
Optimizing File Availability in a Secure Serverless Distributed File System

John R. Douceur and Roger P. Wattenhofer

Microsoft Research
{johndo, rogerwa}@microsoft.com

Abstract
Farsite is a secure, scalable, distributed file system that
logically functions as a centralized file server but that is

physically realized on a set of client desktop computers.

Farsite provides security, reliability, and availability by

storing replicas of each file on multiple machines. It

continuously monitors machine availability and relocates

replicas as necessary to maximize the effective availability
of the system. We evaluate several replica-placement

methods using large-scale simulation with machine

availability data from over 50,000 desktop computers. We

find that initially placing replicas in an availability-

sensitive fashion yields pathological results, whereas very

good results are obtained by random initial placement
followed by incremental improvement using a scalable,

distributed, fault-tolerant, and attack-resistant hill-

climbing algorithm. The algorithm is resilient to severe

restrictions on communication and replica placement, and

it does not excessively co-locate replicas of different files
on the same set of machines.

1. Introduction

We evaluate the utility, performance, and consequential

effects of several candidate methods for replica placement

in a distributed file system, for the purpose of optimizing

file availability while maintaining system security. The

context of our study is Farsite [6], a secure, highly scalable
file system that logically functions as a centralized file

server but that is physically distributed among a network

of untrusted desktop workstations. In this potentially

treacherous environment, wherein machines may be

capriciously turned off or even maliciously subverted,

Farsite provides a high degree of availability and security
through randomized replication of both file content and

directory infrastructure. This paper investigates scalable,

distributed, fault-tolerant, and attack-resistant methods for

assigning file replicas to machines to maximally exploit

the availability diversity, failure independence, and threat
isolation provided by different machines.

The need for replica placement decisions arises in three

scenarios: where to place replicas when a new file is

created, where to relocate a replica when it is evicted from

a machine, and how to rearrange replicas as machine

availabilities change over time. These scenarios yield two

distinct problems: where to place a replica that is in need
of a home (the initial placement problem) and how to

improve a given arrangement of replicas in an incremental

fashion (the placement improvement problem).

We find that it is disadvantageous to consider machine

availability when determining initial replica placement.

Simulations driven by large-scale measurement data show
that placing replicas of individual files (or of indivisible

sets of files) in an availability-sensitive fashion

dramatically skews the distribution of free space among

machines, completely consuming all available space on

most machines and concentrating the free space on a small

fraction of machines in a narrow range of measured
availability levels, which severely impedes the system’s

ability to relocate replicas in the future.

For placement improvement, we consider a family of

distributed hill-climbing algorithms that successively

exchange the locations of two file replicas. These
algorithms are randomized to thwart coercion by

malicious machines. We find that the basis algorithm, in

which files are selected completely randomly, is highly

efficacious but very inefficient. We introduce two

improvements that significantly increase the efficiency of

the optimization process, with a simple augmentation to
resist targeted attack by malicious machines.

Since an arbitrary initial placement followed by

efficacious placement improvement yields a good final

placement, we conclude that initial placement should be

performed randomly, with a minor restriction to diminish

security risk. Our placement improvement algorithm not
only optimizes file availability but also improves the

distribution of free space among machines, making it more

evenly distributed than random placement.

Section 2 describes the Farsite system. Section 3

defines the placement problem and the requirements of a
solution. Section 4 describes the simulated environment

for our evaluation. Section 5 studies the initial placement

problem, and section 6 studies the placement improvement

problem. Section 7 considers the effects of two different

restrictions on the replica placement system: one for

reasons of scalability, the other for reasons of security.
Section 8 examines the degree to which placement

methods co-locate replicas of different files on the same

set of machines. Section 9 discusses related work, and

Section 10 summarizes our results and concludes.

2. Farsite system architecture

Farsite [6] is a scalable, serverless file system that
exploits the underutilized [11] storage and communication

resources distributed among the networked desktop

computers of a large organization, such as a university or

corporation. It provides high levels of availability,

reliability, and security without reliance on centralized

administration or physically protected infrastructure.
Instead, every client desktop machine that stores files in

the file system also serves both as a repository for replicas

of encrypted file content and as a member of a group of

machines that manage a region of the file-system

namespace. Since Farsite’s constituent machines function

primarily as client computers for their local users and only
secondarily as distributed storage and directory hosts, the

system must provide remote file services without

interfering with users’ local tasks and without requiring

users to modify their behavior.

Like any file system, Farsite has two classes of objects

to maintain: directories and files. In the aggregate,
directories consume little storage compared to files;

however, they must be comprehensible and revisable

directly by the system. In contrast, files consume a large

amount of storage space, but they can be (and for security

reasons, should be) completely opaque to the system.
Farsite thus employs different techniques for maintaining

these two classes of objects: Byzantine-fault-tolerant

groups for directories, and encrypted replication for files.

Figure 1 illustrates a portion of a Farsite system from

the perspective of a single client; aspects of the system

that are not relevant from this perspective are grayed out.
This figure shows a single client machine, a set of

machines that collectively comprise a directory host, and a

set of machines each of which functions as a file host. (In

practice, every machine actually performs all of these

roles.)

A directory host is a group of machines that interact

using a Byzantine-fault-tolerant protocol [9]. All (non-

faulty, non-compromised) machines in the group perform
the same sequence of operations, and the protocol

preserves the integrity of the group as long as fewer than

one third of the machines misbehave in any arbitrary or

malicious manner. Each directory host manages a set of

directories in the file-system namespace, providing a

hierarchical name-based catalog of storage-machine
locations and other metadata for files and subdirectories.

For operations that are not fully determined by client

requests, directory hosts make decisions via

cryptographically secure distributed random number

generation [5] to prevent any single member from

coercing the selection of another directory host or file host
and thereby compromising the security of the system.

Each file in a Farsite directory is encrypted, replicated,

and stored on multiple file hosts. Encryption provides

data privacy, and a cryptographic file hash [32] stored in

the directory host provides data integrity. Replication

provides data persistence even if some file hosts die, suffer
head crashes, or maliciously destroy their stored files.

Replication also provides file availability even if some of

the file hosts are unavailable when a file is requested.

Since different machines are available for different

fractions of time, Farsite continuously monitors machine
availability, and it relocates replicas as necessary to

maximize the availability of files to clients, subject to

security and reliability constraints.

Files that a client has recently accessed are cached

locally, providing guaranteed and immediate availability.

Files not recently accessed must be retrieved from one of
the remote file hosts that store replicas of the file, as

indicated by the dotted lines between the client and file

hosts in Figure 1. In the latter case, the client contacts the

directory host to determine which machines contain

replicas of the file.

global
file

store

local
file

cache

directory member global
file

store

local
file

cache

directory member

directory host file host

global

file

store

local

file

cache

directory member

client

file host

file host

global
file

store

local
file

cache

directory member

global
file

store

local
file

cache

directory member

global
file

store

local
file

cache

directory member

global

file

store

local

file

cache

directory member

global

file

store

local

file

cache

directory member

Figure 1. Portion of Farsite system architecture from one client’s perspective

3. Problem statement, solution requirements

The problem we address is how to produce an
assignment of file replicas to machines that maximizes

security, reliability, and availability over all files.

Although the security of a machine is hard to assess in

absolute terms, the probity of two machines with the same

owner is highly correlated [31], so no more than one

replica of each file should be placed on machines owned
by a single user. Since it is difficult to assess the

remaining lifetime of a particular disk or machine with

any accuracy [30], all machines are considered to have

equal reliability, equitable allocation of which requires

that each file have the same number of replicas as every

other file. In contrast to the previous two qualities,
availability varies widely between machines [6], so this is

the principal criterion for determining the specific

placement of replicas.

The fractional downtime of a machine is the mean

fraction of time that the machine is unavailable. For

pedagogical purposes, we will momentarily assume that
the times at which different machines are unavailable are

not significantly correlated with each other, an assumption

which has some empirical justification [6]. Therefore,

since a file is unavailable only if all of its replicas are

unavailable, the fractional downtime of a file is equal to
the product of the fractional downtimes of the machines

that store replicas of that file. For convenience, we

express machine and file availability values as the

negative decimal logarithm of fractional downtime. Thus,

the availability of a file is equal to the sum of the

availabilities of the machines that store the file’s replicas.
The common unit for availability is the “nine”; for

example, a machine with a fractional downtime of 0.01

has –log10(0.01) = 2 nines of availability, intuitively

corresponding to its fractional uptime of 1 – 0.01 = 0.99.

Since the client’s local cache exploits and exhausts any

temporal locality in file accesses, cache misses have
relatively little temporal locality. Therefore, our file-

placement objective is to maximize the effective system

availability (ESA), defined as the negative decimal

logarithm of the mean file downtime, µ. Given N files
each with availability ai, effective system availability can

be calculated as:

 ∑
−

=

−

−=−=

1

0

1010
10

1
loglogESA

N

i

a
i

N
µ

 (1)

This value is dominated by low-availability files and is

maximized when all files have the same availability.

To be suitable for Farsite, a file-placement algorithm
must be distributed, iterative, and randomized.

• distributed – Decisions must be made by individual

machines or small groups of machines with no central

coordination. Requirements for communication or

storage must not grow with the size of the system.

• iterative – The algorithm must be able to improve an
existing placement incrementally, rather than requiring

a complete re-allocation of storage resources when

conditions change.

• randomized – For security reasons, the placement

algorithm must allow randomness to drive the selection
of which other machines to engage in the placement

process.

4. Simulated environment

The environment that we simulate is an approximation

of a real-world commercial environment measured for an

early study of Farsite feasibility [6]. We simulate file

placement on a set of M = 51,662 machines for which we
have availability data given by a 35-day series of hourly

ping snapshots. The cumulative distribution of machine

availabilities is shown in Figure 2a. It is approximately

uniform in the range of 0 to 3 nines, which we exploit for

the analytic model in Section 7.
Figures 2b and 2c show how the measured machine

availabilities change over time. For both of these figures,

we compute each machine’s availability over a 15-day

window. Figure 2b shows that mean machine availability

remains fairly constant as this window slides from the

beginning to the end of the sample period. Figure 2c
shows the cumulative distribution of changes to each

machine’s availability from the first 15 days of the period

0

0.2

0.4

0.6

0.8

1

0 1 2 3

machine availability (nines)

c
u

m
u

la
ti

v
e

fr
e

q
u

e
n

c
y

measured uniform

0

0.5

1

1.5

2

0 5 10 15 20

start day of sample window

m
e

a
n

 m
a

c
h

in
e

a
v

a
il
a

b
il
it

y
 (

n
in

e
s

)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

machine availability delta (nines)

c
u

m
u

la
ti

v
e

 f
re

q
u

e
n

c
y

(a) (b) (c)

Figure 2. (a) Machine availability distribution, (b) Mean availability vs. time, (c) Availability change in 20 days

to the last 15 days of the period. 75 % of machines have

availabilities that change by less than one nine over these

20 days, but 7 % of machine availabilities change by more
than two nines, so although there is significant consistency

in machine availabilities over time, there is sufficient

change to warrant a continual reassessment of availability

and concomitant rearrangement of files.

We simulate the placement of 2,583,100 files, which is

several orders of magnitude smaller than it would be in a
real system of 51,662 machines, but we cannot

significantly increase it without exceeding the memory

limit of the 512-MB computer we use for simulation. We

have run our simulations with smaller counts of files per

machine, and the algorithms do not appear to be sensitive

to this value.
To allow for replicas to be rearranged, it is necessary to

maintain some amount of free space on machines. In a

real system, this “free space” does not actually have to be

unused: It could hold additional file replicas or local

cache entries, but it must be readily reclaimable when

needed. For our study, we set the mean value of this
excess capacity to 10 % of each machine’s storage space.

Our algorithms do not perform well when placing files

larger than the mean free space per machine. The smallest

hard disk currently available from Seagate [33] has a

capacity of 9.2 GB, and fewer than one in two million files
[11] is larger than 10 % of this size, so Farsite can

prioritize the placement of such extremely large files

without significantly affecting other files. For our

simulations, file sizes are governed by a binary lognormal

distribution with m
(2) = 12.2 and s

(2) = 3.43 [11], limited
to the mean machine free space.

The number of replicas of each file, R, is determined by

the fraction of storage capacity that holds unique file

content. Measurements of over 10,000 file systems of

commercial desktop computers in 1999 [11] indicate that a
replication factor of R = 3 is readily achievable [6]. More

recent measurements (unpublished) indicate that the

fraction of free disk space is steadily increasing, such that

a replication factor of R = 4 is now likely achievable. The
present paper investigates replica placement for both of

these replication factors.

A recent study [12] has shown that although different

machines’ unavailability times are mostly uncorrelated,

there is sufficient correlation to noticeably weaken the

effective system availability for replication factors beyond
R = 3. This study empirically found a second-order

polynomial relationship between the actual ESA and the

ESA as calculated by summing replica availabilities:

 84.0ESA5.1ESA078.0ESA
sum

2

sumactual
−+−= (2)

This model is roughly valid for ESA values in the range of

2 to 6 nines. Values of ESA reported in the present paper
are calculated using this model.

5. Initial placement

The problem of initial placement is to select machine

locations for homeless replicas. Since the primary goal of

replica placement is to optimize file availability, it seems

reasonable to base this selection on the measured

availability of machines. However, given an efficacious
method for placement improvement, it is not necessary to

account for availability in initial placement, and the results

in this section show that it is actually disadvantageous.

We perform the following experiment for each

candidate initial placement method: Beginning with an
arbitrary placement, we randomly select a machine, evict a

replica from it, have the replica’s directory host place the

replica on another machine, and iteratively repeat this

process until the ESA has converged to an apparent

asymptote. For brevity, this section shows results only for

R = 3, but those for R = 4 are substantially similar.
Figure 3a shows the count of replicas, the mean file

size, and the fraction of free space on each machine versus

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

m achine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

0

50

100

150

200

250

re
p

li
c

a
s

 (
c

o
u

n
t)

m
e

a
n

 f
il

e
 s

iz
e

 (
k

b
y

te
s

)

free space replicas mean file size

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

m achine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

0

50

100

150

200

250
re

p
li

c
a

s
 (

c
o

u
n

t)

m
e

a
n

 f
il

e
 s

iz
e

 (
k

b
y

te
s

)

free space replicas mean file size

(a) (b)

Figure 3. Initial placements for R = 3: (a) random, (b) availability-constrained

machine availability, when each evicted replica is placed

on a randomly selected machine. (If the machine already

contains another replica of the same file, or if there is
insufficient free space to accommodate the replica, a

different machine is selected until these conditions no

longer obtain.) All three values in Figure 3a are

uncorrelated to machine availability, which is desirable.

The resulting ESA (not conveyed in the figure) is 2.2

nines, well below the mean file availability of 4.3 nines,
but this is correctible by the placement improvement

method described in the next section.

Figure 3b shows results when the evicted replica is

disallowed from any machine that would cause the

availability of the file to be further from the mean file
availability than it was before its replica was evicted (thus

never permitting the ESA to drop). Eventually, all

machines with availabilities between 0.5 and 2.0 become

full, and all free space is concentrated on machines with

extremal availability values. This placement makes poor

use of high-availability machines, weakens the dispersal of
remote file requests among machines, and impedes future

relocation of replicas as system conditions change.

We have attempted numerous modifications to the

availability-constrained placement method to prevent this

detrimental effect on free space distribution, none of

which has been successful. One approach is to constrain
(or bias) the selection of the evicted replica according to

its relative availability; Figure 4a shows the result of

evicting the replica whose availability lies between that of

the other two replicas of the same file. Another approach

is to specifically account for machine free space; Figure

4b results from disallowing a placement if the target
machine has less free space than the machine from which

the replica was evicted. We have even changed the rules

of the experiment by not evicting a replica if the free space

on the machine exceeds a threshold; Figure 4c sets this

threshold to 15 %. From these and many other negative
results, we conclude that Farsite should initially place each

replica randomly, subject to a minor constraint for security

we explore in Section 7: disallowing more than one replica

of each file on machines with the same owner.

6. Placement improvement

The problem of placement improvement is to
incrementally improve the ESA of a given arrangement of

file replicas. The straightforward approach of

progressively relocating replicas of individual files is

equivalent to evicting files from machines and placing

them so as to improve the ESA, and it thus leads to the

same skewed free-space distribution described in Section
5. In this section, we consider an alternate method, in

which each directory host selects a file, randomly selects

another directory host (possibly itself) which also selects a

file, and – if there is sufficient free space and if the

availability values of the two files can be brought closer
together – exchanges the machine locations of one replica

from each file, which we call swapping the replicas. For

R > 3, it could be beneficial to swap more than one replica

at a time; however, this increases the security risk from a

compromised directory host and has empirically shown to

reduce the efficiency of the improvement process, so we
do not consider it further.

Figure 5 shows the result when this method is applied

to a random initial placement and allowed to bring the

ESA to within 1 % of the mean file availability. The three

illustrated quantities are satisfactorily uncorrelated to

machine availability, unlike those shown in Figure 3b.

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

machine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

machine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

machine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

(a) (b) (c)

Figure 4. Modified availability-constrained placements for R = 3: (a) moderate replica, (b) space-biased, (c) 15% limited eviction

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

m achine availability (nines)

fr
e

e
 s

p
a

c
e

 (
fr

a
c

ti
o

n
)

0

50

100

150

200

250

re
p

li
c

a
s

 (
c

o
u

n
t)

m
e

a
n

 f
il
e

 s
iz

e
 (

k
b

y
te

s
)

free space replicas mean file size

Figure 5. Swap-improved random placement for R = 3

Furthermore, Figure 6 shows that machine free space is

actually more evenly distributed than in the random initial
placement: The median free space is 7.6 %, compared to

4.6 % for the random initial placement and 1.4 % for the

availability-constrained initial placement. Figures 5 and 6

show results only for R = 3, but those for R = 4 are

substantially similar.

We have not yet specified how each directory host
selects a file to replica-swap with the other. The simplest

approach is to have each host randomly select one of its

files, so this establishes a basis method. Since ESA is

dominated by low-availability files, we can focus the

improvement on these by having one host select its
minimum-availability file, which yields a second method.

Furthermore, high-availability files should afford the most

opportunity for improving low-availability files, so we can

exploit this by having the other host select its maximum-

availability file, thus providing a third method. We refer

to these three methods as RAND-RAND, MIN-RAND, and MIN-

MAX, respectively. For the latter two methods, it is

important that the initiating host be the one to select its

minimum-availability file, so it is effectively asking for

help from – rather than offering help to – the contacted

host, thereby making it more difficult for a compromised
directory host to launch a targeted attack.

We evaluate the efficiency of these methods at

performing two tasks: (1) correcting for random initial

placement and (2) adjusting to changes in machine

availability over time.

For the former, we randomly evict and place replicas as
we did in Section 5, but we randomly intersperse these

random relocations with one or more steps of each

iterative improvement method, iterating until the ESA has

converged to an apparent asymptote. We vary the

correction ratio, which is the mean number of corrective

moves per random move, counting each swap as two
corrective moves since it relocates replicas of two files.

The results are shown in Figure 7. With sufficient effort,

all three algorithms achieve an ESA of 4.3 nines (R = 3) or

5.3 nines (R = 4), beyond which our model for the effect

of machine failure correlation is no longer valid. MIN-MAX

is the most efficient method, keeping the ESA at 90 % of
its maximal value with a unity correction ratio.

To assess the responsiveness of each method to the

machine availability changes shown in Figures 2b and 2c,

we set a window size of 15 days, compute the availability

of each machine from our windowed measurement data,
and run the method until the ESA reaches a target value.

We then slide the window forward by a day, recompute

the machine availabilities, and rerun the method, iterating

through all days in our sample period. Figure 8 plots the

daily replica-relocation rate required to sustain the full

range of achievable target ESA values. MIN-MAX is again
the most efficient method, sustaining the maximum

attainable value of ESA by relocating fewer than 2 % of

all file replicas per day. RAND-RAND requires an order-of-

magnitude greater relocation rate, but MIN-RAND is almost

as good as MIN-MAX for low ESA targets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

m achine free space

c
u

m
u

la
ti

v
e

 f
re

q
u

e
n

c
y

random initial availability-constrained initial swap improved

Figure 6. Machine free space distribution for R = 3

0

1

2

3

4

5

6

0.1 1 10 100

correction ratio (corrective m ove s / random m ove)

e
ff

e
c

ti
v

e
 s

y
s

te
m

 a
v

a
il

a
b

il
it

y

(n
in

e
s

)

MIN-MAX MIN-RAND RAND-RAND

0

1

2

3

4

5

6

0.1 1 10 100

correction ratio (corrective m ove s / random m ove)

e
ff

e
c

ti
v

e
 s

y
s

te
m

 a
v

a
il

a
b

il
it

y

(n
in

e
s

)

MIN-MAX MIN-RAND RAND-RAND

(a) (b)

Figure 7. Correcting for random replica relocations: (a) R = 3, (b) R = 4

7. Communication and placement restrictions

For scalability reasons, it is undesirable to require
every machine to maintain contact with every other

machine in the system. For security reasons, it is

unacceptable to place more than one replica of each file on

machines with the same owner. In this section, we

analyze the effect of each of these restrictions on our
placement methods.

Rather than exploring the combinatorially immense

array of incomplete communication graphs, we consider

only the most extreme case of limited interconnectivity, in

which all machines are randomly partitioned into non-

overlapping sets of fixed size, providing no indirect path
via which to swap replicas with non-neighbors. Figure 9

shows achieved ESA versus number of connections per

machine. With merely 30 connections per machine,

random placement plus each improvement method retains

90% of the ESA attainable with full connectivity.

For the security restriction, we again consider the most

extreme case: Machines are partitioned into R equal-sized

sets, each of which has a single owner and whose
members are selected randomly. We find that this

partitioning has no significant effect on the result of

random initial placement. For placement improvement,

MIN-MAX and MIN-RAND show no significant change in

efficiency; however, the efficiency of RAND-RAND is
actually improved by this restriction. Although this result

seems highly counterintuitive, it is plausible because the

unrestricted case allows some swaps that make little

improvement to ESA, whereas the security restriction

disallows some of these swaps. The following analytical

model predicts the result of our simulation (assuming
uncorrelated machine downtimes):

Given a count of C files, a swap between files with

availabilities v and w (expressed as negative decimal

logarithms) that changes them to v′ and w′ will change the

mean file downtime from µ to µ ′:

0

1

2

3

4

5

6

10 100 1000

connections per m achine

e
ff

e
c

ti
v

e
 s

y
s

te
m

 a
v

a
il

a
b

il
it

y

(n
in

e
s

)

MIN-MAX MIN-RAND RAND-RAND

0

1

2

3

4

5

6

10 100 1000

connections per m achine

e
ff

e
c

ti
v

e
 s

y
s

te
m

 a
v

a
il

a
b

il
it

y

(n
in

e
s

)

MIN-MAX MIN-RAND RAND-RAND

(a) (b)

Figure 9. Effect of limited machine interconnectivity: (a) R = 3, (b) R = 4

0.0001

0.001

0.01

0.1

1

2 2.5 3 3.5 4 4.5

effective system availability (nines)

re
p

li
c

a
 r

e
lo

c
a

ti
o

n
 r

a
te

(f
ra

c
ti

o
n

 o
f

re
p

li
c

a
s

 p
e

r
d

a
y

)

MIN-MAX MIN-RAND RAND-RAND

0.0001

0.001

0.01

0.1

1

2.5 3 3.5 4 4.5 5 5.5

effective system availability (nines)

re
p

li
c

a
 r

e
lo

c
a

ti
o

n
 r

a
te

(f
ra

c
ti

o
n

 o
f

re
p

li
c

a
s

 p
e

r
d

a
y

)

MIN-MAX MIN-RAND RAND-RAND

(a) (b)

Figure 8. Responding to machine availability changes: (a) R = 3, (b) R = 4

 () Cwwvv −′−−′−
−+−+=′ 10101010µµ (3)

For a large count of files, the change in effective system

availability relative to the number of relocations per

replica is as follows, since there are two relocations per

swap and a total of RC replicas:

() ()

()wwvv

CC

R

RCRC

−′−−′−

∞→∞→

−+−−=

′−=−′

10101010
10ln2

loglog
2

limESAAES
2

lim
1010

µ

µµ

(4)

Therefore, given two files, each with R replicas whose
availabilities are respectively given by the R-element

vectors x and y, the ESA improvement from the best

possible swap is given by function s:

() ()ijji xyyx

Rji

R
s

−+∑−∑−−+∑−∑−

<≤

−+−=
yyxx

yx 10101010
10ln2

max,
,0 µ

(5)

Restricted swaps can only exchange replicas with

matching indices (indicating the same set of machines):

() ()iiii
xyyx

Ri
r

R
s

−+∑−∑−−+∑−∑−

<≤

−+−=
yyxx

yx 10101010
10ln2

max,
0 µ

(6)

For machine availabilities uniformly distributed between 0

and A = 3.0 (as shown in Figure 2a) we calculate the
expected change in ESA over all swaps that yield positive

changes. The notation ∫ dx indicates a multiple integral

over all elements of vector x:

 ()() ()()∫ ∫∫ ∫ >=∆

A AA A

ddsdds

0 00 0

0,0,,max xyyxxyyx

(7)

The expected change from restricted swaps, ∆
r
, is

calculated similarly. The ratio of these two values,

ρ = ∆
r
 /∆, shows the performance change from adding the

restriction. For comparison, starting with a random initial

placement of all replicas, we simulate the RAND-RAND

algorithm with and without the security restriction and
measure the improvement per swap. Table 1 compares the

analytic results to the simulation results with 90 %

confidence intervals. The model’s predictions are well

within reasonable error bounds.

Table 1. RAND-RAND performance changes from extreme
security restrictions

Replicas Model Simulation

R = 3 ρ = 1.15 ρ = 1.12 ± 0.09

R = 4 ρ = 1.14 ρ = 1.17 ± 0.05

8. Dispersion of file replicas

Since the replica placement system attempts to equalize

the availability values of all files, it may seem that any two

files with at least R – 1 replicas on the same machines are
highly likely to have all R replicas on the same machines.

If so, this would be a significant security weakness, since a

malicious machine could adjust its own availability to

coerce the placement of a replica of a particular file onto

that machine. It would also cause file unavailability to

occur in bursts during which multiple files (those on the
same set of machines) would all become unavailable

simultaneously. Thus, it is important to determine

whether our algorithms do a good job of dispersing the

replicas of each file relative to those of other files.

Beginning with a random initial placement, we run

each algorithm until no further improvements are possible.
Then, we examine the resulting layouts to calculate the

conditional probability that at least r replicas of any two

files will reside on the same set of machines if at least

r – 1 of the two files’ replicas reside on the same set of

machines. For randomly placed replicas, this conditional
probability equals R2/M, for 1 ≤ r ≤ R, given R replicas

and M machines. Figure 10 shows the conditional

probabilities calculated from the simulation runs.

Except for MIN-MAX at R = 3 (a special case with a sub-

optimal local minimum [12]), there is a slightly elevated

conditional probability for R – 1 replicas of two files to be
co-located when R – 2 of the replicas already are, but the

absolute probabilities are all very low. We conclude that

our algorithms do an adequate job of replica dispersion.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

1 2 3

count of replica locations in com m on

c
o

n
d

it
io

n
a

l
p

ro
b

a
b

il
it

y

p
e

r
fi

le
 p

a
ir

MIN-MAX MIN-RAND RAND-RAND random

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

1 2 3 4

count of replica locations in com m on

c
o

n
d

it
io

n
a

l
p

ro
b

a
b

il
it

y

p
e

r
fi

le
 p

a
ir

MIN-MAX MIN-RAND RAND-RAND random

(a) (b)

Figure 10. Dispersion of file replicas: (a) R = 3, (b) R = 4

9. Related work

In the Farsite environment, the dominant cause of
machine unavailability is simply users’ turning off their

machines [6], rather than machine failures or network

partitions. In systems built of dedicated components that

are not capriciously turned off, understanding the causes

of machine failure [22] can be used in detailed

component-based reliability analysis [37] to evaluate the
availability of a distributed system. Utterly different

analysis strategies [4, 28] are appropriate for systems

prone to network partitions, with results [29] that indicate

a hard limit on the availability improvement due to

replication, namely an improvement of log10(1/2) ª 0.3
nines greater than the highest available replica. System

availability is also limited by highly correlated failures

such as site-wide power outages, but the appropriate

techniques for dealing with such issues [19] are orthogonal

to the concern of our present work, which is attaining a
fairly high degree of availability when storing files on

machines with comparatively low availabilities.

In Farsite, consistency is maintained by a distributed

directory service using a Byzantine fault-tolerant protocol

[9]. Updates to files are propagated lazily from the client

machine that performs the modification to the machines
that store replicas. Thus, we do not employ consistency

protocols [1, 16, 20, 21] among machines storing replicas.

Some earlier work on file placement focused on access

load balancing [7, 36], rather than availability. Others

addressed availability [25] but not automated replica

placement. A significant body of work concerns file
migration [8, 15, 24, 34], relocating replicas to machines

near points of high usage, whereas we explicitly ignore

geographic issues, because in Farsite’s target environment,

all machines are interconnected by a low-latency network.

McCue and Little [26] simulated a replica placement
algorithm that yields significantly greater availability than

random placement but which requires global coordination.

Other serverless distributed file systems include xFS

[2] and Frangipani [35], which provide high availability

and reliability through distributed RAID rather than full

replication. Archival Intermemory [18] and OceanStore
[23] both use erasure codes and widespread distribution to

avoid data loss. The Eternity Service [3] uses replication

in a very wide scale to prevent loss even under organized

attack, but does not address automated placement of data

replicas. Napster [27] and Gnutella [17] provide services

for finding files but do not explicitly replicate files nor
determine storage locations. Freenet [10] generates and

relocates replicas near points of usage.

In addition to the current paper, our work on file replica

placement includes competitive analysis [14], theoretic

analysis using an analytic model of machine availability

[13], and a simulation study of the detailed transient
behavior of placement methods [12].

10. Summary and conclusions

Farsite is a secure, serverless, highly scalable, fully
distributed file system that provides high degrees of file

reliability and availability by replicating files and storing

the replicas on multiple desktop machines. The system

continuously monitors machine availability and relocates

file replicas to maximize effective system availability

without sacrificing system security, using a distributed
hill-climbing algorithm that successively swaps the

machine locations of two file replicas, constrained to

avoid placing multiple replicas of a file on machines with

the same owner.

Large-scale simulation using machine availability data

from over 50,000 desktop computers shows that being
sensitive to availability when placing replicas of

individual files pathologically skews the distribution of

free space on machines. By contrast, unbiased random

placement does not negatively impact the machine free-

space distribution, and swap-based hill climbing improves

this distribution as it improves the effective system
availability.

The hill-climbing algorithm is driven by a secure

source of random numbers to diminish the security risk

from malicious machines. The security need for

randomness is in selecting groups of machines with which
to perform replica swaps, not in selecting individual files

for swapping. Therefore, it does not compromise the

security of the system to improve the efficiency of hill

climbing by selecting a pair of files that have maximally

separated availability values. System security can be

further improved by ensuring that the initiator of the swap
is requesting to improve the availability of its file rather

than offering to improve the availability of another file,

thus obstructing an avenue of targeted attack.

Simulations based on real-world data show that three

file replicas can yield over four nines of availability, and

four replicas can yield over five nines of availability.
Beyond this point, system availability is significantly

diminished by correlated machine downtimes.

Farsite’s replica placement methods are scalable, in that

they continue to perform well even when the number of

communication paths between machines is severely
restricted. With a mere 30 connections per machine in a

network of over 50,000 machines, the algorithms can

achieve 90% of the results achievable with full

connectivity.

Although security requires disallowing the placement

of more than one replica of each file on machines with the
same owner, this restriction does not have any detrimental

effect on the effective system availability, even in the most

restrictive case of R machine owners and R file replicas.

The placement algorithm does a good job of dispersing

the replicas of each file, which prevents a malicious

machine from coercing the location of a specific file.

References

[1] P. A. Alsberg and J. D. Day, “A Principle for Resilient
Sharing of Distributed Resources”, 2nd International
Conference on Software Engineering, IEEE, Oct 1976, pp.
562-570.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang, “Serverless Network File Systems”, 15th
SOSP, ACM, Dec 1995, pp. 109-126.

[3] R. J. Anderson, “The Eternity Service”, PRAGO-CRYPT
’96, CTU Publishing, Sep/Oct 1996, pp. 242-252.

[4] B. S. Bacarisse and S. Bek Baydere, “Reliability of
Replicated Files in Partitioned Networks”, 1st Workshop on
Management of Replicated Data, IEEE, 1990, pp. 98-101.

[5] J. Benaloh, “Dense Probabilistic Encryption”, Selected
Areas in Cryptography ’94, May 1994, pp. 120-128.

[6] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,
“Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs”,
SIGMETRICS 2000, ACM, Jun 2000, pp. 34-43.

[7] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Efficient,
Distributed Data Placement Strategies for Storage Area
Networks”, 12th SPAA, ACM, Jun 2000.

[8] G. Cabri, A. Corradi, and F. Zambonelli, “Experience of
Adaptive Replication in Distributed File Systems”, 22nd
EUROMICRO, IEEE, Sep 1996, pp. 459-466.

[9] M. Castro and B. Liskov, “Practical Byzantine Fault
Tolerance”, 3rd OSDI, USENIX, Feb 1999, pp. 173-186.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System”, ICSI Workshop on Design Issues in Anonymity
and Unobervability, Jul 2000.

[11] J. R. Douceur and W. J. Bolosky, “A Large-Scale Study of
File-System Contents”, SIGMETRICS ’99, ACM, May
1999, pp. 59-70.

[12] J. R. Douceur and R. P. Wattenhofer. “Large-Scale
Simulation of a Replica Placement Algorithms for a
Serverless Distributed File System.” 9th MASCOTS, IEEE,
Aug 2001.

[13] J. R. Douceur and R. P. Wattenhofer, “Modeling Replica
Placement in a Distributed File System: Narrowing the Gap
between Competitive Analysis and Simulation”, ESA 2001,
Aug 2001.

[14] J. R. Douceur and R. P. Wattenhofer, “Competitive Hill-
Climbing Strategies for Replica Placement in a Distributed
File System”, 15th DISC, Oct 2001.

[15] B. Gavish and O. R. Liu Sheng, “Dynamic File Migration in
Distributed Computer Systems”, CACM 33 (2), ACM, Feb
1990, pp. 177-189.

[16] D. K. Gifford, “Weighted Voting for Replicated Data”, 7th
SOSP, ACM, Dec 1979.

[17] Gnutella. http://gnutelladev.wego.com

[18] A. Goldberg and P. Yianilos, “Towards an Archival
Intermemory”, International Forum on Research and
Technology Advances in Digital Libraries, IEEE, Apr 1998,
pp. 147-156.

[19] R. Golding and E. Borowsky, “Fault-Tolerant Replication
Management in Large-Scale Distributed Storage Systems”,
18th SRDS, IEEE, Oct 1999.

[20] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr., G. J.
Popek, and D. Rothmeier, “Implementation of the Ficus
Replicated File System”, 1990 USENIX Conference,
Usenxi, Jun 1990, pp. 63-71.

[21] M. Herlihy, “A Quorum-Consensus Replication Method for
Abstract Data Types”, TOCS 4 (1), ACM, Feb 1986, pp. 32-
53.

[22] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer “Failure
Data Analysis of a LAN of Windows NT Based
Computers”, 18th SRDS, IEEE, Oct 1999.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao, “OceanStore: An
Architecture for Global-Scale Persistent Storage”, 9th
ASPLOS, ACM, Nov 2000.

[24] Ø. Kure, “Optimization of File Migration in Distributed
Systems”, Technical Report UCB/CSD 88/413, University
of California at Berkeley, Apr 1988.

[25] K. Marzullo and F. Schmuck, “Supplying High Availability
with a Standard Network File System”, 8th ICDCS, IEEE,
Jun 1988, pp. 13-17.

[26] D. L. McCue and M. C. Little, “Computing Replica
Placement in Distributed Systems”, 2nd Workshop on
Management of Replicated Data, IEEE, Nov 1992, pp. 58-
61.

[27] Napster. http://www.napster.com

[28] N. Natarajan and K. Kant, “Maintaining Availability of
Replicated Data in Partition-Prone Networks”, 1st
Workshop on Management of Replicated Data, IEEE, 1990,
pp. 108-112.

[29] L. Raab, “Bounds on the Effects of Replication on
Availabilty”, 2nd Workshop on Management of Replicated
Data, IEEE, 1992, pp. 44-46.

[30] R. T. Reich and D. Albee. “S.M.A.R.T. Phase-II,” White
paper WP-9803-001, Maxtor Corporation, Feb 1998.

[31] J. D. Saltzer and M. D. Schroeder. “The Protection of
Information in Computer Systems.” Proceedings of the
IEEE 63(9), pp. 1278–1308, Sep 1975.

[32] B. Schneier. Applied Cryptography, 2nd Edition. John
Wiley & Sons, 1996.

[33] Seagate, Inc. Disc Products by Model Number. “Search
Results: Disc Drives: All Capacities, All Interfaces, All
Systems.”
http://www.seagate.com/cda/products/discsales/index, Apr
3, 2001.

[34] A. Siegel, K. Birman, and K. Marzullo, “Deceit: A Flexible
Distributed File System”, Summer 1990 USENIX
Conference, USENIX, Jun 1990.

[35] C. Thekkath, T. Mann, and E. Lee, “Frangipani: A Scalable
Distributed File System”, 16th SOSP, ACM, Dec 1997, pp.
224-237.

[36] J. Wolf, “The Placement Optimization Program: A Practical
Solution to the Disk File Assignment Problem”,
SIGMETRICS ’89, ACM, May 1989.

[37] S. M. Yacoub, B. Cukic, and H. H. Ammar, “A Component-
Based Approach to Reliability Analysis of Distributed
Systems”, 18th SRDS, IEEE, Oct 1999.

