
A Neural Model for Regular Grammar Induction
Peter Belcak

ETH Zürich
Zürich, Switzerland

belcak@ethz.ch

David Hofer
ETH Zürich

Zürich, Switzerland
davhofer@ethz.ch

Roger Wattenhofer
ETH Zürich

Zürich, Switzerland
wattenhofer@ethz.ch

Abstract—Grammatical inference is a classical problem in
computational learning theory and a topic of wider influence
in natural language processing. We treat grammars as a model
of computation and propose a novel neural approach to induction
of regular grammars from positive and negative examples. Our
model is fully explainable, its intermediate results are directly
interpretable as partial parses, and it can be used to learn
arbitrary regular grammars when provided with sufficient data.
We find that our method consistently attains high recall and
precision scores across a range of tests of varying complexity.

Index Terms—neural networks, regular languages, grammar
induction, program synthesis

I. INTRODUCTION

Finite automata, or finite state machines, are the simplest
class of computational devices possessing memory. Their
memory is finite and stored exclusively as their state, but that
alone is enough to make their analysis challenging. In contrast
to simpler devices entirely characterisable by mappings of in-
dividual inputs to their corresponding outputs, finite automata
may need the entire input history to determine their next state
or output.

The learning of finite automata is a classical problem in
computational learning theory, and can be phrased as follows:
given a language L and a set of examples E , use E to find a
finite acceptor automaton D that accepts words in L and rejects
words not in L, or at least find a D that performs these duties
with sufficient accuracy. For instance, L can be the language
generated by the regular expression a∗bb∗. The set of examples
E could consist of the entire L, with us placing an additional
requirement of conciseness on the learning process to arrive
at a single, practical solution (say an automaton with at most
three states). Or, E could contain words such as aab and bbb
marked as positive examples (the words D should accept),
and aaa and aba marked as negative examples (words to be
rejected by D).

Strictly algorithmic, formal, statistical, and genetic ap-
proaches have all been proposed, but this problem remains
open mainly because the solutions lack an agreed single mea-
sure of merit. Some have argued for automata that concisely
represent E , while others preferred automata that generalised
well to L in scenarios where E contains only a few examples
representative of the original language. Another degree of
freedom arises in the constraints that are placed on E . One
can insist that E consists of only positive examples (i.e.
E ⊆ L), that E contains enough examples to sanction good

generalisation to L (e.g. all repetitions of a pattern beyond
a certain count signify that the pattern may be repeated
indefinitely), or that E contains both positive and negative
examples (i.e. E ∩ L ≠ ∅ ̸= E ∩ Lc, where Lc denotes words
not in L). We give a detailed overview of related work in
Sect. II.

This paper proposes a neural model that learns a finite
acceptor automaton for target language L from a given E
consisting of positive and negative examples. We insist that
the logic of the resulting automaton is fully explainable –
fully comprehensible by humans, that the resulting automata
generalise well to L despite being based on only E , and that
the representations are concise, or at least such that they do
not contain too much redundancy of computational logic.

Internally, our model learns a regular grammar rather than
a finite automaton. Briefly, a grammar G is a triplet of
AT ,AN ,P – the terminal alphabet, non-terminal alphabet,
and set of productions, respectively, where one of the letters
of AN is marked as the start symbol (the “root” of G). A left-
regular grammar is a grammar in which all productions of P
are of the form A → c, A → ϵ, or A → Bc for A,B ∈ AN ,
c ∈ AT , ϵ the empty string. A right-regular grammar uses
productions of the form A → cB instead of A → Bc. Regular
grammars are equivalent to finite automata in their language-
generating power and admit straightforward conversions into
each other. We do not consider empty languages or grammars
that give empty languages.

In our setting, there is a target language L = ⟨G⟩ generated
by the ground-truth grammar G. We are shown examples
E taken from both L and Lc, and our model internally
learns a hypothesis grammar G′. In other words, we do not
train neural automata to become accurate acceptors for given
languages L, but work instead with a fully explainable regular
language learning parser under an acceptor training setup.
We use less information than many previous methods for
grammatical inference and let the grammar emerge under
single-bit supervision.

Our contributions are:
• We introduce of a novel neural model tailored specifically

to the learning of regular grammars from positive and
negative acceptor examples. There are no limits on the
complexity of the regular grammars it can learn.

• We describe in detail a procedure for the recovery of the
learned grammars and parse trees from the internals of
our model, warranting explainability.

• We systematically evaluate our model across the dimen-
sions of grammar size, grammar complexity, and training
data quantity.

II. RELATED WORK

From the perspective of algorithmic learning, we divide the
literature on learning of regular languages into two groups:
one concerning the learning of finite automata and the associ-
ated regular expressions, the other addressing the problem of
grammar induction.

Learning finite automata. Early work on the subject lever-
aged Hidden Markov Models [15] and probabilistic finite state
machines [5] as the models for learning. Later approaches
readily recognized the utility of regular expressions as a form
for description and tended to be deterministic. Polynomial-
time algorithms were proposed for learning of regular expres-
sions without union operation from chosen classes of positive
examples [3] and for learning of unambiguous regular expres-
sions of maximum loop depth 2 [13]. A genetic programming
approach leveraging both positive and negative examples was
used in [18], and a further polynomial-time method for 1-
unambiguous regular expressions aiming for simplicity of
the resulting expressions was presented in [8]. Most of the
recent work on regular expression learning takes the line of
natural language processing (NLP) and proposes methods for
particular uses in real-world datasets. A genetic programming
method for text extraction from XML documents is outlined
in [2]. [14] focuses on identifying email campaigns with high
precision while phrasing it as an optimisation problem, and [4]
gives a method based on Support-Vector Machines tailored to
clinical texts.

Note that all of the above work either fences out a particular
sub-class of regular expressions that are to be learned (e.g.
union-less or 1-unambiguous) or makes additional assump-
tions based on the nature of the particular real-world problem
it is designed to solve.

Grammar induction. Pioneering work on the learning of
grammars from examples often attempted to construct prob-
abilistic context-free grammars that generated the target lan-
guage L [9]. Subsequent attempts employed a wider variety
of tactics including Bayesian methods [6] and genetic pro-
gramming [19]. The learning was done chiefly from positive
examples, though methods for automatic negative example
generation from positive examples were later introduced [17].
Similarly to above, contemporary work on grammar induction
is almost exclusively guided by the desired applications in
NLP rather than interest in theory of computation. As such,
black-box recurrent neural automata [7], reinforcement learn-
ing models [20], and partially interpretable structured attention
[12] and transformer [10] models dominate the sub-field at
present.

Our approach spans both of these groups. We train on
accept/reject information just like an acceptor automaton but
learn a grammar. In contrast to research on learning finite
automata and regular expressions, there are no inherent limits
on the complexity of grammars our model can learn – it can

learn any regular grammar, not a sub-class characterised by a
particular type of regular expressions. Further, in contrast with
the recent efforts in grammar induction, the neural architecture
we present learns a grammar in a fully explainable fashion.
Explainability is present in the training procedure, grammar
extraction, and the use of our model for direct parsing by the
learned grammar.

Given the above, our approach is more akin to research
in program synthesis and fits better under the paradigm of
“algorithm learning”. This is because we can view the lan-
guage examples together with the annotations that mark them
as positive and negative as input-output pairs for the broader
programming by example (PbE) task [16]. In PbE, a program
in a given programming language is to be synthesised based
on a set of input-output pairs. In our case, the programming
language is the rewriting scheme for regular grammars and the
program is the particular regular grammar that generates L or
a substantial overlap therewith.

III. MODEL

Our network consists of three components: Terminal Gram-
mar Unit, Non-terminal Grammar Unit, and Start Selector
Unit. These are engaged sequentially following a simplified
CYK algorithm to perform the function of an acceptor for the
target language L. After training, the internals of each unit can
be directly inspected to recover the learned regular grammar
G′ = (AT ,A′

N ,P ′). Note that while the terminal alphabet AT

is considered known (from L, E) and shared with our model,
the non-terminal alphabet A′

N is learned indirectly through
use in learned productions P ′. We present our method as for
the learning of left-regular grammars, but the entire setup can
be inverted to produce right-regular grammars.

A. Application Algorithm

For each example word w:a1a2a3 . . . aℓ we one-hot encode
letters ai into t-dimensional vectors vi, where t = |AT | is the
size of the terminal alphabet.

If w is a positive example we associate it with label y = 1,
otherwise y = 0. v1 is then fed into the Terminal Grammar
Unit to produce an intermediate parse n′-dimensional (belief)
vector u1. n′ is a parameter of the training, giving an upper
bound on the number of non-terminals that may appear in P ′.
The ground-truth non-terminal alphabet AN is not known to
us during training and so neither is its size n = |AN |. n′ is
therefore just a guess for n, made in a thought process similar
to that for the number of latent dimensions to be used in a
disentangling variational autoencoder.

For 1 ≤ i < ℓ, vi+1 and ui are then provided as the input
for the Non-terminal Grammar Unit, which in turn produces
the intermediate parse vector ui+1.

Finally, uℓ is processed by the Start Selector Unit, which
outputs a number o(w) between 0 and 1 representing the belief
that w ∈ L. The whole procedure is illustrated in Fig. 1 on
the unit level, and in Fig. 2 with internals and on a simple
example. In training, o(w) is assigned a loss value computed
as the binary cross-entropy between y (true label) and o(w)

Fig. 1. An overview of the model’s neural structure. From left. The Terminal Grammar Unit is applied to the first letter of the input word w. The non-terminal
grammar unit is then applied recurrently (i.e. the trained weights are shared between individual instances) to the remaining letters. The final parse belief vector
uℓ is fed into the Start Selector Unit to yield the accept/reject verdict.

(predicted label). The model is trained to minimise total loss
combining the cross-entropy and two other losses reflecting
the quality of the hypothesis grammar.

B. Terminal Grammar Unit (TGU)

The TGU serves as the hypothesis grammar parser for
potential terminal productions. It takes a t-dimensional vector
v1 – the one-hot encoding of the first letter – as input, uses it to
query the trained hypothesis terminal production n′-by-t ma-
trix PT , and clamps the output between 0 and 1: TGU (v1) :=
clamp (σ (PT) v1) , where clamp(v) := max (min (1, v) , 0)
and σ is the logistic sigmoid, each applied element-wise. If
A and b are one-hot-encoded as the i-th and j-th euclidean
basis vectors, then the i, j-th entry of σ (PT) represents the
belief of the model (the strength of TGU’s hypothesis) that the
production A → b is a part of the grammar G′ being learned
from E .

C. Non-terminal Grammar Unit (NGU)

The NGU is the recurrent unit of our architecture and is the
parser for the hypothesis grammar’s non-terminal productions.
It holds n′ n′-by-t trained matrices, each representing the
hypothesised non-terminal productions with one of the n′

potential non-terminals A′
N on the left-hand side. To per-

form its parse, the NGU takes the previous parse vector
ui, current terminal vector vi+1, and yields ui+1 where
the k-th entry of ui+1 for 1 ≤ k ≤ n′ is given by
NGU (ui, vi+1)k := clamp

((
σ
(
P k
N

)
vi+1

)T
ui

)
. If A,B and

c are one-hot-encoded as the k-th, i-th, and j-th euclidean
basis vectors respectively, then the i, j-th entry of σ

(
P k
N

)
rep-

resents the strength of NGU’s hypothesis that the production
A → Bc belongs to P ′.

D. Start Selector Unit (SSU)

The final parsing belief vector uℓ describes the model con-
fidence about each of the n′ non-terminals being the root non-
terminal. In order for a parse to be successful, the parsing must
terminate by reaching a particular non-terminal letter having
the role of the start symbol. We allow for the start symbol to
emerge in an unsupervised fashion by letting the model learn
which of the non-terminals should be considered to have the
function of the root of G′. We achieved this by making a con-
stant softmax choice (paying “constant attention”) in the Start
Selector Unit: o(w),SSU (uℓ) := softmax (s)T

uℓ, where s is
a trained n′-dimensional vector. We also experimented with

using a two- and three-layer multi-layer perceptron (MLP)
networks and found no difference in performance but observed
a tendency of the model to encode the productions of the
grammar’s start symbol in the MLP, hindering explainability.
We also considered fixing one of the entries of uℓ but observed
a decrease in recall scores.

E. The Role of clamp(·)
If the hypothesis grammar is or nears being ambiguous, the

vector inner product in NGU often results in belief values in
ui+1 being greater than 1 (e.g. as in Fig. 3). To keep the
model trainable and explainable at the same time, we limit
all grammar unit outputs to 1. The values in our model never
go below 0, but we keep the lower bound in the definition of
clamp(·) for consistency with similar work in neural networks.

F. Training Losses

The training loss for our model consists of three com-
ponents, with relative contributions to the total loss being
controlled by hyperparameter factors.

1) Prediction loss: The binary cross-entropy between the
true labels (1, 0 for positive,negative examples w) and pre-
dicted labels o(w). The prediction loss guides the model
towards learning a grammar that generates exactly L.

2) Sharpening loss: For every entry e in σ (PT) , σ
(
P k
N

)
we compute the sharpening contribution S (e) := 1 −
(2e− 1)

2 and then compute the total sharpening loss S :=
1

n′(n′+1)t

∑
e S (e) . The sharpening loss helps to ensure that

the values of σ (PT) , σ
(
P k
N

)
are eventually clearly inter-

pretable as productions of G′.
3) Production use loss: Simply the mean of all entries e

of σ (PT) , σ
(
P k
N

)
, i.e. U := 1

n′(n′+1)t

∑
e e . Intuitively, this

loss encourages the use of smaller grammars in contrast to
larger ones.

4) Total loss: The total loss for a batch B is then ℓ(B) :=
BCE (B) + βS + γU , where β, γ ≥ 0 are hyperparameters.

G. Grammar Extraction

We set a confidence threshold τ for when an entry of a
production matrix P• is to be interpreted as signifying the
presence of the production in the grammar. In our experimen-
tation, τ = 0.95 proved to be a reliable choice, though any
threshold strictly below 1 is eventually achievable owing to
the sharpening loss.

Denote (M)ij the i, j-th entry of a matrix M , ak the k-th
terminal in AT , and Ak the k-th non-terminal in A′

N . Then the

Fig. 2. An illustration of the model’s internals. The productions P ′ of the model hypothesis grammar G′ =
(
AT ,A′

N ,P ′) generate the language given
by the regular expression (a|b)∗ cc∗. The × symbol represents matrix multiplication, · represents vector inner product, and the colour coding of productions
and matrix entries marks equivalences by the encoding-decoding procedures of Sect. III-C and Sect. III-G. We present the model with a string abb. Left. The
Terminal Grammar Unit matches the initial a encoded as v1 = (1 0 0)T with the production A → a and produces the belief vector u1 = (1 0)T. Middle.
The Non-terminal Grammar Unit has its production matrices queried by v2 = (0 1 0)T and finds a match in the production A → Ab. This is then dotted
with the prior belief u1 to produce the next parse belief u2. The same is repeated for v3, u2 = v2, u1 giving uℓ = u3 = (1 0)T. Right. The model has been
trained to recognize C as the root symbol, but the terminal parse uℓ on the given negative example is (1 0)T, leading to 0 as the output of the acceptor.

productions P ′ of the induced grammar G′ can be extracted
from the TGU and NGU by the following procedure:

• If (σ(PT))ij ≥ τ , add Ai → tj to P ′.
• For each 1 ≤ k ≤ n, if

(
σ(P k

N)
)
ij

≥ τ then add Ak →
Aiaj to P ′.

• Let µ := argmaxk softmax (s)k. Add S → Aµ to P ′.
Note that by constructing P ′ in this manner, A′

N may contain
non-terminals that are never used or that can never be reached
from the start symbol S in a derivation.

H. Parse Tree Construction

While the extracted induced grammar forms a basis for
parser construction, the TGU and NGU can be used to
construct the parse trees directly. For all 1 ≤ i ≤ ℓ, uℓ multi-
hot-encodes all non-terminals that can be used to generate
the prefix sub-word w≤i = a1 . . . ai of w. This can be done
inductively in i as follows: for 1 ≤ j ≤ n, if

(
σ(P k)vi

)
j
≥ τ

and ui ≥ τ , Nk is a parse tree node for ui+1 with one child
being the root of the parse tree for ui and the other being the
leaf terminal ai. This is illustrated in Fig. 3. Such a tree may
exist for every j, giving all the at most n′ possible parse tree
roots for any prefix sub-word w≤i.

IV. EXPERIMENTS

To systematically evaluate the grammar induction perfor-
mance of our model, we generate left-regular grammars of
varying complexity using a randomized procedure, and then
use the said grammars to produce training datasets consisting
of positive and negative examples. Once trained, the instances
of our model are inspected for their induced grammars G′ and
tested for how closely they match the ground-truth G.

Due to the lack of related work addressing the problem of
general regular grammar induction from positive and negative

examples (cf. Sect. II), the objective of our experimentation
is to investigate the robustness of our method to increases in
grammar complexity and potential brevity in training examples
(i.e. the cases when the training examples may be plenty
but are not long enough to be wholly confident about the
recurrence in a production). This is in line with the example
evaluation approach taken in other work [2], [14], [18].

A. Grammar Generation

During the ground-truth grammar generation phase, we vary
the number of terminals t, the number of non-terminals n, and
the average number of productions per non-terminal p, thus
controlling the complexity of the generated grammar. For each
non-terminal Ai, the number of productions is subsequently
sampled from a geometric distribution with parameter π =
p−1. Each production for Ai is either a terminal production
of the form Ai → a with probability pT = 0.4 or a non-
terminal production of the form Ai → Aja with probability
pN = 1 − pT . Aj is chosen uniformly at random from the
set AN of candidate non-terminals and a is chosen uniformly
at random from the set AT of terminals. We designate one
symbol in AN as the start symbol S without preference.

In order for the language L = ⟨G⟩ to be non-empty, we
add a randomly sampled terminal production to the set P
of productions if there are none, and furthermore ensure the
derivation reachability of all non-terminals in AN from the
start non-terminal S by adding a single production Ai → Aja
for each unreachable non-terminal Aj and some reachable
non-terminal Ai. Ai, a are again taken at random.

B. Generation of Training Examples

Let G be a ground-truth grammar generated as above, and let
L = ⟨G⟩ be its corresponding language. The training data for

Fig. 3. An example of parse tree construction from parsing input vectors
vi, ui. Expanding on example from Fig. 2 we consider an instance of
our model employing grammar G∗ :=

(
AT ,A′

N ,P∗) to parse the word
bbacc. P∗ is an extension of P ′, with the additional productions introducing
ambiguity leading to two more potential parse trees. The ambiguity leads
to values exceeding 1 in the dot product in the NGU and clamping is
engaged to keep the values between 0 and 1. Table from the top. The
initial terminal b can be parsed by either of A or C. For i = 2, each of
A → Ab,C → Ab,C → Cb can be engaged producing partial parses rooted
at A or C. For i = 3, either A → Aa or C → Ca can be used, conditional
on the root of the previous intermediate parse. For i = 4, 5, C → Cc applies.

Fig. 4. A visualisation of the training progression of a single run from
the experiment described in Sect. IV. The bright and dark tiles represent
hypothesis grammar values close to 1 and 0 respectively. From left, we see
random hypothesis grammar space becoming more orderly as the training
progresses. The final induced grammar after the 15th epoch can be recovered
following Sect. III-G.

a single instance of our model is a dataset E of words formed
from the terminal alphabet AT , consisting of both negative
and positive examples for L. To generate the examples for L,
we construct a minimal deterministic finite automaton (DFA)
D equivalent to G in the sense that D accepts a word w over
AT if and only if w ∈ L.

Constructing finite automata to generate E instead of using

the ground-truth G directly helps us avoid introducing unin-
tentional bias into E that would favour G or grammars very
similar to G. In other words, we avoid information leakage by
constructing equivalent automata and optimising them prior to
generating E .

1) Positive examples: We perform a breadth-first search of
depth d on D, memorising the path taken on each branch of the
search. Whenever an accepting state is encountered, the word
consisting of transition symbols of the given path read out in
sequence is returned. The search then continues to explore the
path as before until the depth d has been reached. Observe
that the length ℓ of the word is ≤ d.

2) Negative examples from non-accepting paths: Paths (in-
cluding intermediate paths, i.e. paths of length ≤ d) of the
above breadth-first search that do not end at an accepting state
are added to E as negative examples.

3) Negative examples with invalid postfix: Let σ be a state
of D reached by the above search after k steps. Let A (σ) be
the set of letters a ∈ AT that label out-transitions of σ. For
all a ∈ AT \A (σ), let w be the word formed by appending a
to the a1 . . . ak labels of the transitions on the path traversed
to reach σ. Such w are also negative examples.

4) Negative examples with invalid infix: Let a1 . . . aka be a
word for an invalid postfix negative example, and let b1 . . . bl
be the symbols of some valid path between two states of D
such that the latter state is accepting. We consider any word
formed as a1 . . . akab1 . . . bl a negative example.

5) Random negative examples: To further enrich E , we
generated a number of words of uniformly random length up
to d with each letter drawn from AT uniformly at random
such that D would not accept them, and added them to E as
negatives.

Intuitively, the positive examples guide the model towards
learning a grammar G′ that recalls all words of L (i.e.
L ⊆ ⟨G′⟩), the negative examples with invalid prefix or infix
increase precision (i.e. minimise Lc ∩ ⟨G′⟩), and the negative
examples form non-accepting paths further contribute to in-
creases in precision by discouraging spurious links between
the hypothesis non-terminals A′

N of G′ while also indirectly
reducing redundancy of computational logic in G′.

We experimented with various ratios of positive to negative
examples and ended up settling for 1:1, with random negative
examples providing more negative examples wherever needed
to reach this ratio.

C. Evaluation

Given a trained model, we extract the induced grammar G′

as per Sect. III-G. We then convert G′ into an equivalent DFA,
from whom we compute the minimal DFA D′. The minimality
is in the number of states as arrived at by the Hopcroft’s
algorithm.

For each regular language L, there exists a unique (up to
a re-labelling isomorphism) minimal recognizer DFA D [11,
p. 159-164]. Given the minimal DFA D of the ground-truth
grammar and the minimal DFA D′ of the induced grammar,
we canonically re-label their states and follow the algorithm

of [1] to test whether D,D′ are isomorphic. Isomorphism of
D,D′ means that G,G′ are fully equivalent, implying that our
model has achieved the maximum recall and precision and that
we do not need to evaluate further.

In the case that G,G′ are not equivalent, we assess similarity
of languages by comparing the finite subsets Ld,L′

d of each.
These consist of all words of L,L′ = ⟨G⟩ up to length d. We
then measure the recall Ld∩L′

d

Ld
, precision Ld∩L′

d

L′
d

, and accuracy
Ld∩L′

d

Ld∪L′
d

of our model.

D. Results

We generated grammars with t = 4, n ∈ {2, 3, 4}, and p ∈
{2, 3, 4, 5}, resulting in 12 different grammar configurations.
For each grammar, we generated the full dataset of positive and
negative examples of strings up to length 16, training models
on strings of length up to 6, 8, 10, 12, 14, and 16, with 5 runs
per grammar per length. During training, we used a batch size
of 80, Adam optimizer with learning rate 0.005, β of 0.05 after
60% of epochs and 0 before then. There was a maximum of
60 epochs and n′ = 5. We extracted the grammar from the
model using a confidence threshold τ = 0.95, and evaluated
it as described above.

Overall, the model learned the grammar from which the
data was generated exactly (i.e. the automata D,D′ were
isomorphic) in 85% of all runs.

For more complex grammars, we observed an increase in
accuracy (+2-5%) when increasing length of examples while
keeping the grammar complexity fixed. Generally, grammars
with smaller numbers of non-terminals n were easier to learn
for our model, and for all n, higher number of productions
per non-terminals also led to better results. This is somewhat
counter-intuitive but perhaps due to our methodology for
negative example generation: more complex grammars had
more negative examples from non-accepting paths and fewer
random negative examples.

As pointed out in Sect. II, no previous method addressed the
problem of learning the entire class of regular grammars from
positive and negative examples, and so no direct comparison
can be made at present.

V. CONCLUSION

We have introduced a purely neural explainable model for
the induction of regular grammars from positive and negative
acceptor examples, and demonstrated its ability to induce
grammars to high levels of accuracy.

Our model can be used both for grammar induction and as
a regular language parser. This duality of purpose arises from
it simultaneously inducing a grammar and attempting partial
parses throughout its training as an acceptor automaton.

The ultimate but distant goal of grammatical inference in
the context of algorithm learning is the induction of general
grammars (TYPE-0 in the Chomsky hierarchy) which are
equivalent in power to Turing machines. We see regular gram-
mars as a simple but rich class of grammars for induction from
examples under the Programming by Example paradigm and

hope that our work will help to facilitate further advancements
in explainable neural grammar inference.

REFERENCES

[1] Marco Almeida, Nelma Moreira, and Rogério Reis. Testing the equiv-
alence of regular languages. arXiv preprint arXiv:0907.5058, 2009.

[2] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and
Enrico Sorio. Automatic synthesis of regular expressions from examples.
Computer, 47(12):72–80, 2014.

[3] Alvis Brāzma. Efficient identification of regular expressions from
representative examples. In Proceedings of the sixth annual conference
on Computational learning theory, pages 236–242, 1993.

[4] Duy Duc An Bui and Qing Zeng-Treitler. Learning regular expressions
for clinical text classification. Journal of the American Medical Infor-
matics Association, 21(5):850–857, 2014.

[5] Rafael C Carrasco and Jose Oncina. Learning stochastic regular
grammars by means of a state merging method. In International
Colloquium on Grammatical Inference, pages 139–152. Springer, 1994.

[6] Stanley F Chen. Bayesian grammar induction for language modeling.
arXiv preprint cmp-lg/9504034, 1995.

[7] Jihun Choi, Kang Min Yoo, and Sang-goo Lee. Learning to compose
task-specific tree structures. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[8] Henning Fernau. Algorithms for learning regular expressions from
positive data. Information and Computation, 207(4):521–541, 2009.

[9] King-Sun Fu and Taylor L Booth. Grammatical inference: Introduction
and survey-part ii. IEEE Transactions on Systems, Man, and Cybernet-
ics, (4):409–423, 1975.

[10] Ben Goertzel, Andrés Suárez-Madrigal, and Gino Yu. Guiding symbolic
natural language grammar induction via transformer-based sequence
probabilities. In International Conference on Artificial General Intel-
ligence, pages 153–163. Springer, 2020.

[11] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction
to automata theory, languages, and computation. Acm Sigact News,
32(1):60–65, 2001.

[12] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. Struc-
tured attention networks. arXiv preprint arXiv:1702.00887, 2017.

[13] Efim Kinber. Learning regular expressions from representative examples
and membership queries. In International Colloquium on Grammatical
Inference, pages 94–108. Springer, 2010.

[14] Paul Prasse, Christoph Sawade, Niels Landwehr, and Tobias Scheffer.
Learning to identify regular expressions that describe email campaigns.
arXiv preprint arXiv:1206.4637, 2012.

[15] Lawrence Rabiner and Biinghwang Juang. An introduction to hidden
markov models. ieee assp magazine, 3(1):4–16, 1986.

[16] David Canfield Smith, Allen Cypher, and Larry Tesler. Programming
by example: novice programming comes of age. Communications of the
ACM, 43(3):75–81, 2000.

[17] Noah A Smith and Jason Eisner. Guiding unsupervised grammar
induction using contrastive estimation. In Proc. of IJCAI Workshop
on Grammatical Inference Applications, pages 73–82, 2005.

[18] Borge Svingen. Learning regular languages using genetic programming.
In Proc. 3-rd Genetic Programming Conference, pages 374–376, 1998.

[19] Peter Wyard. Context free grammar induction using genetic algorithms.
In IEE colloquium on grammatical inference: theory, applications and
alternatives, pages P11–1. IET, 1993.

[20] Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and
Wang Ling. Learning to compose words into sentences with reinforce-
ment learning. arXiv preprint arXiv:1611.09100, 2016.

	Introduction
	Related Work
	Model
	Application Algorithm
	Terminal Grammar Unit (TGU)
	Non-terminal Grammar Unit (NGU)
	Start Selector Unit (SSU)
	The Role of clamp()
	Training Losses
	Prediction loss
	Sharpening loss
	Production use loss
	Total loss

	Grammar Extraction
	Parse Tree Construction

	Experiments
	Grammar Generation
	Generation of Training Examples
	Positive examples
	Negative examples from non-accepting paths
	Negative examples with invalid postfix
	Negative examples with invalid infix
	Random negative examples

	Evaluation
	Results

	Conclusion
	References

