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Abstract 
Farsite is a secure, scalable, distributed file system that 
logically functions as a centralized file server but that is 

physically realized on a set of client desktop computers.  

Farsite provides security, reliability, and availability by 

storing replicas of each file on multiple machines.  It 

continuously monitors machine availability and relocates 

replicas as necessary to maximize the effective availability 
of the system.  We evaluate several replica-placement 

methods using large-scale simulation with machine 

availability data from over 50,000 desktop computers.  We 

find that initially placing replicas in an availability-

sensitive fashion yields pathological results, whereas very 

good results are obtained by random initial placement 
followed by incremental improvement using a scalable, 

distributed, fault-tolerant, and attack-resistant hill-

climbing algorithm.  The algorithm is resilient to severe 

restrictions on communication and replica placement, and 

it does not excessively co-locate replicas of different files 
on the same set of machines. 

1. Introduction 

We evaluate the utility, performance, and consequential 

effects of several candidate methods for replica placement 

in a distributed file system, for the purpose of optimizing 

file availability while maintaining system security.  The 

context of our study is Farsite [6], a secure, highly scalable 
file system that logically functions as a centralized file 

server but that is physically distributed among a network 

of untrusted desktop workstations.  In this potentially 

treacherous environment, wherein machines may be 

capriciously turned off or even maliciously subverted, 

Farsite provides a high degree of availability and security 
through randomized replication of both file content and 

directory infrastructure.  This paper investigates scalable, 

distributed, fault-tolerant, and attack-resistant methods for 

assigning file replicas to machines to maximally exploit 

the availability diversity, failure independence, and threat 
isolation provided by different machines. 

The need for replica placement decisions arises in three 

scenarios: where to place replicas when a new file is 

created, where to relocate a replica when it is evicted from 

a machine, and how to rearrange replicas as machine 

availabilities change over time.  These scenarios yield two 

distinct problems: where to place a replica that is in need 
of a home (the initial placement problem) and how to 

improve a given arrangement of replicas in an incremental 

fashion (the placement improvement problem). 

We find that it is disadvantageous to consider machine 

availability when determining initial replica placement.  

Simulations driven by large-scale measurement data show 
that placing replicas of individual files (or of indivisible 

sets of files) in an availability-sensitive fashion 

dramatically skews the distribution of free space among 

machines, completely consuming all available space on 

most machines and concentrating the free space on a small 

fraction of machines in a narrow range of measured 
availability levels, which severely impedes the system’s 

ability to relocate replicas in the future. 

For placement improvement, we consider a family of 

distributed hill-climbing algorithms that successively 

exchange the locations of two file replicas.  These 
algorithms are randomized to thwart coercion by 

malicious machines.  We find that the basis algorithm, in 

which files are selected completely randomly, is highly 

efficacious but very inefficient.  We introduce two 

improvements that significantly increase the efficiency of 

the optimization process, with a simple augmentation to 
resist targeted attack by malicious machines. 

Since an arbitrary initial placement followed by 

efficacious placement improvement yields a good final 

placement, we conclude that initial placement should be 

performed randomly, with a minor restriction to diminish 

security risk.  Our placement improvement algorithm not 
only optimizes file availability but also improves the 

distribution of free space among machines, making it more 

evenly distributed than random placement. 

Section 2 describes the Farsite system.  Section 3 

defines the placement problem and the requirements of a 
solution.  Section 4 describes the simulated environment 

for our evaluation.  Section 5 studies the initial placement 

problem, and section 6 studies the placement improvement 

problem.  Section 7 considers the effects of two different 

restrictions on the replica placement system: one for 

reasons of scalability, the other for reasons of security.  
Section 8 examines the degree to which placement 

methods co-locate replicas of different files on the same 

set of machines.  Section 9 discusses related work, and 

Section 10 summarizes our results and concludes. 



2. Farsite system architecture 

Farsite [6] is a scalable, serverless file system that 
exploits the underutilized [11] storage and communication 

resources distributed among the networked desktop 

computers of a large organization, such as a university or 

corporation.  It provides high levels of availability, 

reliability, and security without reliance on centralized 

administration or physically protected infrastructure.  
Instead, every client desktop machine that stores files in 

the file system also serves both as a repository for replicas 

of encrypted file content and as a member of a group of 

machines that manage a region of the file-system 

namespace.  Since Farsite’s constituent machines function 

primarily as client computers for their local users and only 
secondarily as distributed storage and directory hosts, the 

system must provide remote file services without 

interfering with users’ local tasks and without requiring 

users to modify their behavior. 

Like any file system, Farsite has two classes of objects 

to maintain: directories and files.  In the aggregate, 
directories consume little storage compared to files; 

however, they must be comprehensible and revisable 

directly by the system.  In contrast, files consume a large 

amount of storage space, but they can be (and for security 

reasons, should be) completely opaque to the system.  
Farsite thus employs different techniques for maintaining 

these two classes of objects: Byzantine-fault-tolerant 

groups for directories, and encrypted replication for files. 

Figure 1 illustrates a portion of a Farsite system from 

the perspective of a single client; aspects of the system 

that are not relevant from this perspective are grayed out.  
This figure shows a single client machine, a set of 

machines that collectively comprise a directory host, and a 

set of machines each of which functions as a file host.  (In 

practice, every machine actually performs all of these 

roles.) 

A directory host is a group of machines that interact 

using a Byzantine-fault-tolerant protocol [9].  All (non-

faulty, non-compromised) machines in the group perform 
the same sequence of operations, and the protocol 

preserves the integrity of the group as long as fewer than 

one third of the machines misbehave in any arbitrary or 

malicious manner.  Each directory host manages a set of 

directories in the file-system namespace, providing a 

hierarchical name-based catalog of storage-machine 
locations and other metadata for files and subdirectories.  

For operations that are not fully determined by client 

requests, directory hosts make decisions via 

cryptographically secure distributed random number 

generation [5] to prevent any single member from 

coercing the selection of another directory host or file host 
and thereby compromising the security of the system. 

Each file in a Farsite directory is encrypted, replicated, 

and stored on multiple file hosts.  Encryption provides 

data privacy, and a cryptographic file hash [32] stored in 

the directory host provides data integrity.  Replication 

provides data persistence even if some file hosts die, suffer 
head crashes, or maliciously destroy their stored files.  

Replication also provides file availability even if some of 

the file hosts are unavailable when a file is requested.  

Since different machines are available for different 

fractions of time, Farsite continuously monitors machine 
availability, and it relocates replicas as necessary to 

maximize the availability of files to clients, subject to 

security and reliability constraints. 

Files that a client has recently accessed are cached 

locally, providing guaranteed and immediate availability.  

Files not recently accessed must be retrieved from one of 
the remote file hosts that store replicas of the file, as 

indicated by the dotted lines between the client and file 

hosts in Figure 1.  In the latter case, the client contacts the 

directory host to determine which machines contain 

replicas of the file. 
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Figure 1. Portion of Farsite system architecture from one client’s perspective 



3. Problem statement, solution requirements 

The problem we address is how to produce an 
assignment of file replicas to machines that maximizes 

security, reliability, and availability over all files.  

Although the security of a machine is hard to assess in 

absolute terms, the probity of two machines with the same 

owner is highly correlated [31], so no more than one 

replica of each file should be placed on machines owned 
by a single user.  Since it is difficult to assess the 

remaining lifetime of a particular disk or machine with 

any accuracy [30], all machines are considered to have 

equal reliability, equitable allocation of which requires 

that each file have the same number of replicas as every 

other file.  In contrast to the previous two qualities, 
availability varies widely between machines [6], so this is 

the principal criterion for determining the specific 

placement of replicas. 

The fractional downtime of a machine is the mean 

fraction of time that the machine is unavailable.  For 

pedagogical purposes, we will momentarily assume that 
the times at which different machines are unavailable are 

not significantly correlated with each other, an assumption 

which has some empirical justification [6].  Therefore, 

since a file is unavailable only if all of its replicas are 

unavailable, the fractional downtime of a file is equal to 
the product of the fractional downtimes of the machines 

that store replicas of that file.  For convenience, we 

express machine and file availability values as the 

negative decimal logarithm of fractional downtime.  Thus, 

the availability of a file is equal to the sum of the 

availabilities of the machines that store the file’s replicas.  
The common unit for availability is the “nine”; for 

example, a machine with a fractional downtime of 0.01 

has –log10(0.01) = 2 nines of availability, intuitively 

corresponding to its fractional uptime of 1 – 0.01 = 0.99. 

Since the client’s local cache exploits and exhausts any 

temporal locality in file accesses, cache misses have 
relatively little temporal locality.  Therefore, our file-

placement objective is to maximize the effective system 

availability (ESA), defined as the negative decimal 

logarithm of the mean file downtime, µ.  Given N files 
each with availability ai, effective system availability can 

be calculated as: 
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This value is dominated by low-availability files and is 

maximized when all files have the same availability. 

To be suitable for Farsite, a file-placement algorithm 
must be distributed, iterative, and randomized. 

• distributed – Decisions must be made by individual 

machines or small groups of machines with no central 

coordination.  Requirements for communication or 

storage must not grow with the size of the system. 

• iterative – The algorithm must be able to improve an 
existing placement incrementally, rather than requiring 

a complete re-allocation of storage resources when 

conditions change. 

• randomized – For security reasons, the placement 

algorithm must allow randomness to drive the selection 
of which other machines to engage in the placement 

process. 

4. Simulated environment 

The environment that we simulate is an approximation 

of a real-world commercial environment measured for an 

early study of Farsite feasibility [6].  We simulate file 

placement on a set of M = 51,662 machines for which we 
have availability data given by a 35-day series of hourly 

ping snapshots.  The cumulative distribution of machine 

availabilities is shown in Figure 2a.  It is approximately 

uniform in the range of 0 to 3 nines, which we exploit for 

the analytic model in Section 7. 
Figures 2b and 2c show how the measured machine 

availabilities change over time.  For both of these figures, 

we compute each machine’s availability over a 15-day 

window.  Figure 2b shows that mean machine availability 

remains fairly constant as this window slides from the 

beginning to the end of the sample period.  Figure 2c 
shows the cumulative distribution of changes to each 

machine’s availability from the first 15 days of the period 
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Figure 2. (a) Machine availability distribution, (b) Mean availability vs. time, (c) Availability change in 20 days 



to the last 15 days of the period.  75 % of machines have 

availabilities that change by less than one nine over these 

20 days, but 7 % of machine availabilities change by more 
than two nines, so although there is significant consistency 

in machine availabilities over time, there is sufficient 

change to warrant a continual reassessment of availability 

and concomitant rearrangement of files. 

We simulate the placement of 2,583,100 files, which is 

several orders of magnitude smaller than it would be in a 
real system of 51,662 machines, but we cannot 

significantly increase it without exceeding the memory 

limit of the 512-MB computer we use for simulation.  We 

have run our simulations with smaller counts of files per 

machine, and the algorithms do not appear to be sensitive 

to this value. 
To allow for replicas to be rearranged, it is necessary to 

maintain some amount of free space on machines.  In a 

real system, this “free space” does not actually have to be 

unused:  It could hold additional file replicas or local 

cache entries, but it must be readily reclaimable when 

needed.  For our study, we set the mean value of this 
excess capacity to 10 % of each machine’s storage space. 

Our algorithms do not perform well when placing files 

larger than the mean free space per machine.  The smallest 

hard disk currently available from Seagate [33] has a 

capacity of 9.2 GB, and fewer than one in two million files 
[11] is larger than 10 % of this size, so Farsite can 

prioritize the placement of such extremely large files 

without significantly affecting other files.  For our 

simulations, file sizes are governed by a binary lognormal 

distribution with m
(2)  = 12.2 and s

(2) = 3.43 [11], limited 
to the mean machine free space. 

The number of replicas of each file, R, is determined by 

the fraction of storage capacity that holds unique file 

content.  Measurements of over 10,000 file systems of 

commercial desktop computers in 1999 [11] indicate that a 
replication factor of R = 3 is readily achievable [6].  More 

recent measurements (unpublished) indicate that the 

fraction of free disk space is steadily increasing, such that 

a replication factor of R = 4 is now likely achievable.  The 
present paper investigates replica placement for both of 

these replication factors. 

A recent study [12] has shown that although different 

machines’ unavailability times are mostly uncorrelated, 

there is sufficient correlation to noticeably weaken the 

effective system availability for replication factors beyond 
R = 3.  This study empirically found a second-order 

polynomial relationship between the actual ESA and the 

ESA as calculated by summing replica availabilities: 

 84.0ESA5.1ESA078.0ESA
sum

2

sumactual
−+−=  (2) 

This model is roughly valid for ESA values in the range of 

2 to 6 nines.  Values of ESA reported in the present paper 
are calculated using this model. 

5. Initial placement 

The problem of initial placement is to select machine 

locations for homeless replicas.  Since the primary goal of 

replica placement is to optimize file availability, it seems 

reasonable to base this selection on the measured 

availability of machines.  However, given an efficacious 
method for placement improvement, it is not necessary to 

account for availability in initial placement, and the results 

in this section show that it is actually disadvantageous. 

We perform the following experiment for each 

candidate initial placement method:  Beginning with an 
arbitrary placement, we randomly select a machine, evict a 

replica from it, have the replica’s directory host place the 

replica on another machine, and iteratively repeat this 

process until the ESA has converged to an apparent 

asymptote.  For brevity, this section shows results only for 

R = 3, but those for R = 4 are substantially similar. 
Figure 3a shows the count of replicas, the mean file 

size, and the fraction of free space on each machine versus 
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Figure 3. Initial placements for R = 3: (a) random, (b) availability-constrained 



machine availability, when each evicted replica is placed 

on a randomly selected machine.  (If the machine already 

contains another replica of the same file, or if there is 
insufficient free space to accommodate the replica, a 

different machine is selected until these conditions no 

longer obtain.)  All three values in Figure 3a are 

uncorrelated to machine availability, which is desirable.  

The resulting ESA (not conveyed in the figure) is 2.2 

nines, well below the mean file availability of 4.3 nines, 
but this is correctible by the placement improvement 

method described in the next section. 

Figure 3b shows results when the evicted replica is 

disallowed from any machine that would cause the 

availability of the file to be further from the mean file 
availability than it was before its replica was evicted (thus 

never permitting the ESA to drop).  Eventually, all 

machines with availabilities between 0.5 and 2.0 become 

full, and all free space is concentrated on machines with 

extremal availability values.  This placement makes poor 

use of high-availability machines, weakens the dispersal of 
remote file requests among machines, and impedes future 

relocation of replicas as system conditions change. 

We have attempted numerous modifications to the 

availability-constrained placement method to prevent this 

detrimental effect on free space distribution, none of 

which has been successful.  One approach is to constrain 
(or bias) the selection of the evicted replica according to 

its relative availability; Figure 4a shows the result of 

evicting the replica whose availability lies between that of 

the other two replicas of the same file.  Another approach 

is to specifically account for machine free space; Figure 

4b results from disallowing a placement if the target 
machine has less free space than the machine from which 

the replica was evicted.  We have even changed the rules 

of the experiment by not evicting a replica if the free space 

on the machine exceeds a threshold; Figure 4c sets this 

threshold to 15 %.  From these and many other negative 
results, we conclude that Farsite should initially place each 

replica randomly, subject to a minor constraint for security 

we explore in Section 7: disallowing more than one replica 

of each file on machines with the same owner. 

6. Placement improvement 

The problem of placement improvement is to 
incrementally improve the ESA of a given arrangement of 

file replicas.  The straightforward approach of 

progressively relocating replicas of individual files is 

equivalent to evicting files from machines and placing 

them so as to improve the ESA, and it thus leads to the 

same skewed free-space distribution described in Section 
5.  In this section, we consider an alternate method, in 

which each directory host selects a file, randomly selects 

another directory host (possibly itself) which also selects a 

file, and – if there is sufficient free space and if the 

availability values of the two files can be brought closer 
together – exchanges the machine locations of one replica 

from each file, which we call swapping the replicas.  For 

R > 3, it could be beneficial to swap more than one replica 

at a time; however, this increases the security risk from a 

compromised directory host and has empirically shown to 

reduce the efficiency of the improvement process, so we 
do not consider it further. 

Figure 5 shows the result when this method is applied 

to a random initial placement and allowed to bring the 

ESA to within 1 % of the mean file availability.  The three 

illustrated quantities are satisfactorily uncorrelated to 

machine availability, unlike those shown in Figure 3b.  
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Figure 4. Modified availability-constrained placements for R = 3: (a) moderate replica, (b) space-biased, (c) 15% limited eviction 

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

m achine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

0

50

100

150

200

250

re
p

li
c

a
s

 (
c

o
u

n
t)

m
e

a
n

 f
il
e

 s
iz

e
 (

k
b

y
te

s
)

free space replicas mean file size

 

Figure 5. Swap-improved random placement for R = 3 



Furthermore, Figure 6 shows that machine free space is 

actually more evenly distributed than in the random initial 
placement:  The median free space is 7.6 %, compared to 

4.6 % for the random initial placement and 1.4 % for the 

availability-constrained initial placement.  Figures 5 and 6 

show results only for R = 3, but those for R = 4 are 

substantially similar. 

We have not yet specified how each directory host 
selects a file to replica-swap with the other.  The simplest 

approach is to have each host randomly select one of its 

files, so this establishes a basis method.  Since ESA is 

dominated by low-availability files, we can focus the 

improvement on these by having one host select its 
minimum-availability file, which yields a second method.  

Furthermore, high-availability files should afford the most 

opportunity for improving low-availability files, so we can 

exploit this by having the other host select its maximum-

availability file, thus providing a third method.  We refer 

to these three methods as RAND-RAND, MIN-RAND, and MIN-

MAX, respectively.  For the latter two methods, it is 

important that the initiating host be the one to select its 

minimum-availability file, so it is effectively asking for 

help from – rather than offering help to – the contacted 

host, thereby making it more difficult for a compromised 
directory host to launch a targeted attack. 

We evaluate the efficiency of these methods at 

performing two tasks: (1) correcting for random initial 

placement and (2) adjusting to changes in machine 

availability over time. 

For the former, we randomly evict and place replicas as 
we did in Section 5, but we randomly intersperse these 

random relocations with one or more steps of each 

iterative improvement method, iterating until the ESA has 

converged to an apparent asymptote.  We vary the 

correction ratio, which is the mean number of corrective 

moves per random move, counting each swap as two 
corrective moves since it relocates replicas of two files.  

The results are shown in Figure 7.  With sufficient effort, 

all three algorithms achieve an ESA of 4.3 nines (R = 3) or 

5.3 nines (R = 4), beyond which our model for the effect 

of machine failure correlation is no longer valid.  MIN-MAX 

is the most efficient method, keeping the ESA at 90 % of 
its maximal value with a unity correction ratio. 

To assess the responsiveness of each method to the 

machine availability changes shown in Figures 2b and 2c, 

we set a window size of 15 days, compute the availability 

of each machine from our windowed measurement data, 
and run the method until the ESA reaches a target value.  

We then slide the window forward by a day, recompute 

the machine availabilities, and rerun the method, iterating 

through all days in our sample period.  Figure 8 plots the 

daily replica-relocation rate required to sustain the full 

range of achievable target ESA values.  MIN-MAX is again 
the most efficient method, sustaining the maximum 

attainable value of ESA by relocating fewer than 2 % of 

all file replicas per day.  RAND-RAND requires an order-of-

magnitude greater relocation rate, but MIN-RAND is almost 

as good as MIN-MAX for low ESA targets. 
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Figure 6. Machine free space distribution for R = 3 
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Figure 7. Correcting for random replica relocations: (a) R = 3, (b) R = 4 



7. Communication and placement restrictions 

For scalability reasons, it is undesirable to require 
every machine to maintain contact with every other 

machine in the system.  For security reasons, it is 

unacceptable to place more than one replica of each file on 

machines with the same owner.  In this section, we 

analyze the effect of each of these restrictions on our 
placement methods. 

Rather than exploring the combinatorially immense 

array of incomplete communication graphs, we consider 

only the most extreme case of limited interconnectivity, in 

which all machines are randomly partitioned into non-

overlapping sets of fixed size, providing no indirect path 
via which to swap replicas with non-neighbors.  Figure 9 

shows achieved ESA versus number of connections per 

machine.  With merely 30 connections per machine, 

random placement plus each improvement method retains 

90% of the ESA attainable with full connectivity. 

For the security restriction, we again consider the most 

extreme case:  Machines are partitioned into R equal-sized 

sets, each of which has a single owner and whose 
members are selected randomly.  We find that this 

partitioning has no significant effect on the result of 

random initial placement.  For placement improvement, 

MIN-MAX and MIN-RAND show no significant change in 

efficiency; however, the efficiency of RAND-RAND is 
actually improved by this restriction.  Although this result 

seems highly counterintuitive, it is plausible because the 

unrestricted case allows some swaps that make little 

improvement to ESA, whereas the security restriction 

disallows some of these swaps.  The following analytical 

model predicts the result of our simulation (assuming 
uncorrelated machine downtimes): 

Given a count of C files, a swap between files with 

availabilities v and w (expressed as negative decimal 

logarithms) that changes them to v′ and w′ will change the 

mean file downtime from µ to µ ′: 
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Figure 9. Effect of limited machine interconnectivity: (a) R = 3, (b) R = 4 
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Figure 8. Responding to machine availability changes: (a) R = 3, (b) R = 4 
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For a large count of files, the change in effective system 

availability relative to the number of relocations per 

replica is as follows, since there are two relocations per 

swap and a total of RC replicas: 
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Therefore, given two files, each with R replicas whose 
availabilities are respectively given by the R-element 

vectors x and y, the ESA improvement from the best 

possible swap is given by function s: 
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Restricted swaps can only exchange replicas with 

matching indices (indicating the same set of machines): 
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For machine availabilities uniformly distributed between 0 

and A = 3.0 (as shown in Figure 2a) we calculate the 
expected change in ESA over all swaps that yield positive 

changes.  The notation ∫ dx indicates a multiple integral 

over all elements of vector x: 

 ( )( ) ( )( )∫ ∫∫ ∫ >=∆

A AA A

ddsdds

0 00 0

0,0,,max xyyxxyyx
 

(7) 

The expected change from restricted swaps, ∆
r
, is 

calculated similarly.  The ratio of these two values,   

ρ = ∆
r
 /∆, shows the performance change from adding the 

restriction.  For comparison, starting with a random initial 

placement of all replicas, we simulate the RAND-RAND 

algorithm with and without the security restriction and 
measure the improvement per swap.  Table 1 compares the 

analytic results to the simulation results with 90 % 

confidence intervals.  The model’s predictions are well 

within reasonable error bounds. 

Table 1. RAND-RAND performance changes from extreme 
security restrictions 

Replicas Model Simulation 

R = 3 ρ = 1.15 ρ = 1.12 ± 0.09 

R = 4 ρ = 1.14 ρ = 1.17 ± 0.05 

8. Dispersion of file replicas 

Since the replica placement system attempts to equalize 

the availability values of all files, it may seem that any two 

files with at least R – 1 replicas on the same machines are 
highly likely to have all R replicas on the same machines.  

If so, this would be a significant security weakness, since a 

malicious machine could adjust its own availability to 

coerce the placement of a replica of a particular file onto 

that machine.  It would also cause file unavailability to 

occur in bursts during which multiple files (those on the 
same set of machines) would all become unavailable 

simultaneously.  Thus, it is important to determine 

whether our algorithms do a good job of dispersing the 

replicas of each file relative to those of other files. 

Beginning with a random initial placement, we run 

each algorithm until no further improvements are possible.  
Then, we examine the resulting layouts to calculate the 

conditional probability that at least r replicas of any two 

files will reside on the same set of machines if at least    

r – 1 of the two files’ replicas reside on the same set of 

machines.  For randomly placed replicas, this conditional 
probability equals R2/M, for 1 ≤ r ≤ R, given R replicas 

and M machines.  Figure 10 shows the conditional 

probabilities calculated from the simulation runs. 

Except for MIN-MAX at R = 3 (a special case with a sub-

optimal local minimum [12]), there is a slightly elevated 

conditional probability for R – 1 replicas of two files to be 
co-located when R – 2 of the replicas already are, but the 

absolute probabilities are all very low.  We conclude that 

our algorithms do an adequate job of replica dispersion. 
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Figure 10. Dispersion of file replicas: (a) R = 3, (b) R = 4 



9. Related work 

In the Farsite environment, the dominant cause of 
machine unavailability is simply users’ turning off their 

machines [6], rather than machine failures or network 

partitions.  In systems built of dedicated components that 

are not capriciously turned off, understanding the causes 

of machine failure [22] can be used in detailed 

component-based reliability analysis [37] to evaluate the 
availability of a distributed system.  Utterly different 

analysis strategies [4, 28] are appropriate for systems 

prone to network partitions, with results [29] that indicate 

a hard limit on the availability improvement due to 

replication, namely an improvement of log10(1/2) ª 0.3 
nines greater than the highest available replica.  System 

availability is also limited by highly correlated failures 

such as site-wide power outages, but the appropriate 

techniques for dealing with such issues [19] are orthogonal 

to the concern of our present work, which is attaining a 
fairly high degree of availability when storing files on 

machines with comparatively low availabilities. 

In Farsite, consistency is maintained by a distributed 

directory service using a Byzantine fault-tolerant protocol 

[9].  Updates to files are propagated lazily from the client 

machine that performs the modification to the machines 
that store replicas.  Thus, we do not employ consistency 

protocols [1, 16, 20, 21] among machines storing replicas. 

Some earlier work on file placement focused on access 

load balancing [7, 36], rather than availability.  Others 

addressed availability [25] but not automated replica 

placement.  A significant body of work concerns file 
migration [8, 15, 24, 34], relocating replicas to machines 

near points of high usage, whereas we explicitly ignore 

geographic issues, because in Farsite’s target environment, 

all machines are interconnected by a low-latency network.  

McCue and Little [26] simulated a replica placement 
algorithm that yields significantly greater availability than 

random placement but which requires global coordination. 

Other serverless distributed file systems include xFS 

[2] and Frangipani [35], which provide high availability 

and reliability through distributed RAID rather than full 

replication.  Archival Intermemory [18] and OceanStore 
[23] both use erasure codes and widespread distribution to 

avoid data loss.  The Eternity Service [3] uses replication 

in a very wide scale to prevent loss even under organized 

attack, but does not address automated placement of data 

replicas.  Napster [27] and Gnutella [17] provide services 

for finding files but do not explicitly replicate files nor 
determine storage locations.  Freenet [10] generates and 

relocates replicas near points of usage. 

In addition to the current paper, our work on file replica 

placement includes competitive analysis [14], theoretic 

analysis using an analytic model of machine availability 

[13], and a simulation study of the detailed transient 
behavior of placement methods [12]. 

10. Summary and conclusions 

Farsite is a secure, serverless, highly scalable, fully 
distributed file system that provides high degrees of file 

reliability and availability by replicating files and storing 

the replicas on multiple desktop machines.  The system 

continuously monitors machine availability and relocates 

file replicas to maximize effective system availability 

without sacrificing system security, using a distributed 
hill-climbing algorithm that successively swaps the 

machine locations of two file replicas, constrained to 

avoid placing multiple replicas of a file on machines with 

the same owner. 

Large-scale simulation using machine availability data 

from over 50,000 desktop computers shows that being 
sensitive to availability when placing replicas of 

individual files pathologically skews the distribution of 

free space on machines.  By contrast, unbiased random 

placement does not negatively impact the machine free-

space distribution, and swap-based hill climbing improves 

this distribution as it improves the effective system 
availability. 

The hill-climbing algorithm is driven by a secure 

source of random numbers to diminish the security risk 

from malicious machines.  The security need for 

randomness is in selecting groups of machines with which 
to perform replica swaps, not in selecting individual files 

for swapping.  Therefore, it does not compromise the 

security of the system to improve the efficiency of hill 

climbing by selecting a pair of files that have maximally 

separated availability values.  System security can be 

further improved by ensuring that the initiator of the swap 
is requesting to improve the availability of its file rather 

than offering to improve the availability of another file, 

thus obstructing an avenue of targeted attack. 

Simulations based on real-world data show that three 

file replicas can yield over four nines of availability, and 

four replicas can yield over five nines of availability.  
Beyond this point, system availability is significantly 

diminished by correlated machine downtimes. 

Farsite’s replica placement methods are scalable, in that 

they continue to perform well even when the number of 

communication paths between machines is severely 
restricted.  With a mere 30 connections per machine in a 

network of over 50,000 machines, the algorithms can 

achieve 90% of the results achievable with full 

connectivity. 

Although security requires disallowing the placement 

of more than one replica of each file on machines with the 
same owner, this restriction does not have any detrimental 

effect on the effective system availability, even in the most 

restrictive case of R machine owners and R file replicas. 

The placement algorithm does a good job of dispersing 

the replicas of each file, which prevents a malicious 

machine from coercing the location of a specific file. 
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