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ABSTRACT
We demonstrate how to leverage a system’s capability for all-
to-all communication to achieve an exponential speed-up of
local algorithms despite bandwidth and memory restrictions.
More precisely, if a network comprises n nodes with all-to-all
bandwidth nε (ε > 0 constant) and nodes know their input
and neighborhood with respect to a graph problem instance
of polylogarithmic maximum degree, any local algorithm for
this problem with running time r ∈ O(log n) and reasonably
small states can be simulated within O(log r) rounds.

Categories and Subject Descriptors
F.1.1 [Theory of Computation]: Computation by Ab-
stract Devices—Complexity Measures and Classes; F.2.3
[Theory of Computation]: Computation by Abstract De-
vices—Models of Computation

General Terms
Algorithms, Theory

Keywords
local algorithms, simulation, all-to-all communication

1. MOTIVATION
When designing distributed algorithms for graph prob-

lems, one typically assumes that the input graph coincides
with the communication graph, i.e., if—and only if—two
nodes are neighbors with respect to the problem formula-
tion, they are able to communicate directly as well. How-
ever, many distributed systems present a different communi-
cation structure. Supercomputers, for instance, are shipped
with predefined interconnection networks and routing mech-
anisms, peer-to-peer systems build communication networks
following various constraints that are not directly related to
their designation, and in shared memory systems communi-
cation is carried out by means of common memory that can
be accessed by all processes.

Frequently, such systems allow for all-to-all communica-
tion in the sense that each participant may use a certain
bandwidth for communication with arbitrary partners. Con-
sequently, locality of information is not an obstacle any
more; yet, it may be inefficient (for lack of bandwidth) or
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even infeasible (for lack of memory or computational power)
to solve problems in a fully centralized manner at a single
node.

In this work, we show how to exploit a non-local commu-
nication model to achieve an exponential speed-up of local
algorithms despite bandwidth and memory restrictions.

2. MODEL
We assume that all nodes v ∈ V , where n := |V |, can send

(receive) up to nε bits per round to (from) arbitrary destina-
tions (sources), where ε ∈ (0, 1]. Nodes have unique identi-
fiers of size O(log n). Moreover, nodes may never store more
than nε many bits. A (possibly randomized) synchronous lo-
cal algorithm A is given that runs on the graph G = (V, E),
where initially each node knows its input and its neighbor-
hood in G. The maximum degree ∆ of G is in polylog n.
When executing A, nodes store never more than n(1−δ)ε

many bits for a constant δ ∈ (0, 1) (including random bits,
which we assume to be part of the input). If the algorithm
runs less than δε log n/(2 log ∆) rounds, it is sufficient to
impose this condition on the inputs only.

These assumptions are motivated by the following con-
siderations. If G had large degrees (e.g. nε), the all-to-all
communication model would not represent a significant ad-
vantage over local communication. Likewise, if states were
too large, they could not be exchanged quickly due to the
limitations in bandwidth. Note that local algorithms typi-
cally maintain only small states (e.g. polylogarithmic) and
terminate quickly (e.g. in O(log n) rounds) and a large num-
ber of practically relevant graph families exhibit polyloga-
rithmic degrees.

3. SIMULATING LOCAL ALGORITHMS

Theorem 3.1. Suppose the local Algorithm A terminates
within r rounds with probability p. Then we can simulate A
within O(log r + r log log n/(ε log n)) rounds with probability
p. If r ∈ O(ε log n), this simulation takes O(log r) time.

Proof. Observe that within d ≤ δε log n/ log ∆ rounds
of A, nodes may receive information from at most ∆d ≤ nδε

many other nodes. We set d := min{2r, δε log n/ log ∆}.
Each node v ∈ V collects the topology Tv of (potential) com-

munication partners in G up to distance 2⌊log d⌋ ∈ (d/2, d].
To this end, in each round nodes send the part of the graph
G they currently know to all nodes in that part of the graph.
Thus, starting with radius 1, in each step the radius of the
neighborhood each node knows is doubled, i.e., this needs



to be repeated ⌊log d⌋ times. Such a neighborhood can be
encoded with at most ∆d log n many bits: for each node,
we need to list the identifiers of its at most ∆ neighbors,
which can be encoded by O(log n) bits each. Transmit-
ting this information is possible in a single round, since no
node ever needs to send or receive more than O(∆d log n) ⊆
O(nδε log n) ⊆ o(nε) bits; for the same reason, nodes do
not violate their memory constraints. Thus, after ⌊log d⌋

rounds, each node knows its 2⌊log d⌋-hop neighborhood.
After collecting Tv, v sends its input to all of the at most

∆d ≤ nδε other nodes in Tv. This takes only one round, as
nodes have to send and receive at most nδεn(1−δ)ε = nε bits.
Subsequently, each node locally simulates d/2 ≤ 2⌊log d⌋

rounds of A. If r ≤ δε log n/(2 log ∆), A terminates with
probability p within d/2 ≥ r rounds. If the running time
is larger than d/2, each node v sends its state after d/2
rounds of A to all nodes in Tv and simulates another d/2
rounds of the algorithm; we repeat this until all nodes have
terminated. We conclude that the total running time is in
O(log d + r/d) ⊆ O(log r + r log log n/(ε log n)) with proba-
bility p, which in case of r ∈ O(ε log n) is in O(log r).

4. EXAMPLES
For simplicity, we take ε to be a constant in the following.

Corollary 4.1. A maximal independent set is a maxi-
mal set containing no neighbors. In the above model, a max-
imal independent set can be computed in O(log log n) rounds
with high probability (w.h.p.).

Proof. Luby’s algorithm ([7], see [8] for a recent variant)
is local and takes O(log n) time w.h.p. to solve this problem.
States are small (in set/not in set/undecided and O(log n)
random bits for each round), thus Theorem 3.1 states that
Luby’s algorithm can be simulated in O(log log n) rounds as
claimed.

Corollary 4.2. A (minimum) dominating set is a set
(of minimum size) such that all nodes are in the set or have a
neighbor in the set. In the presented model, a dominating set
that is in expectation a factor O(log ∆) ⊆ O(log log n) larger
than one of minimum size can be found in O(log log ∆) ⊆
O(log log log n) rounds.

Proof. We apply Theorem 3.1 to the distributed mini-
mum dominating set algorithm from [5] (with bounded mes-
sage size and subsequent randomized rounding) for kp =
kd = log ∆ ∈ O(log log n).

It is well known that the minimum dominating set prob-
lem is NP-complete [2]; even approximations better than
factor c log ∆ are NP-hard [9] (for some constant c > 0).
Therefore, if we neither permit exponential computation nor
P = NP, the approximation ratio of Corollary 4.2 is asymp-
totically optimal for any running time polynomial in n.

Corollary 4.3. A matching is a mutually non-adjacent
subset of the edges of a graph. If the edges have weights,
the weight of a matching is the sum of the weights of its
edges. In the presented model, for any constant δ > 0 it is
possible to find within O(log log n) rounds a matching that
has w.h.p. weight at most a factor (2 + δ) smaller than the
maximum. In the unweighted case, a (1 + δ)-approximation
can be achieved with the same running time.

Proof. We employ the algorithms from [6], which com-
pute w.h.p. (2+δ) and (1+δ)-approximations in the weighted
and unweighted case, respectively. They run for O(log n)
rounds and use small messages, i.e., applying Theorem 3.1
yields the claimed result.

Corollary 4.4. A vertex cover is a subset of the nodes
such that for each edge at least one of its endpoints is in the
subset. If nodes have weights, the weight of a vertex cover is
the sum of the weights of its nodes. In the presented model,
it is possible to find a vertex cover that has at most twice the
weight of a solution of minimum weight within O(log log n)
rounds w.h.p.

Proof. We apply Theorem 3.1 to the respective algo-
rithm from [4].

It is known to be NP-hard to approximate minimum ver-
tex cover within a factor of 1.3606 [1]. Moreover, if the
unique games conjecture holds, it is NP-hard to approxi-
mate it within any constant factor smaller than 2 [3].
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