested party can still implement
e for free by taking a detour to a strategy profile d which is neither in s’ visible region
nor in e’s visible region. Such a strategy profile d exists if Player i who sees e from s
has at least 3 strategies to choose from and |X−i| ≥ 2. 2

See Fig. 6 for an illustration.

e

s

e

s

e

s

d

T=0 T=1 T=2

Fig. 6. A dynamic game: Starting in s, strategy profile e can be implemented at zero cost within
two rounds by taking a detour to d. The colored region marks the visible strategy profiles at each
step.

7 Conclusion

Rendering distributed systems robust to non-cooperative behavior has become an im-
portant research topic. This paper has studied the fundamental question: Which out-
comes can be implemented by promising players money while the eventual payments
are bounded? We have presented algorithms for various objectives yielding implemen-
tations of low cost. Furthermore, it has been shown that a greedy algorithm performs
well for random games. Finally, this paper has initiated the study of risk-averse players
and round-based games.

20

References
1. J. Aspnes, K. Chang, and A. Yampolskiy. Inoculation Strategies for Victims of Viruses and

the Sum-of-Squares Partition Problem. In Proc. 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 43–52, 2005.

2. M. Babaioff, M. Feldman, and N. Nisan. Combinatorial Agency. In Proc. 7th ACM Confer-
ence on Electronic Commerce (EC), pages 18–28, 2006.

3. G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite Congestion Games. In
Proc. 37th Annual ACM Symposium on Theory of Computing (STOC), pages 67–73, 2005.

4. R. Cole, Y. Dodis, and T. Roughgarden. How Much Can Taxes Help Selfish Routing? In
Proc. 4th ACM Conference on Electronic Commerce (EC), pages 98–107, 2003.

5. R. Cole, Y. Dodis, and T. Roughgarden. Pricing Network Edges for Heterogeneous Selfish
Users. In Proc. 35th Annual ACM Symposium on Theory of Computing (STOC), pages 521–
530, 2003.

6. R. Dash, D. Parkes, and N. Jennings. Computational Mechanism Design: A Call to Arms.
In IEEE Intelligent Systems, 2003.

7. A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a Network
Creation Game. In Proc. 22nd Annual Symposium on Principles of Distributed Computing
(PODC), pages 347–351, 2003.

8. D. S. Johnson. Approximation Algorithms for Combinatorial Problems. Journal of Com-
puter and System Sciences, 9:256–278, 1974.

9. L. Lovász. On the Ratio of Optimal Integral and Fractional Covers. Discrete Mathematics,
13:391–398, 1975.

10. E. Maskin and T. Sjöström. Handbook of Social Choice Theory and Welfare (Implementation
Theory), volume 1. North-Holland, Amsterdam, 2002.

11. D. Monderer and M. Tennenholtz. k-Implementation. In Proc. 4th ACM Conference on
Electronic Commerce (EC), pages 19–28, 2003.

12. T. Roughgarden. Stackelberg Scheduling Strategies. In Proc. 33rd ACM Symposium on
Theory of Computing (STOC), pages 104–113, 2001.

Appendix

Non-Optimality of the Perturbation Algorithm

In this section, we give an example demonstrating that the optimal perturbation algo-
rithm presented in [11] is not correct. The algorithm computes the payoff matrix V for
the following game G with X∗ and O and payoff matrices V 1, V 2.

G
2

0
0

0
0

0
2

3
4

0
0

0

V1
2

0
5

0
0

3
5

0
0

5
0

0

V2
2

3
5

0
2

3
5

0
0

5
0

0

As can be verified easily, V1 implements O with cost k = 3. The payoff matrix
V2 computed by the optimal perturbation algorithm implements O as well, however,
it has cost k = 5. The set of possible differences between an agent’s payoffs in the
original game for G is E = {0, 2, 3, 4}. We execute Lines 2 and 3 and obtain a matrix
of perturbation G′. We have to go through the Lines 4 to 8 for Player p1 twice, for

21

e1 = 0 and e2 = 2, generating G′(p1, e1), G′(p1, e2) respectively, such that afterwards
(G+G′)∗1 coincides with O1. Executing Lines 9 to 13 for Player p2 until the condition
in Line 13 is satisfied and hence (G + G′)∗2 ≡ O2 results in G′(p2, e1) = G′(p1, e2).
Thus, the perturbation algorithm returns the payoff matrix V = G′.

G′

0
0

5
0

0
0

5
0

0
5

0
0

G′(p1, e1)
0

0
5

0
0

0
5

0
0

5
0

0

G′(p1, e2)
2

0
5

0
2

0
5

0
0

5
0

0

G′(p2, e2)
2

2
5

0
0

2
5

0
0

5
0

0

G′(p2, e3)
2

3
5

0
0

3
5

0
0

5
0

0

