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Abstract— The inherent trade-off between energy-efficiency
and rapidity of event dissemination is characteristic for wireless
sensor networks. Scarcity of energy renders it necessary for
nodes to spend a large portion of their lifetime in an energy-
efficient sleep mode during which they do neither receive nor
send messages. On the other hand, the longer nodes stay in sleep
mode, the slower will be the reaction time for disseminating an
external event. The trade-off is prominently exhibited during the
deployment phase of sensor networks, if some nodes are deployed
earlier than others. In this paper, we study this fundamental
trade-off by giving a formal model that enables us to compare the
performance of different protocols and algorithms. Based on this
model, we propose, analyze, and simulate two novel algorithms
which significantly outperform existing solutions.

I. I NTRODUCTION

Wireless sensor networks have been envisioned in a growing
number of application fields. The prospect of aggregating sen-
sor nodes into sophisticated computation and communication
infrastructures is bound to have a significant impact on a
wide array of scientific, industrial, or military applications.
One of the key characteristics of suchsensor networksis
that individual sensor nodes have a limited, typically non-
renewable power supply and, once deployed, must work unat-
tended. In view of the scarcity of energy, an economical and
frugal management of this resource is essential for prolonging
network lifetime and availability.

The search for energy-efficient solutions has lead to nu-
merous algorithms and protocols that strike for the goal of
reducing the energy-consumption of an operational sensor
network. There have been, for instance, various proposals
for energy-efficient medium access control (MAC) protocols
[22], [25], [31], [32], routing algorithms [1], [6], topology
control and clustering [3], [10], [20], [30], [17], or data
gathering/dissemination [7], [9], [27], [33]. This impressive
body of work has lead to new insights and several intriguing
solutions. Clearly, continuous research on thisoperational
phaseof wireless sensor networks is needed. In this paper,
we advocate studying also thenon-operational phaseof a
sensor network with the same zeal. Specifically, in many
applications, a crucial loss of energy occurs alreadybefore
the sensor network reaches its operational state, i.e., during
its deployment.

Consider for instance a water (or power, gas, etc.) me-
tering network for an apartment complex. Each apartment
is equipped with a water metering sensor. At midnight, all

sensors wake up for a few seconds, the water consumption
of each apartment is sent to a base station in multi-hop
fashion, and all sensors go back to sleep for another 24
hours. In the operational phase such a sensor network features
a gargantuan sleep/awake ratio, allowing even conventional
batteries to last several years. In order to reach such a long
lifetime the node’s duty cycle must be significantlys below1%.
However, the deployment of the sensor nodes might take days
or weeks. With a naive deployment protocol, say, when nodes
stay awake until the entire system is deployed, the battery of
the node deployed first might be drained before the network
even becomes operational. This highlights a problem that is
particularly pronounced in settings in which the node’s duty
cycle during the operational phase is small, but the deployment
phase takes long. Many other applications featuring such a
time-consuming deployment phase exist, e.g. vehicle tracking,
or monitoring large-scale industrial processes.

Generally, once all sensor nodes are fully deployed, the
network should make the transition from the deployment phase
to the operational phase as quickly as possible. In particu-
lar, we might like to externally trigger anetwork discovery
procedure that allows verifying the operability of the newly
deployed network (e.g. detect faulty sensor nodes). Clearly,
simple solutions to invoke such a system initialization would
be to manually switch on all nodes once the deployment
phase is completed, or to set a timer at the time of the
node’s deployment. Unfortunately, in many practical settings,
neither of these hands-on solutions is practicable. First, nodes
may be deployed in remote or hostile environment in which
switching on nodes manually after all nodes are deployed may
be impossible. Moreover, in application scenarios featuring
a time-consuming deployment phase, predicting the exact
duration of the deployment process is usually hard, hence
ruling out the possibility of employing a solution based on
predefined timers.

So how can the information about the beginning of the
operational phase be distributed among the network nodes?
Typically, this information is supposed to bebroadcasted by
the nodesin a multi-hop way through the entire network such
that, eventually, every sensor node will know that the system
is now ready to start its operational phase. Specifically, one or
several nodes (in typical sensor network applications, this is
usually the base station) are triggered externally. These nodes
then try to inform their neighbors, who in turn inform their



neighbors, and so forth. We call this externally triggered event
that sets off the information broadcast thelaunching point. The
trade-off studied in this paper is about saving energyduring
deployment, yet quickly going into operational modeafter the
launching point.

Ideally, each node should remain in some kind of energy-
savingsleep modefor the entire duration of the deployment
phase preceding the launching point. In sleep mode, nodes do
neither send data packets nor listen for incoming messages
[26]. The problem is however that individual nodes do not
know the exact time of the launching point, or the duration
of the deployment phase. As a consequence, in order to learn
about the arrival of the launching point from neighbors, a node
must periodically leave the sleep mode and listen for incoming
messages.1

This observation establishes a trade-off between the energy
consumption of nodes during the deployment phase and the
rapidity of the transition to the operational phase. Neither of
the two extremes,always asleepandalways awakeduring the
deployment, is satisfying; any decent protocol is in-between.

We believe that studying the trade-off delay vs. energy
efficiency is practically important, even beyond the deploy-
ment problem. In particular, there are sensor networks that
concentrate on discovering rare events, e.g. sensor networks
for seismic surveillance in earthquake and rubble zones, or
sensor networks monitoring enemy activity. The pronounced
“event” character of such rare events leads to exactly the
deployment problem trade-off. Namely, since events occur
rarely, sensor nodes should be in sleep mode as often as
possible to save energy. These energy savings, however, come
at the cost of a prolonged reaction time once a rare event
occurs. Hence, this conflict between energy-efficiency and the
rapidity of information propagation is fundamental in sensor
networks.

In this paper, we take a step towards understanding and ana-
lyzing the trade-off between energy-efficiency and propagation
delay, particularly during the deployment phase. We model the
problem in a way that allows to compare different protocols
and algorithms and evaluate their respective strengths and
weaknesses, independent of application specific parameters
such as node distribution or deployment pattern. Specifically,
we analyze the behavior of three different algorithms. The first
algorithm [18] has originally been proposed for the purpose
of neighbor discovery, but can be applied for the deployment
problem as well. In addition, we present two novel algorithms
that significantly outperform the algorithm by [18], for both
worst-caseand average-case scenarios. It is interesting to note
that one of our algorithms is “semi-structured,” in the sense
that already deployed nodes structure themselves in a feeble
way that allows to incorporate newly deployed nodes with

1Obviously, the problem could be elegantly solved using very low power
“trigger” circuits, which operate continuously on small power budgets, and
wake up more power-hungry circuits only upon receipt of a suitable signal
from a neighboring node. Unfortunately, currently available standard hardware
such as the Mica2 [11] wireless sensor nodes do not offer this functionality,
and we therefore do not consider this option in this paper.

a small energy overhead only. This semi-structured approach
is in contrast to, say, tree-based dissemination algorithms in
which during the deployment process, a lot of effort (and
hence, energy) is required to recognize and integrate new
nodes. We believe that constructingsemi-structuresis an in-
teresting concept by itself, with potentially many applications
beyond the scope of this paper.

The remainder of the paper is organized as follows. We
define our model of computation and the problem in Sections
II and III, respectively. In Section IV we analyze the behavior
of the different algorithms. While this section derives funda-
mental results that hold even inworst-casescenarios, we in-
vestigate the algorithms’average-caseefficiency in Section V
using simulations. Section VI gives an overview over related
work, before Section VII concludes the paper.

II. M ODEL

Our model of computation is based on theunstructured
radio network modelas introduced in [15]. This model aims
to capture the harsh characteristics of newly deployed ad hoc
and sensor networks. It encompasses various critical aspects
such as asynchronous wake-up, absence of a MAC layer, and
scarce knowledge about the network graph. More specifically,
the model makes the following assumptions.

• During the deployment phase, sensor nodeswake up
asynchronouslyat any time. Moreover, they do not have
access to a global clock and hence, upon waking up,
they do not know whether or how many other nodes
in their neighborhood have already been deployed. Once
the launching point is reached, we assume that all nodes
have been deployed and therefore, no new nodes join the
network. In other words, after the launching point we
consider a static network.

• We also assume that nodes haveno built-in knowl-
edge about other node’s distribution or wake-up pat-
tern. Specifically, nodes are completely clueless about
the number of nodes in their neighborhood. The only
knowledge a-priori given to the nodes is an upper boundn
for the total number of nodes deployed in the network. It
has been shown in [13] that without any such estimate of
n, every algorithm requires at least timeΩ(n/ log n) until
one single message can be transmitted without collision.
In practice, the number of nodes in a network may not
be known exactly, but it can roughly be estimated in
advance.

• If a node receives multiple messages at the same time,
these messages become garbled and cannot be received
properly. Moreover, nodes do not feature a reliablecolli-
sion detection mechanism. That is, nodes are not capable
of distinguishing the situation in which two or more
neighbors are sending and the situation in which no
neighbor is sending. Furthermore, a sending node does
not know how many (if any at all) of its neighbors
have correctly received its transmission. The unreliable
collision detection model is the strongest possible model
when analyzing wireless networks. Clearly, algorithms



designed for a model as restricted as this can also
be employed by systems that are equipped with more
sophisticated hardware.

• We model the multi-hop network as a unit disk graph
(UDG). In a UDGG = (V, E), with n = |V |, two nodes
are connected by an edge if their Euclidean distance is at
most1. The network being multi-hop leads to well-known
aspects such as the hidden-terminal problem.

• Finally, we assume that both the node’s location and
wake-up pattern is completely arbitrary, potentially even
worst-case. Particularly, we do not assume any kind of
uniform node distribution or Markovian wake-up pattern.

The various aspects of this model suggest that we deal
with a particularly harsh model of computation; a model
that captures many of the realistic characteristics of newly
deployed sensor networks. We assume time to be divided into
time-slots, the length of which are roughly the same at each
node. In each time-slot a node can be in exactly one of the
three following modes:transmit T , listen L, or sleepS. In
sleep modeS, a nodes deactivates its radio subsystem in order
to save energy. That is, a node does not overhear the shared
medium in sleep mode and thus misses all messages sent by
neighboring nodes. At the communication distances typical in
sensor networks, listening for information on the radio channel
is of a cost similar to transmission of data [23]. Therefore,
the energy consumptione(v) of a nodev corresponds to the
number of time-slots it spends in either transmit or listen
mode. Consequently, reducing merely the node’ssending time
is not sufficient when designing energy efficient algorithms
for sensor networks. Instead, thelistening timemust also be
minimized, however slowing down event dissemination.

III. PROBLEM STATEMENT

Before the sensor network can start performing its intended
task, nodes must be deployed, a process that may take several
days or even weeks. We divide thenon-operational phaseof
a sensor network into two parts, thedeployment phaseand
notification phaseas shown in Figure 1. In the deployment
phase, sensor nodes are physically positioned at their intended
locations. Once this is done for all sensor nodes, the notifi-
cation phase is triggered, in which the aim is to inform all
nodes about the system being up and running. The transition
to this second phase is induced by an externally triggered
event that is received by at least one node in the network.
We call this moment when the first node becomes notified
the launching pointLP. During the notification phase, we
call a nodenotified if it has already received the notification
message, andunawareotherwise. At the launching point, at
least 1 node is notified whereas at mostn − 1 nodes are
unaware.

During the deployment phase, an algorithm may build an
initial structure which can help speeding up the notification
process later on. On the other hand, the building and main-
tenance (incorporating newly awakening nodes into a tree,
for example) of such a structure requires the nodes to stay
awake longer and thus spend more energy. In order to enable

a fair comparison between different algorithmic approaches,
our problem definition has to be general enough to account
for these various possibilities.

The total energy consumption of a nodev in a deployment
algorithmA can be divided into two parts, theinitialization
energyand themaintenance energy. The initialization energy
einit(v) is the total amount of energy used byv to initially
join a desired structure (e.g., decide whether it is a clusterhead
or become a part of a tree). A node’s initialization energy
accrues only once, regardless of the length of the deployment
phase. In contrast, the maintenance energyem(v) denotes the
total amount of energy used byv once it has been prop-
erly initialized. Specifically, the maintenance energyem(v)
encompasses the node’s periodic wake-up necessary to learn
about the launching point. Ifem(v) is small, the node will
require a long time before learning about theLP, thus slowing
down the notification phase. Depending on the nature of the
algorithm, em(v) may comprise additional aspects. Consider
for instance an algorithm that is based on maintaining a tree-
structure which allows for rapid event dissemination during
the notification phase. In this case, already initialized nodes
periodically send messages in order to inform neighbors that
may have woken up in the meantime, thus enabling their
integration into the tree.

More formally, let TD and TN be the length of the de-
ployment phase and notification phase, respectively. Further,
tw(v) denotes the wake-up point of nodev. The time v is
active before the launching point is̀(v) = t(LP) − tw(v).
Since we consider asynchronous wake-up with an imaginary
adversary determining each node’s wake-up point (and hence
`(v)), we must consider theaverage maintenance energy
am(v) = em(v)/`(v). This value describes the maintenance
energy used by a nodev for a single time-slot between its
wake-up and theLP . Note thatam(v) is independent of a
node’stw(v), `(v), or the time of the launching point, because
am(v) considers only periodical maintenance costs, i.e., no
initialization costs.

We still have to come up with a measure for the algorithm’s
energy efficiencythat takes into account both the maintenance
and the initialization costs, but remains independent of the
specific wake-up pattern. For that, we define the energy
efficiency of an algorithmA with regard to a deployment
phase of lengthTD, denoted byE(A, TD), as theaverage
energy of algorithmA per node and per time-slot. That is,
an algorithm in which all nodes listen in every time-slot has
energy efficiency equal to1, whereas the algorithm that lets
all nodes sleep all the time has energy efficiency0. With this
definition, the measure of an algorithm’s energy efficiency
does not depend on the particular wake-up pattern of a given
problem instance. Instead, it captures the characteristic of
the algorithm itself, thus enabling a stringent and concise
comparison between different approaches.

Formally, the two main quality measures of a deployment
algorithmA are defined as follows.

Definition 1: Let A be a deployment algorithm and letTD

be the length of the deployment phase before the launching
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Fig. 1. The deployment phase is of lengthTD , the notification phase is of lengthTN .

point. Also, let f(n) be a minimal function such that with
probability at least1 − 1/n, it holds that TN ≤ f(n).
The algorithm’s energy and time efficiency,E(A, TD) and
T (A, TD), are defined as

E(A, TD) :=
1

n · TD

∑

v∈V

(einit(v) + TD · am(v)),

T (A, TD) := f(n).

Note that the definition ofE(A, TD) corresponds to the intu-
itive notion of energy efficiencygiven above. Particularly, the
termsTD ·am(v) andeinit(v) describe a nodev’s maintenance
and initialization energy during a deployment phase of length
TD, respectively. Adding up these values over all nodes and
dividing by 1

n·TD
, the number of nodes and time-slots leads to

the energy efficiencyE(A, TD). As for the second measure,
an algorithm has time efficiencyf(n) (for instancen2) if with
high probability, all nodes are notifiedf(n) time-slots after the
launching point.

Definition 1 allows us to compare deployment algorithms
A1 andA2 in two ways. First, we can fix the notification time
f(n) and compare both algorithm’s energy requirements. That
is, we demand two algorithms to finish the notification period
within the same amount of time. We then compare which
algorithm requires more energy during the deployment phase
in order to ensure that all nodes are notified withinf(n), i.e.,
TN ≤ f(n). Alternatively, we can fix the energy consumption
E(A1, TD) and E(A2, TD), respectively, of both algorithms
and then compare the resulting length of the notification
phase. Clearly, both comparison methodologies are two sides
of the same coin; they both describe the inherent trade-off
between energy efficiency and the rapidity of information
dissemination.

IV. A LGORITHMS

In this section, we analyze three different algorithms under
our model and derive their respective strengths and weak-
nesses. We begin our exposition by analyzing the so-called
birthday algorithmproposed in [18] which can be employed
as a algorithm for the deployment of sensor networks. In
subsequent Sections IV-B and IV-C, we propose two novel
algorithms that significantly outperform [18].

For the analysis of the algorithms we assume time to be di-
vided into synchronized time-slots. However, notice that none
of the algorithms relies on this assumption. This simplification
of the analysis is justified due to the standard trick introduced

in [24] for the study of slotted vs. unslotted ALOHA. In
[24], it is shown that the realistic unslotted case and the
idealized slotted case differ only by a factor of two. The basic
intuition is that a single packet can only cause interference
in two consecutive time-slots. By the same token, analyzing
the algorithms in an ”ideal” setting with synchronized time-
slots, we obtain a result which is only a factor two better as
compared to the more realistic unslotted setting.

Throughout the paper, we will denote byNv the set of
neighbors of nodev, i.e., Nv = {u ∈ V | {u, v} ∈ E}.
Finally, we will make use of the following two facts. The
first can be found in standard mathematical textbooks and the
second was proven in [13].

Fact 1: For all n,t, with n ≥ 1 and |t| ≤ n,

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

Fact 2: Given a set of probabilitiesp1 · · · pn with ∀i : pi ∈
[0, 1

2 ], the following inequalities hold:

(
1
4

)∑n
k=1 pk

≤
n∏

k=1

(1− pk) ≤
(

1
e

)∑n
k=1 pk

.

A. Birthday Algorithm

The birthday algorithmAbirth proposed in [18] is con-
ceptually simple. During the deployment phase, before being
notified, a nodev listens in each time-slot with probabilitypL

and sleeps with probability1− pL. Oncev has learned about
the launching point in the notification phase, it sends with
probabilitypT which is set to1/n and listens with probability
pL. The choice of the sending probability is motivated by the
goal to avoid interference in the case when several already
notified nodes try to send a message to a common neighbor.
Clearly, the broad idea of the algorithm is to let nodes sleep
as long as possible. That is, we want to choosepL as small as
possible while still guaranteeing a speedy notification phase.
Abirth has been designed and analyzed for neighborhood

discovery, i.e., not for the deployment problem as considered
in this paper. In this section, we will analyze the birthday
algorithm’s performance in the context of the problem of
sensor network deployment. Specifically, we analyze the trade-
off exhibited byAbirth in accordance to the definitions given
in Section III.

Let f(n) be the time in which we require the notification
procedure to finish with high probability, that is, letf(n) be a



function such thatTN (Abirth) ≤ f(n) with high probability.
Given this constraint, we want to optimize the algorithm’s
energy efficiency. The achievable trade-off is expressed in the
following theorem.

Theorem 1:Let f(n) be a function such that thebirthday
algorithmAbirth has time efficiencyT (Abirth, TD) ≤ f(n).
For arbitraryTD, Abirth’s energy efficiency is

E(Abirth, TD) ∈ Θ
(

n2

f(n)

)
.

Proof: The birthday algorithm does not require any
initialization and therefore,einit(v) = 0, for all v ∈ V .
The average maintenance energy for each node corresponds
directly to the listening probability, i.e.,am(v) = pL. Hence,
the algorithm’s energy efficiency is

E(Abirth, TD) =
1

n · TD

∑

v∈V

(TD · pL) = pL.

Consider the network graphGb = (Vb, Eb) consisting of
nodesv1, . . . , vn positioned in a line, i.e.,vi is a neighbor ofvj

iff j = i+1 and1 < j ≤ n. Recall that the nodes themselves
have no knowledge about the topology of the network. Finally,
let v0 be the node which is externally triggered at the launching
point.

By the construction ofGb, the information about the arrival
of the launching point has to traverse the entire network in a
hop-by-hop fashion. We call a time-slott successful, if there is
a notified nodevi that sends int and its unaware neighboring
nodevi+1 listens at the same time. Informally, the notification
information is passed on by one hop in each successful time-
slot.

The probability Psuc that a time-slott is successful is
Psuc = pL · pT . In order to pass the notification through
the entire chain, a minimum ofn − 1 successful time-slots
are required. In total, the algorithm is allowed to usef(n)
time-slots and the broadcast has to succeed with probability
at least1−1/n. Given these constraints, we want to minimize
pL thus optimizingE(Abirth, TD). In expectation, the number
of successful rounds ispLpT f(n). Since we want at leastn−1
successes, it follows that

pLf(n)
n

= n− 1 ⇒ pL ∈ Ω
(

n2

f(n)

)
.

Finally, we show that for a large enough constantc, pL =
cn2/f(n) is enough to obtain the high probability argument.
Let X be the number of successful rounds. The expected value
of X is µ = pLf(n)/n. We bound the probability of having
less thann− 1 successful rounds using Chernoff Bounds as

P [X <n− 1] = P

[
X <

(
1−

(
1− n(n− 1)

pLf(n)

))
pLf(n)

n

]

< e
− pLf(n)

2n

(
1−n(n−1)

pLf(n)

)2

= e−
cn
2 (1− 1

c )
2

,

which is smaller than1/n for a suitably large constantc.
Notice that settingpL to a value strictly smaller, i.e.,pL ∈
o(n2/f(n)) renders the exponent positive thus not yielding
the desired result.

Algorithm Auni

upon wake-up do:
1: listen with probabilitypL, otherwise sleep

upon notification do:
2: for i := dlog ne+ 1 to 1 by −1 do
3: pT := 1/2i

4: for c(dlog ne+1)
pL

time-slotsdo
5: send message with probabilitypT

6: end for
7: end for

Keep in mind that for the birthday algorithm, the notification
phaseTN must be at least of lengthΩ(n2) in order to
guarantee a feasible solution. In the following two sections,
we will propose algorithms featuring strictly better trade-offs.

B. Uniform Algorithm

In a way, the second algorithmAuni shares the philosophy
of the birthday algorithm, having in common that there are no
initialization costs and all nodes perform the same procedure
uniformly. Specifically, algorithmAuni has one input param-
eter, the listening probabilitypL; c is a constant to be defined
later.

The main improvement is a simple idea originally stem-
ming from the literature on broadcast in radio networks [2].
When trying to inform an unaware node, notified nodes will
exponentially increase their sending probability thus reducing
the average waiting time. Notice that the number of time-
slots per sending probability is inversely proportional to the
unaware node’s listening probabilitypL. In comparison with
the birthday algorithmAbirth analyzed in Section IV-A,Auni

exhibits a strictly better performance trade-off as stated in
Theorem 2.

Theorem 2:Let f(n) be a function such that theuniform
algorithmAuni has time efficiencyT (Auni, TD) ≤ f(n). For
arbitraryTD, Auni’s energy efficiency is at most

E(Auni, TD) ∈ O

(
n log2n

f(n)

)
.

Proof: Like Abirth, Auni does not require any initial-
ization and all nodes are treated uniformly. Therefore, by the
same argument as in Section IV-A,E(Auni, TD) = pL.

We define the listening probabilitypL to be pL :=
cn(dlog ne + 1)2/f(n). We seek to show that for a constant
c ≥ 12, the probability of the notification message advancing
at leastone hopin time O(f(n)/n) is at least1−n−2. Since
the diameter of the network is at mostn, the theorem follows
from (1− n−2)n ≥ e−1/n ≥ 1− n−1.

Let Zv,t denote the event of nodev hearing a notification
message in time-slott. Consider an unaware nodev ∈ V
and lett0 be the first time-slot in which at least one node in
v’s neighborhoodNv is notified. Starting from this round, the
sum of sending probabilities

∑
w∈Nv

pT (w) increases. Lett∗

be the last time-slot in which the sum of sending probabilities



is smaller than1/2. Notice that it takes at mostt∗ − t0 ≤
(dlog ne+ 1) · c(dlog ne+1)

pL
time-slots untilt∗ is reached.

Now, consider the time intervalI = [t∗ + 1, . . . , t∗ +
c(dlog ne+1)

pL
]. During this interval, notified nodes can at most

double theirpT and new nodes will send with the initial
sending probabilitypT = 1

2n . At the end of this interval, the
sum of sending probabilities is therefore at most

∑

w∈Nv

pT (w) ≤ 2 · 1
2

+
∑

w∈Nw

1
2n

≤ 3
2
. (1)

Therefore, in each time-slott ∈ I, the sum of sending
probabilities is at least1/2 and at most3/2. The probability
P [Zv,t] that v receives the notification message from one of
its neighbors is

P [Zv,t] = pL

∑

w∈Nv


pT (w) ·

∏

q∈Nv
q 6=w

(1− pT (q))




≥ pL

∑

w∈Nv

pT (w) ·
∏

q∈Nv

(1− pT (q))

≥
Fact 2

pL

∑

w∈Nv

pT (w) ·
(

1
4

)∑
q∈Nv

pT (q)

≥ 3pL

2
·
(

1
4

)3/2

>
pL

6
.

For large enough functionsf(n) and pL = cn(dlog ne +

1)2/f(n), the probability that none of thec(dlog ne+1)
pL

time-
slots t ∈ I is successful is at most

P [∩t∈IZv,t] ≤
(
1− pL

6

) c(dlog ne+1)
pL

=
(

1− cn(dlog ne+ 1)2

6f(n)

) f(n)(dlog ne+1)
n(dlog ne+1)2

≤
Fact 1

e−
c
6 (dlog ne+1) < n−2.

Therefore, with probability exceeding1−n−2, the notification

message is passed on at least by one hop in time

t∗ − t0 ≤ (dlog ne+ 1) · cf(n)(dlog ne+ 1)
cn(dlog ne+ 1)2

=
f(n)

n
.

Consequently, by the argument given at the beginning of the

proof, the notification message reaches alln nodes within time
f(n) with probability at least1− 1

n .
The trade-off obtained byAuni is strictly better than the one

obtained by the birthday algorithm in Section IV-A. Moreover,
in the casepL = 1, the algorithm allows a feasible solution
for functionsf(n) ∈ Ω(n log2 n) as opposed tof(n) ∈ Ω(n2)
for the birthday algorithm.

Algorithm Aclu: Code for non-leaderu

upon wake-up do:
1: perform MIS algorithm of lengthO(W+log2 n)→ decide

on leaders(u), receive wake-up pointr3

2: loop
3: sleep until next wake-up pointr3

4: for η log n time-slots listen for notification message
Mn

5: r3 := r3 + I
6: end loop

upon notification do:
7: loop
8: upon receivingMa(r2), wait until r2

}
S1

9: for i := dlog ne+1 to 1 by −1 do
10: for (γ+η)(dlog ne+1) time-slotsdo
11: send message with probability

pT = 1/2i

12: upon receivingMr, quit for-loops
13: end for
14: end for





S2

15: end loop

C. Cluster Algorithm

Finally, our last algorithm is based on a different paradigm
than the two previous ones. Instead of treating all nodes
identically (uniformly), it forms asemi-structurethat renders
the notification of nodes during the notification phase quicker.
On the other hand, installing and maintaining this structure
requires additional energy during the deployment phase. Con-
trary to the first two algorithms, the cluster algorithmAclu

has non-zero initialization costseinit(v) and unequal energy
requirements between different nodes. Therefore,Aclu uses
the full potential of Definition 1.

The design ofAclu aims to mend the main dissipation
of energy of the two previous algorithms, the lack of syn-
chronization. If neighboring nodes had synchronized wake-
up points, the notification phase would take significantly less
time. Consequently, when demanding the same notification
efficiency TN , the nodes could sleep longer, thus saving
energy during the deployment phase. The problem is that
synchronization between neighboring nodes incurs additional
set-up and maintenance costs and the question is whether these
additional costs will equiponderate the gains stemming from
the above mentioned notification speed-up.

Our approach is based on grouping neighboring nodes into
synchronized clusters. Within such a cluster, nodes wake-
up at the same time. In particular, the algorithm constructs
a clustering based on amaximal independent setof the
underlying network graphG = (V,E). An independent set
S of G is a subset ofV such that∀u, v ∈ S, (u, v) /∈ E. S is
a maximal independent set(MIS) if any nodev not in S has
a neighbor inS. In our particular case, we do not consider
a MIS on the original graphG, but we consider a MIS of
the graphG′ in which two nodes are adjacent if their mutual



distance is at most1/2. This corresponds to each node setting
its transmission range to1/2.

Constructing a MIS efficiently in an unstructured radio
network is a non-trivial task. Our clustering algorithm for the
deployment problem uses a MIS algorithm proposed in [19].
It is important to note, however, that any other MIS algorithm
in the unstructured radio network model can instead be used
without affecting the asymptotic energy efficiency of algorithm
Aclu. We now introduce an adaptation of this algorithm to a
level of detail necessary to understand our results.

Each node starts executing the algorithm upon waking up.
Nodes that are located in a region which is already covered
by an existing MIS node (leader) will learn about their being
covered during an initial waiting period of lengthW . If this
is not the case,v will decide whether it joins the MIS or not
during the second phase of lengthO(log2n) time-slots. Hence,
in total, every node needs to be awake forW + O(log2n)
time-slots before deciding on whether it becomes a leader or
not. Subsequently, for the entire duration of the deployment
phase, leaders have to transmit with a sending probability of
Θ(log n/W ) in order to inform newly awakening nodes of
their being covered. This prevents nodes that wake up later
from invalidating the MIS condition. Non-leader nodes do not
have any duties and can sleep arbitrarily long. Lets(u) denote
the leader of nodeu and if u ∈ S let S(u) refer to the set of
nodes havingu as their leader, i.e.,S(u) = {v|u = s(v)} for
all u ∈ S.

We incorporate a slightly stronger version of the result in
[19] into our algorithmAclu. Particularly, we require that the
set S is connected if we consider all two-hop paths inG.
Note that this condition is automatically fulfilled if the network
density is reasonably high (for instance, if there is at least
one node in every disk of radius1/4 in the convex hull of
the nodes). InAclu each leaderv ∈ S coordinates the nodes
in S(v) and is responsible for their synchronized waking up.
Specifically, a leaderv decides on the timing of therendezvous
windowsfor its cluster; a time window during which the nodes
w ∈ S(v) are simultaneously awake. Every nodew ∈ S(v)
learns the timing of these rendezvous windows from its leader
v. The idea is that once a leader is notified, it can notify all
nodes in its cluster at almost the same time.

Each rendezvous takes place in three steps as shown in
Figure 2. In theproclamation stepS1, leaderv announces
the rendezvous interval to neighboring nodes which donot
belong toS(v). The reason is that once a node is notified, it
remains listening on the channel. Such a node must be able to
notify neighboring leaders, even if it is in a different cluster
itself (otherwise, the notification message would not broadcast
through the network). In other words, the proclamation step
is intended for announcing the notification across cluster
boundaries. The conveyance of the notification message in the
opposite direction is the aim of the second step, theleader-
notification stepS2. In this step, already notified nodes try to
notify a neighboring unaware leader.

Finally, the rendezvous is concluded by thenotification step
S3. A notified leaderv attempts to notify all unaware nodes in

Algorithm Aclu: Code for leaderv

upon wake-up do:
1: perform MIS algorithm of lengthO(W + log2n) →

become leader with cluster S(v)
2: choose rendezvous pointr1

3: r2 := r1 + ηdlog ne, r3 := r2 + (γ + η)dlog2ne
4: loop
5: sleep or send with probability

log n/W until next wake-up pointr1

6: for η log n time-slots sendMa(r2)
with probability pMIS ∈ Θ(1)

}
S1

7: for (γ + η)(dlog ne+ 1)2 − η(dlog ne)
time-slots listen forMn

8: if Mn receivedthen
9: sendMr for η log n time-slots with

probability pMIS

10: end if





S2

11: sleep untilr3

12: if notified then
13: for η log n time-slots sendMn

with probability pMIS

14: become non-leader
15: end if





S3

16: r1 := r1 + I
17: r2 := r1 + ηdlog ne
18: r3 := r2 + (γ + η)dlog2ne
19: end loop

S(v) during this step. Note that this is the only time-interval
during which an unaware non-leader node must be awake.
Summarizing, the actions during the rendezvous window are
designed as to guarantee that a notification message in the
neighborhood of a leaderv is, first, passed tov, and second,
passed fromv to all nodes inS(v). After the rendezvous
window, a notified leader becomes a non-leader node in order
to help informing other leaders located in its neighborhood.
Finally, notice that all transmissions during a rendezvous are
performed using the full transmission range. In the following,
we give a more precise description of algorithmAclu as
performed by leaders and non-leaders, in whichγ and η are
suitably large constants.

Consider a rendezvous window of leaderv. In theproclama-
tion stepS1, v sends an announcement messageMa(r2) con-
taining the starting time of the second step of the rendezvous
with a constant probabilitypMIS ∈ Θ(1). Let u be a notified
node with (u, v) ∈ E and u /∈ S(v). Notified nodes remain
listening in order to eavesdrop an announcement message
of neighboring leaders. If nodeu receives such a message
Ma(r2) from v, it tries to notify v during the subsequent
leader-notification step. In the analysis, we will show that with
high probabilityeverynotified node inv’s neighborhood will
receiveMa(r2) from v.

In the leader-notification stepS2 all notified neighbors ofv
try to send a notification messageMn to v. Notice that if there
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are no notified neighbors ofv, nothing happens during the
leader-notification step. The procedure of informing a leader
follows along the lines of the uniform algorithm presented
in Section IV-B. Starting with probability1

2n , notified nodes
exponentially increase their sending probability to speed up
the notification. In order to prevent too much “noise” (i.e., too
many nodes sending with high probability at the same time),v
starts sending a reception messageMr with probabilitypMIS

as soon as it has receivedMn. In the analysis, we show that
the O(log2 n) time-slots are sufficient to perform these tasks
with high enough probability.

Finally, unaware nodes inS(v) are only awake in the
notification stepS3 starting fromr3. They are listening during
these time-slots, waiting for a possible notification message
Mn from a potentially notifiedv.

Analysis: In the following, we will sometimes omit
calculating the exact values of the various constants involved
for the sake of clarity and due to lack of space. Instead, we
focus our attention on portraying the main ideas and concepts
of our algorithm and proofs. Exact constants can be derived
by a more rigorous analysis in a straightforward way.

We begin with a simple geometric lemma, saying that the
number of leaders (and corresponding clusters) in any disk of
radius1 is bounded by a constant.

Lemma 3:Let v be an arbitrary node. LetQ := {s(u) | u ∈
Nv} be the set of all leaders that lead at least one node inv’s
neighborhood. It holds that|Q| ≤ ϕ for a constantϕ.

Proof: The proof follows from a simple area argument.
There cannot be more than a constant number of disks of
radius 1/4 packed into a disk of radius1 such that no two
disks overlap.

In the following, letpv(t) be the sending probability of node
v in time-slott. Further,Φv(t) denotes the sum of the sending
probabilities of neighbors ofv that are not leaders, formally

Φv(t) :=
∑

u∈Nv\S
pu(t).

In the next lemma, we show that given an upper bound on
Φv(t), η log n time-slots are sufficient to let a leader inform all
its neighbors. Because of cyclic dependencies, it is convenient
to formulate this upper bound onΦv(t) as an invariant.

Invariant 1: Let t be an arbitrary time-slot. For all leaders
v ∈ S, it holds thatΦv(t) ≤ χ, for a constantχ ≤ 3ϕ

2 .

Lemma 4:Let v be a leader and consider a time intervalJ
of lengthη log n during whichv sends with probabilitypMIS .
Under the condition that Invariant 1 holds, all nodesw ∈ S(v)
receive the message duringJ with probability 1− n−3.

Proof: Let N2
v denote the set of nodes which are in

distance at most2 of v. We call a time-slot successful ifv
sends, but no other node inN2

v sends. In a successful time-slot,
all nodes inNv receive the message fromv without collision.
The probabilityPsuc(t) that a single time-slott is successful
is at least

Psuc(t) ≥ pMIS ·
∏

w∈N2
v

w 6=v

(1− pw(t))

≥
Lm 3

pMIS · (1− pMIS)ϕ−1
∏

w∈N2
v\S

(1− pw(t))

≥
Fact 2

pMIS · (1− pMIS)ϕ−1

(
1
4

)∑
w∈N2

v\S pw(t)

≥ pMIS · (1− pMIS)ϕ−1

(
1
4

)χϕ

∈ Θ(1).

where the last inequality follows from Lemma 3 and Invariant
1 which holds by assumption. Finally, the probabilityPno that
none of theη log n time-slots is successful is bounded by

Pno ≤
(

1− pMIS(1− pMIS)ϕ−1

(
1
4

)χϕ)η log n

≤ 1
2n3

for a suitably large constantη.
Unfortunately, Lemma 4 holds only conditionally; based

on the assumption that Invariant 1 holds. In the following,
we prove this invariant by placing an upper bound onΦv(t)
that holds throughout the execution of the algorithm with high
probability.

Lemma 5:With probability 1− n−2, it holds for all t and
for all leadersv ∈ S that Φv(t) ≤ χ, whereχ ≤ 3ϕ

2 is a
constant, i.e., Invariant 1 holds.

Proof: At the beginning of the notification phase, Invari-
ant 1 clearly holds. For the sake of contradiction, assume that
leaderv is the first to violate the invariant. Further, notice that
Φv can only increase if some of its neighboring non-leader
nodes are in theleader-notification stepS2. The idea is that
as soon asv receives the notification message, it starts sending



a reception messageMr. We will show that the nodes inNv

receive this message and stop sending. This preventsΦv from
increasing too much.

We define time-slotst∗v for a leaderv, such that,Φv(t∗v) <
1/2 and Φv(t∗v + 1) ≥ 1/2. By the same argument as in the
proof of Theorem 2 (cf. Inequality (1)), we can boundΦv(t∗v+
(γ + η)(dlog ne + 1)) ≤ 3/2. That is, for all time-slotst in
the intervalJ = [t∗v + 1, . . . , t∗v + (γ + η)(dlog ne + 1)], it
holds that1/2 < Φv(t) ≤ 3/2. The probabilityPsuc(t) that v
receives a message without collision in an arbitrary time slot
t ∈ J is at least

Psuc(t) ≥
∏

w∈S∩Nv

(1− pw(t))

·
∑

w∈Nv\S


pw(t) ·

∏

q∈Nv\S
q 6=w

(1− pq(t))




≥ (1− pMIS)ϕ · Φw(t)
(

1
4

)Φw(t)

≥ (1− pMIS)ϕ · 3
2

(
1
4

)3/2

>
(1− pMIS)ϕ

6
.

We continue the proof by showing that with high probability,
the first γ(dlog ne + 1) time-slots ofJ suffice such thatv
receivesMn. Specifically, the probabilityPno that none of
these time-slots is successful is

Pno ≤
(

1− (1− pMIS)ϕ

6

)γ(dlog ne+1)

, (2)

which again can be madePno ≤ n−3/2 for large enough con-
stantsγ. Once, nodev receivesMn, it will try to acknowledge
by sendingMr. Notice that there are at leastη(dlog ne+ 1)
time-slots inJ left during which1/2 < Φv(t) ≤ 3/2. By the
assumption thatv is thefirst leader to violate Invariant 1, we
know that until the end ofJ , Invariant 1 and consequently
Lemma 4 hold. That is, with probability at least1− n−3, the
messageMr will be received by all nodes inNv within the
η(dlog ne+ 1) time-slots. Hence, the probability thatv is the
first node to violate Invariant 1 is bounded by2 · n−3/2 for
suitably large constantsγ andη. Because there are at mostn
leaders in the network and every leader needs to be notified
only once, the Lemma holds with probability1− n−2.

The following Corollary is implicit in the proof of Lemma 5
(cf, Inequality (2)).

Corollary 6: Consider a leaderv and the leader-notification
stepS2 of a notification window. If there exists a notified node
in Nv \ S, v will be notified at the end ofS2.

Thanks to Lemma 5, we can now apply Lemma 4 throughout
the algorithm with high probability.

Theorem 7:With probability at least1−1/n, the algorithm
works as demanded, that is, each leaderv successfully an-
nounces to all its neighbors about the proclamation stepS1

for the entire duration of the notification phase. Furthermore,
as soon as there exists a notified non-leader inNv, v will

be notified in the following leader-notification stepS2. And
finally, a notified leaderv will inform all its neighborsu ∈ Nv

in the notification-stepS3 following v’s notification.

Proof: The stepsS2 and S3 follow directly from
Lemma 4, Corollary 6, and the fact that there are at mostn
leaders, each of which is notified at most once. By Lemma 4,
every attempt of sending aMa message is successful with
probability 1 − n−3. Each of then nodes needs to send at
mostn messagesMa during the notification phase. The proof
is concluded because the set of leaders is connected if we
consider all two-hop paths inG.

Of particular interest is the energy efficiency and its compar-
ison to the two previous algorithms. Letm ≤ n be the number
of leader nodes in the network and letξ denote the energy
efficiency E(Aclu, TD). Clearly, the ratiom/n depends on
the densityof the network. The following theorem quantifies
the achieved trade-off.

Theorem 8:Let f(n) be a function such that algorithm
Aclu has time efficiencyT (Aclu, TD) ≤ f(n). Let m be the
number of leaderschosen byAclu. For a givenTD, Aclu’s
energy efficiencyξ = E(Aclu, TD) is bounded by

ξ ∈ O

(
f(n)

n log n + log2n

TD
+

n log n

f(n)
+

m log2n

f(n)

)
.

Proof: The choice ofI ’s length determines the trade-
off between energy-efficiency and the speed of notification.
We have to chooseI such that with high probability, the
notification broadcast is finished within timef(n). We do
so by settingI to a value guaranteeing that the notification
proceeds at least one hop in timef(n)/n with high probability.
That is, we setI := df(n)/ne.

Upon waking up, each nodev has initialization costs
einit(v) ∈ O(W + log2n). For the maintenance costs during
the deployment phase, we distinguish between leaders and
non-leader nodes. Non-leaders are awake for the duration of
η log n during each rendezvous interval of lengthI. Thus,
for non-leaders,a(v) = ηdlog ne/I. Leaders must be awake
longer in each rendezvous interval, namely2η log n + (γ +
η)(dlog ne+ 1)2 ∈ O(log2n) time-slots. Additionally, leaders
need to send with probabilitylog n/W in each time-slot.

Therefore, for appropriate constantsα, δ > γ + η, and η
the energy efficiencyE(Aclu, TD) of Aclu is at most

ξ =
1

nTD

[∑

v∈S

α
(
W + log2n

)

+ TD

∑

v∈S

(
log n

W
+

δ log2n

I

)

+
∑

v∈V \S

(
α(W + log2n) +

TDη log n

I

)
 .



SettingI = df(n)/ne andW = I/ log n, we obtain

ξ =
α(W + log2n)

TD
+

m

n

(
log n

W
+

δ log2n

I

)

+
n−m

n
· η log n

I

≤
α

(
f(n)

n log n + log2n
)

TD
+

m

n
· (δ + 1)n log2n

f(n)

+
n−m

n
· ηn log n

f(n)

∈ O

(
f(n)

n log n + log2n

TD
+

m log2n

f(n)
+

n log n

f(n)

)
.

Observe that the first asymptotic term of Theorem 8 contains
TD in the denominator. This highlights the notion that the
amount of energy spent on initializing a structure weighs more
or less heavily, depending on the respective length of the
deployment phase. Specifically, this term can be neglected if
the deployment phase is long. As for the two remaining terms,
they express the energy efficiency of leaders and non-leaders,
respectively.

D. Discussion

In this section, we discuss the results obtained in Theorems
1, 2, and 8. These theorems yield a concise comparison
between the three algorithms analyzed in this paper.

For the comparison, we demand all three algorithms to finish
their notification phase within a fixed amount of timef(n) ∈
Θ(n2), f(n) being the same for all algorithms. This allows
us to compare the energy efficiencyE(A, TD) each algorithm
is required to invest in order to ensure that the notification
is finished within timef(n). As mentioned in Section III, we
obtain the same results when asking the question the other way
around, i.e., when fixing the algorithm’s energy efficiency and
comparing the resulting time efficiencyT (A, TD) = f(n).
Table I shows the results derived from Theorems 1, 2, and 8
under the assumption that the length of the deployment phase
TD is long enough compared tof(n)2.

First, we emphasize that bothAclu andAuni significantly
outperform Abirth, regardless of the network density or,
generally, the ratio between leaders vs. non-leaders. It is
interesting to study the relative strengths ofAclu andAuni.
Asymptotically, the trade-off achieved byAclu is strictly better
thanAuni if m ∈ o(n), that is, if less than a constant fraction
of the nodes are leaders. If, for instance,m ∈ O(n/ log n),
the resulting asymptotic energy-efficiency isE(Aclu, TD) ∈
O(n log n/f(n)), which is better thanAuni by a O(log n)
factor. In case the number of leaders is a constant fraction of
n, the asymptotic energy efficiency isO(n log2n/f(n)), which
equals the trade-off achieved byAuni. Hence, depending on

2Note thatf(n) ∈ Θ(n2) is the smallest value forf(n) so thatAbirth is
capable of finishing its notification phase withinf(n) in arbitrary networks.
Similar results as shown in Table I can be obtained for higher values off(n)
in a straightforward way.

Algorithm A Energy EfficiencyE(A, TD)
Abirth [18] Θ(1)

Auni Θ( log2 n
n

)

Aclu Θ( log n
n

+ m log2 n
n2 )

TABLE I

A COMPARISON OF THE ENERGY EFFICIENCY OF THE THREE ALGORITHMS

FOR A FIXED T (A, TD) = f(n) ∈ Θ(n2) AND LARGE ENOUGH TD .

the network densityand the resulting number of leaders, the
asymptotic energy efficiency ofAclu is either better or equal
than that ofAuni. Intuitively, high network densities render
the number of leadersm small relative ton and hence,Aclu

is more efficient thanAuni. That is, the higher the network
density, the more worthwhile it becomes to invest initial energy
on obtaining a cluster-based semi-structure.

V. SIMULATIONS

In this section we evaluate the performance of the three
algorithms proposed in Section IV on average-case Euclidean
graphs, that is on graphs with randomly placed nodes. In
particular networks were constructed by placing nodes ran-
domly and uniformly on a square field of size 10 by 10
units and subsequently computing for each node set the Unit
Disk Graph—defined such that an edge exists if and only if
its Euclidean length is at most one unit. The resulting Unit
Disk Graphs were then employed as input networks for the
algorithms under consideration.

The two newly introduced algorithmsAuni andAclu make
use of several parameters. In Section IV, an exact value for
the parameterc of Auni is given whereas minute bounds for
the parameters ofAclu are omitted for the sake of clarity.
However, it is important to notice that Section IV considers a
worst-case scenario while we assume average-case networks
in this section. Hence, we can presumably set the parameters
for the two algorithms to lower values than determined in the
previous section.

Figure 3 shows the mean percentage of notified nodes if
algorithmAuni is executed on networks with density 5, and
density 20 respectively, against the parameterc ranging from
0 to 5 and various input parameterspL. The network density
is thereby defined as the number of nodes per unit square
throughout the rest of this section. Figure 3 leads to the
important observation that we can lower the parameterc with
decreasing listening probabilitypL on condition that all nodes
are notified after the termination ofAuni. Furthermore, as
apparent in Figure 3(a) and 3(b), the parameterc is quite
independent of the network density and can thus be chosen
exclusively dependent on the input parameterpL of Auni. As
a consequence, we define the parameterc as follows. If the
listening probabilitypL of algorithmAuni is above 0.75 we
set c = 3. If pL is between 0.5 and 0.75c is set to 2 and
c = 1 if pL is less than0.5.

Contrary to Auni, algorithm Aclu has more than one
parameter, namelyγ, η, and pMIS , which leads to multi-
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Fig. 3. Percentage of notified nodes for a givenc of algorithmAuni. Auni

is thereby simulated withpL = 1 (solid), 0.5 (dashed), 0.1 (dotted), and 0.01
(dash-dotted) at network densities 5 (a) and 20 (b).

dimensional optimization. By starting with relatively high val-
ues for these parameters and reducing them individually until
full notification could not be guaranteed with high probability
we determined the following values forγ, η, andpMIS : γ = 5,
η = 5, andpMIS = 0.2.

Using the above determined parameters, the respective per-
formance of the three algorithms of Section IV was evaluated
by simulating their corresponding notification phase for dif-
ferent node densities and given a particular energy efficiency.
The node nearest to the top-left corner was notified by an
externally triggered event at the outset of the simulation, i.e., at
the launching point. Notice that algorithmAbirth, as described
in [18], does not terminate after a fixed number of time-slots
once a node is notified. We therefore executedAbirth without
termination criterion and stopped the simulation series once
all node were notified. On the other hand we assumed the
deployment phase to be much longer than the notification
phase. As a consequence we did not consider the initialization
energy of a node since the maintenance energy becomes the
dominant factor of energy consumption.

We found that the two newly proposed algorithmsAuni

andAclu outperform algorithmAbirth not only in the worst-
case consideration as described in Section IV but also in
average case networks (cf. Figure 4). Figure 4(a) depicts the
performance of the algorithms on networks with density 5.
Algorithm Auni is able to notify all nodes more than twice
as fast thanAbirth with high probability.Aclu lies roughly in
the middle of the other two. If we consider a network density
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Fig. 4. Mean values of the number of time-slots required to notify a network
given a particular energy efficiency. The algorithmsAbirth (solid), Auni

(dotted), andAclu (dashed) are simulated at network densities 5 (a), 15 (b),
and 30 (c).

of 15, Aclu andAuni need approximately the same number
of time-slots to notify all nodes (cf. Figure 4(b)). That is,
in comparison to the simulations at network density 5,Aclu

is now able to notify the nodes faster with the same energy
efficiency. This is due to the fact that with increasing density
the ratio between leaders and non-leaders inAclu decreases
and non-leaders spend less energy during the deployment
phase than nodes in algorithmAuni. This is exactly the
same behavior that we analytically derived in Theorem 8.
Considering network density 30, Figure 4(c) shows that the
tide has turned in favor ofAclu, which now outperforms the
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Fig. 5. The number of time-slots required to notify all nodes for algorithm
Abirth (solid), Auni (dotted), andAclu (dashed) for different network
densities. The energy efficiency of the algorithms is thereby 0.1 (a) and 0.01
(b).

other two algorithms.
This results confirm the assumption that algorithmAuni is

well suited for low network densities whileAclu is dedicated
for dense networks. In order to investigate more closely the
critical network density whereAclu starts to outperformAuni

we simulated the algorithms for a fixed energy efficiency
against increasing network densities ranging from 5 to 30 (cf.
Figure 5). What strikes from Figure 5 is that the performance
of algorithmsAbirth andAuni is more or less independent
from the given network density. This is also shown in Figure 4
where the curves for both algorithms,Abirth andAuni, look
approximately the same in all three plots. In contrast, the
behavior ofAclu is quite different. Since the network density
has a direct impact on the ratio of leader to non-leader nodes,
its performance is highly dependent on the network density.
Figure 5(a) depicts the performance of the three algorithms
under the constraint of attaining an energy efficiency of 0.1.
If the network density exceeds 19, algorithmAclu needs less
time-slots thanAuni to notify the entire network and should
thus be preferred. If we require the algorithms to attain energy
efficiency 0.01,Aclu outperformsAuni already at density 15
(see Figure 5(b)).

These simulations complement the worst-case results de-
rived in Section IV, showing that our algorithmsAuni and

Aclu are also efficient in average-case scenarios. Moreover the
simulations, in particular Figure 5, give a clear indication as to
when the concept of clustering or the usage of semi-structures
is worthwhile in the deployment process.

VI. RELATED WORK

To the best of our knowledge, the only previous paper to
explicitly address the problem of saving energyduring the
deployment of wireless ad hoc and sensor networks has been
[18]. McGlynn and Borbash [18] propose an energy-saving
method for performing adjacent neighbor discovery after the
deployment of a network. Their algorithm is inspired by the
well known birthday paradox. Using a similar idea to access
the shared medium, a node randomly schedules its periodic
wake-up in order to listen for incoming messages. The rest
of the time the node powers down its radio subsystem to
reduce energy consumption. In Section IV-A, we have given
a succinct analysis of the birthday algorithm’s performance in
the context of the deployment problem.

In the literature on wireless sensor networks, various other
problems in the context ofdeploymenthave been studied.
Most notably, several papers have investigated problems re-
lated to theplacementof nodes such that certain coverage
requirements be fulfilled. The deployment of mobile nodes
for coverage of a sensing field has been considered in [12],
[28], [34]. In [4], the problem of covering and exploring
an unknown dynamic environment using a mobile robot is
addressed. An algorithm for this problem is presented that
makes use of a deployed network of radio beacons which
assists the robot in coverage. Other work in this area associated
with the termdeploymentincludes the placement of a given
number of sensor nodes to reduce communication cost [14]
or an optimal sensor placement for a given target distribution
[21].

The model of computation used throughout this paper was
introduced in the domain of theinitialization of wireless radio
networks, and in particular ad hoc and sensor networks. Early
works on radio networks can for example be found in [2], [13].
Most recently, fast algorithms for computing initial structures
from scratch, based on which more sophisticated algorithm can
subsequently be applied have been given in [15] and [19].

VII. C ONCLUSIONS

The trade-off between energy-efficiency and the rapidity of
event dissemination lies at the heart of wireless sensor network
design. In this paper, we have analyzed this key trade-off in the
important non-operational phase by formalizing the problem of
sensor network deployment, thus allowing a stringent analysis
and comparison of different protocols.

Specifically, we have presented two algorithms, the first
being entirely unstructured, the second using the idea of
clustering. These algorithms can be regarded as archetypal
representatives of anunstructured and semi-structuredap-
proach to the deployment problem, respectively. Interestingly,
currently used standard MAC protocols such as B-MAC [22]
or S-MAC [32] can be classified into these two approaches.



Specifically, while the B-MAC approach is unstructured, S-
MAC sets up some weak notion of clustering during the
deployment, i.e., it uses a semi-structure.

Having a formal model that allows comparing these two
schemes yields results that bear relevance to theoreticians
and practitioners alike, because they give concise and sound
answers to the question which deployment algorithm should
be employed in a certain application scenario. Furthermore,
notice that our results also shed new light into the intriguing
question whether and in which casesclustering (as opposed
to unstructured solutions that do not require any maintenance
costs) is really worthwhile. This is of particular interest in
view of the multiplicity of clustering algorithms proposed in
the recent literature, e.g., [5], [8], [15], [16], [29].
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