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Background: RL from Human Feedback (RLHF)
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-> to align with human preferencc

-> e.g, ChatGPT

● RL from Human Feedback

● Key Applications
- Robotics
- Recommendation
- Language Models

Background: RL from Human Feedback (RLHF)
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Challenge: Centralization

- One preference model for all users
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● Personalization

- All user data and human preference are collected (HIPAA, GDPR, PDPA, etc.)



8

Challenge: Centralization

- One preference model for all users

● Privacy

● Personalization

- All user data and human preference are collected (HIPAA, GDPR, PDPA, etc.)



9

• Privacy 
=> All user data and human preference are collected (HIPAA, GDPR, etc.)

• Personalization
=> One preference model for all users

Challenge: Centralization
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Solution: FedRLHF

RLHF

FedRLHF

Centralized data/feedback collection

Single global preference model

Local training on local data

Local feedback models

Only model weights shared

Personalized policies
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FedRLHF – Practical Example
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• Trains its RL model locally using patient data

• Environmental rewards: Objective health metrics 

(e.g., blood sugar levels, recovery time)
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FedRLHF – Practical Example
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Too aggressive?

Just right?

Too conservative?

For each hospital 

• Trains its RL model locally using patient data

• Environmental rewards: Objective health metrics 

(e.g., blood sugar levels, recovery time)

• Doctor feedback provides qualitative signals (e.g., 

treatment appropriateness)

A central party (central hospital, government, etc.)

• Aggregates model updates from all hospitals

• Captures shared knowledge
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FedRLHF – Practical Example
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Too aggressive?

Just right?

Too conservative?

Local personalization

• Hospitals receive the global model and

• Refine further using local data and feedback

• Adapts to local patient demographics and doctor 

preferences

• Balance between global collaboration and highly 

personalized care
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FedRLHF – Problem Formulation

System setup: clients, each client

● Local MDP

● Local feedback 

● Shaped reward

● Local objective
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FedRLHF – Problem Formulation

System setup: clients, each client

● Local MDP

● Local feedback 

● Shaped reward

● Local objective

Server-clients communication FedAvg

● Server broadcasts global model

● Clients send parameters 

Global objective
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FedRLHF - Convergence

Theorem 4.1 (Convergence of FedRLHF). The output of Algorithm 

FedRLHF satisfies:

O(1/T): 

linear convergence rate 

w.r.t. T

O(1/K): 

scalability 

w.r.t. K

O(1): 

bounded impact 

from feedback
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FedRLHF - Sample Complexity

Theorem 4.2 (Sample Complexity of FedRLHF). To achieve an 

expected optimality gap of , the 

total number of samples required across all clients is: 

resulting in per-client sample complexity:

Task-dependent properties

combined effect of 

gradient bound and variance 

decreases proportionally with K
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FedRLHF - Personalization vs Performance

A fundamental trade-off in collaborative learning:

Local Adaptation

- Personal preferences

- Client-specific behavior

- Divergent policies

Global Learning

- Shared knowledge

- Collaborative gain

- Model consistency

vs

Definition 5.2 (Personalization Score).  

Definition 5.3 (Global Performance Metric). 
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FedRLHF - Personalization vs Performance

Theorem 5.1 (Personalization-Performance Trade-off). Using the 

FedRLHF algorithm, the global performance metric (Definition 5.3) 

satisfies:

Theorem 5.2 (Impact of Human Feedback):

a) The average personalization scores increases at 

b) The global performance decreases at 

c) The system sample complexity increases at
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FedRLHF - Personalization vs Performance

Takeaway:

1. Trade-off Highlight: Improving personalization comes at the cost 

of global performance.

2. 

λ Local Adaptation

λ Local Adaptation

Global Consistency 

Global Consistency 
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Experiment: Sentiment-Controlled Text Generation

Dataset & Task: 

● 50,000 labelled reviews from IMDb dataset (positive/negative sentiment)

● Partitioned among K=5 clients, each with ~10k reviews

● Objective: Fine-tune a GPT-like model to generate text that matches a desired 

sentiment style. Different clients want different positivity levels.

Setup: 

● Transformer RL (TRL)2 library from hugging face

● Flower API3 for simulating realistic distributed network, governed by a server

3https://flower.ai/docs/framework/index.html

2https://github.com/huggingface/trl/tree/main

Please refer to our paper for more details and results.
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Implementation & Local Feedback Mechanism

Model pretrained from HuggingFace

• GPT-2 (125M parameters + PPO overhead for RL)

Intrinsic rewards 

• Based on log-likelihood of coherent text (fluency)

Feedback/Sentiment

• Outputs from pretrained DistBERT sentiment classifier

Combined reward
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Results – FedRLHF vs Centralized RLHF

● FedRLHF catches up in average reward, 

eventually surpassing centralized RLHF after 

~1500–2000 samples.

● FedRLHF starts with higher loss in early 

rounds, due to variance among clients, but 

quickly drops due to the exploration of more 
clients.

● FedRLHF achieves comparable, if not better, 

performance than centralized RLHF, while 

preserving privacy
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Results – Personalization & λ Tuning

Different λ​ across clients: 

Observations:

• Client 0 (λ=0.1): better fluency 

but weaker sentiment 
alignment.

• Client 4 (λ=0.9): strong 

sentiment control, slight drop in 

fluency.
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Conclusion

1. FedRLHF decentralizes RLHF in FL

○ Personalized preference/reward model

2. Theoretical Foundations

○ Convergence guarantees

○ Sample complexity analysis

○ Personalization-performance tradeoff

3. Looking ahead

○ Relaxed assumptions

○ Further privacy enhancements

○ Robust aggregation

○ Principled implementation of feedback fxf@u.nus.edu
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