

FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF

Flint Xiaofeng Fan, Cheston Tan, Yew-Soon Ong, Roger Wattenhofer, and Wei Tsang Ooi

AAMAS 2025

Flint Xiaofeng Fan Postdoc, ETH Zurich Scientist, A*STAR CFAR A*STAR International Fellow

• RL from Human Feedback

-> to align with human preferencc

- Key Applications
 - Robotics
 - Recommendation
 - Language Models

-> e.g, ChatGPT

• RL from Human Feedback

-> to align with human preferencc

- Key Applications
 - Robotics
 - Recommendation
 - Language Models

-> e.g, ChatGPT

Policy Model

• RL from Human Feedback

-> to align with human preferencc

- Key Applications
 - Robotics
 - Recommendation
 - Language Models

-> e.g, ChatGPT

You're giving feedback on a new version of ChatGPT.

Which response do you prefer? Responses may take a moment to load.

• RL from Human Feedback

-> to align with human preferencc

- Key Applications
 - Robotics
 - Recommendation
 - Language Models

-> e.g, ChatGPT

Challenge: Centralization

• Privacy

7

- All user data and human preference are collected (HIPAA, GDPR, PDPA, etc.)
- Personalization

Challenge: Centralization

- Privacy
 - All user data and human preference are collected (HIPAA, GDPR, PDPA, etc.)
- Personalizatieference model for all users

Challenge: Centralization

• Privacy

=> All user data and human preference are collected (HIPAA, GDPR, etc.)

- Personalization
 - => One preference model for all users

Α

Solution: FedRLHF

RLHF

Centralized data/feedback collection

Single global preference model

FedRLHF

- Local training on local data
- Local feedback models
- Only model weights shared
- Personalized policies

For each hospital

- Trains its RL model locally using patient data
- Environmental rewards: Objective health metrics (e.g., blood sugar levels, recovery time)

For each hospital

- Trains its RL model locally using patient data
- Environmental rewards: Objective health metrics (e.g., blood sugar levels, recovery time)
- Doctor feedback provides qualitative signals (e.g., treatment appropriateness)

A central party (central hospital, government, etc.)

- Aggregates model updates from all hospitals
- Captures shared knowledge

(s_t,a_t) Too aggressive? Just right? Too conservative?

- Local personalization
- Hospitals receive the global model and
- Refine further using local data and feedback
- Adapts to local patient demographics and doctor preferences
- Balance between global collaboration and highly personalized care

FedRLHF – Problem Formulation

System setup: K clients, each client $k \in 1, 2, ..., K$

Local MDP

$$M_k = (\mathcal{S}, \mathcal{A}, P_k, R_k^0,
ho_0(s), \gamma)$$

- Local feedback
- Shaped reward
- Local objective

FedRLHF – Problem Formulation

System setup: K clients, each client $k \in 1, 2, ..., K$

 $H_k(s,a)$

- Local MDP
- Local feedback
- Shaped reward
- Local objective

$$M_k = (\mathcal{S}, \mathcal{A}, P_k, R_k^0,
ho_0(s), \gamma)$$

$$R_k(s,a) = R_k^0(s,a) + \lambda H_k(s,a),$$

- Server-clients communication FedAvg
 - Server broadcasts global model
 - Clients send parameters

Global objective

$$J(heta) = rac{1}{K}\sum_{k=1}^K J_k(heta)$$

FedRLHF - Convergence

Assumption 6 (Bounded Human Feedback). For all $s \in S$, $a \in \mathcal{A}$, and $k \in [K]$, the human feedback is bounded:

 $|H_k(s,a)| \leq H_{\max}.$

REMARK. Assumption 6 limits the variance introduced by human feedback in the learning process. In our experiments with the Movie-Lens task, we implement this by bounding feedback values and options (Section 6.1.2), similar to practical systems like ChatGPT that curate feedback for consistency.

Theorem 4.1 (Convergence of FedRLHF). The output of Algorithm FedRLHF satisfies:

$$\mathbb{E}[J(\theta^{*}) - J(\theta_{\text{avg}})] \leq \underbrace{\frac{L}{\mu T}(J(\theta^{*}) - J(\theta_{0}))}_{\text{\downarrow}} + \underbrace{\frac{1}{2\mu K}(G^{2} + \sigma^{2})}_{\text{\downarrow}} + \underbrace{\frac{L}{\mu}\lambda H_{\text{max}}}_{\text{\downarrow}}.$$

$$\underbrace{\bigcup_{\substack{O(1/T):\\ \text{linear convergence rate}\\ \text{$w.r.t. T}}}_{\text{$w.r.t. K}} \underbrace{\bigcup_{\substack{O(1/K):\\ \text{$scalability}\\ \text{$w.r.t. K}}}}_{\text{$w.r.t. K}} \underbrace{\bigcup_{\substack{O(1):\\ \text{$bounded impact}\\ \text{$from feedback}}}}_{\text{$from feedback}}$$

FedRLHF - Sample Complexity

Theorem 4.2 (Sample Complexity of FedRLHF). To achieve an expected optimality gap of $\mathbb{E}[J(\theta^*) - J(\theta_{avg})] \leq \epsilon$, the total number of samples required across all clients is:

 $N = O\left(\frac{L(G^2 + \sigma^2)}{\mu^2 \epsilon^2}\right)$

Task-dependent properties

resulting in per-client sample complexity:

$$N_c = rac{N}{K} = O\left(rac{L(G^2 + \sigma^2)}{K\mu^2\epsilon^2}
ight)$$

combined effect of gradient bound and variance

decreases proportionally with K

FedRLHF - Personalization vs Performance

A fundamental trade-off in collaborative learning:

VS

Global Learning

- Shared knowledge
- Collaborative gain
- Model consistency

Local Adaptation

- Personal preferences
- Client-specific behavior
- Divergent policies

Definition 5.2 (Personalization Score).

$$P_k(heta) = \mathbb{E}_{s \sim
ho}[D_{ ext{KL}}(\pi_k(\cdot|s, heta) \parallel \pi(\cdot|s, heta))]$$

Definition 5.3 (Global Performance Metric).

$$J_g(heta) = rac{1}{K}\sum_{k=1}^K J_k^0(\pi)$$

Theorem 5.1 (Personalization-Performance Trade-off). Using the FedRLHF algorithm, the global performance metric (Definition 5.3) satisfies:

$$J_g(heta) \geq rac{1}{K}\sum_{k=1}^K J_k^0(\pi_k) - C \cdot \left(rac{1}{K}\sum_{k=1}^K \sqrt{P_k(heta)}
ight)$$

Theorem 5.2 (Impact of Human Feedback):a) The average personalization scores increases atb) The global performance decreases at $O(\lambda)$ c) The system sample complexity increases at

FedRLHF - Personalization vs Performance

Takeaway:

1. Trade-off Highlight: Improving personalization comes at the cost of global performance.

2.
$$R_k(s,a)=R_k^0(s,a)+\lambda H_k(s,a),$$

- λ † Local Adaptation † Global Consistency
- $\lambda \downarrow$ Local Adaptation \downarrow Global Consistency

Experiment: Sentiment-Controlled Text Generation

Dataset & Task:

- 50,000 labelled reviews from IMDb dataset (positive/negative sentiment)
- Partitioned among K=5 clients, each with ~10k reviews
- Objective: Fine-tune a GPT-like model to generate text that matches a *desired sentiment style*. Different clients want different positivity levels.

Setup:

- Transformer RL (TRL)² library from hugging face
- Flower API³ for simulating realistic distributed network, governed by a server

²https://github.com/huggingface/trl/tree/main ³https://flower.ai/docs/framework/index.html Please refer to our paper for more details and results.

Implementation & Local Feedback Mechanism

Model pretrained from HuggingFace

- GPT-2 (125M parameters + PPO overhead for RL) Intrinsic rewards $R_k^0 \in [0,1]$
- Based on log-likelihood of coherent text (fluency)

Feedback/Sentiment $R_{ ext{sentiment}} \in [0,1]$

• Outputs from pretrained DistBERT sentiment classifier Combined reward $R_k = \lambda_k \cdot R_{ ext{sentiment}} + (1 - \lambda_k) \cdot R_k^0$

Results – FedRLHF vs Centralized RLHF

- FedRLHF catches up in average reward, eventually surpassing centralized RLHF after ~1500–2000 samples.
- FedRLHF starts with higher loss in early rounds, due to variance among clients, but quickly drops due to the exploration of more clients.
- FedRLHF achieves comparable, if not better, performance than centralized RLHF, while preserving privacy

Results – Personalization & λ Tuning

Conclusion

1. FedRLHF decentralizes RLHF in FL

- Personalized preference/reward model
- 2. Theoretical Foundations
 - Convergence guarantees
 - Sample complexity analysis
 - Personalization-performance tradeoff
- 3. Looking ahead
 - Relaxed assumptions
 - Further privacy enhancements
 - Robust aggregation
 - Principled implementation of feedback

fxf@u.nus.edu

THANK YOU

