
Recovering Single-Crossing Preferences From
Approval Ballots

Andrei Constantinescu� [0009−0005−1708−9376] and Roger
Wattenhofer[0000−0002−6339−3134]

ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland
{aconstantine,wattenhofer}@ethz.ch

Abstract. An electorate with fully-ranked innate preferences casts ap-
proval votes over a finite set of alternatives. As a result, only partial
information about the true preferences is revealed to the voting author-
ities. In an effort to understand the nature of the true preferences given
only partial information, one might ask whether the unknown innate
preferences could possibly be single-crossing. The existence of a polyno-
mial time algorithm to determine this has been asked as an outstand-
ing problem in the works of Elkind and Lackner [17]. We hereby give
a polynomial time algorithm determining a single-crossing collection of
fully-ranked preferences that could have induced the elicited approval
ballots, or reporting the nonexistence thereof. Moreover, we consider the
problem of identifying negative instances with a set of forbidden sub-
ballots, showing that any such characterization requires infinitely many
forbidden configurations.

Keywords: Approval Voting · Single-crossing · Algorithms · Com-
putational Complexity.

1 Introduction

One can express their opinion either in precise or in simple terms. The scientific
world favors precision, but real-world decision, voting and election schemes usu-
ally adopt simplicity. Both ways have their disadvantages: simple voting is often
limited in expressivity, requiring voters to make compromises (“I would really
like to vote for candidate A, but candidate B has an actual chance of getting
elected.”). Precise voting, on the other hand, is too demanding of the voter (“Do
I really have to rank all these candidates? I barely know them!”), and hence of-
ten not implemented. Indeed, the vast majority of the preference data repository
PREFLIB [30] consists of partially-elicited preferences. A modern solution strik-
ing a good balance between simplicity and expressive power stands in approval
voting [26]. Here ballots ask voters to decide whether they approve or disapprove
of each candidate; i.e., is the candidate good enough or not? Approval voting
has been successfully applied to a number of settings, including among others
multi-winner elections and participatory budgeting (see excellent survey in [25]).

Starting with the seminal work of Arrow [1], a long line of research has
been dedicated to showing the impossibility of computing fair social outcomes.



2 A. Constantinescu and R. Wattenhofer

However, these impossibility proofs typically hinge on pathological instances that
are unlikely to occur in real-world elections, where political preferences can, for
instance, often be explained using a left-right spectrum. Elections following such
a spectrum are known as (one-dimensional) Euclidean. This model has received
a number of generalizations enhancing its expressive power, including the single-
peaked [6,1] and single-crossing [31,35] models, weakening the requirements of
the societal axis in two distinct ways. An election is single-crossing if there
is an ordering of the voters, called the single-crossing axis, such that, as we
sweep through voters in order, preference between any two candidates changes
at most once. We omit the definition of single-peaked preferences as it is not
required for our work. While the two notions are incomparable, they share many
of their attractive properties, including the existence of Condorcet winners and
the polynomial-time computability of winners under election schemes for which
this is hard in general, like the rules of Young, Dodgson and Kemeny [8] in
the single-winner setting, and those of Chamberlin–Courant and Monroe in the
multi-winner one [34,27]. The first three follow from the existence of Condorcet
winners, while the latter two use dynamic programming [36,12,5,37,11]. When
preferences are neither single-peaked nor single-crossing, one can still hope for
the removal of a small fraction of voters and/or candidates to allow one of the
models to apply.

The models discussed so far are defined for fully-elicited preferences. For
approval ballots, their most natural extensions ask whether there are complete-
information Euclidean, single-peaked, or single-crossing preferences refining the
elicited approval preferences. If so, one calls the elicited preferences possibly
Euclidean, single-peaked, or single-crossing (short PE, PSP, PSC). Elkind and
Lackner [17] study these notions, among others, showing that PE and PSP sur-
prisingly coincide, and PSC is more general (in fact the most general considered
in their paper). However, one so far unanswered question is whether PSC collec-
tions of ballots can be recognized in polynomial time. In contrast, this is known
to be possible for the other notions.

A polynomial-time algorithm for recognizing PSC and computing an asso-
ciated societal axis has a few important implications. First of all, such an axis
is required to apply the known polynomial-time algorithms for computing win-
ning committees for the approval-based Chamberlin–Courant and Monroe rules
under single-crossing preferences [36,12,11]. Moreover, Pierczyński and Skowron
[33] show that core-stable committees always exist for approval elections under
two definitions more restrictive than PSC (one of which being PE = PSP). It is
likely that the same will be shown in the future for PSC, as no counterexample
is known even for arbitrary approval elections,1 and an algorithm computing
the PSC axis will likely be a necessary component of an algorithm computing
core-stable committees for PSC preferences. Finally, such an algorithm can be
used by electoral authorities to study the political landscape emerging from an
election.

1 This is perhaps the main open question in the literature on proportional represen-
tation [25].
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Our Contribution. We give a polynomial time algorithm that takes as input
a collection of approval ballots and outputs a collection of fully-ranked ballots
with the single-crossing property that could have produced the observed approval
votes, reporting accordingly in case this is not possible. In the process, our
approach also leads to a novel FPT algorithm for the non-betweenness problem
[22]. Our problem has been posed as open by Elkind and Lackner [17].2

Moreover, in Appendix A, we show that, while single-crossing elections admit
a characterization in terms of a set of two small forbidden subelections [9], such
a characterization ceases to exist for PSC elections. We show this by exhibit-
ing an infinite set of approval elections that are not PSC, but all their proper
subelections are.

Related Work. Checking whether an election (with fully-elicited strictly
ranked preferences) is single-crossing can be achieved in polynomial time [16,9],
in fact even in near-linear time [18]. Checking whether an election can be embed-
ded on a left-right spectrum (i.e., whether it is 1-Euclidean) can also be done in
polynomial time [24,13,14]. In both cases, finding witnessing axes/embeddings
is also polynomial. On the other hand, deciding whether an embedding exists
in d dimensions becomes NP-hard as soon as d ≥ 2 [32], and heuristic accounts
support the difficulty of fitting such higher-dimensional models in practice [10].

Single-peaked elections can also be recognized in polynomial time [3,13,19,18].
A natural question related to our work is how difficult it is to recover 1-Euclidean
preferences or single-peaked preferences from approval ballots. The two notions
coincide (PE = PSP), and polynomial-time algorithms have been proposed
[17,20] by reduction to the consecutive ones problem (which admits a linear-
time algorithm, although using rather complex machinery [7]). In contrast, our
algorithm for PSC proceeds directly, using non-betweenness only as a lens. An
interesting model that encompasses both single-crossing and single-peaked elec-
tions is that of top-monotonic elections [2]. Such elections can be recognized in
polynomial time [28] (also the paper whose techniques are closest to ours).

For the case of multi-valued approval, where voters can choose between more
than two judgments when filling in the ballot, Fitzsimmons [21] provides a poly-
nomial time recognition algorithm for possibly single-peaked preferences, work-
ing even for the case of an unbounded number of possible judgments; i.e., voters
give a score between 1 and the number of candidates to each candidate (can also
be thought as voters reporting rankings with ties). Their method proceeds by
reducing to the consecutive ones problem. Getting similar results for the single-
crossing case might seem desirable, but, as shown in [15], this is NP-hard for an
unbounded number of possible judgments.

Working with approval ballots requires rather different social aggregators to
those taking fully-ranked profiles as input. These aggregators have been recently

2 Recently, we learned that a solution has in fact been proposed as early as 1979 in the
context of the simple plant location problem, by Beresnev and Davydov [4]. This
paper is only available in Russian, and Russian-speaking experts seem to believe
that the paper is likely missing steps in the arguments. Beresnev and Davydov [4] is
referenced in [23], but without details.
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U = {1, 2, 3, 4, 5, 6}
C = {(1, 2, 3), (2, 3, 4),

(2, 4, 3), (4, 2, 5),

(1, 5, 6)}

(a) Input instance.

(1, 2) (3, 2)

(2, 1) (2, 3) (4, 3)

(3, 4) (2, 4)

(4, 2)

(2, 5)

(5, 2)

(1, 5) (6, 5) (5, 1) (5, 6)

(b) Formula graph, excl. singletons.
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(c) Colorful graph.

Fig. 1: Example of the construction of the formula and colorful graphs. Con-
sider the instance of the non-betweenness problem given by U and C in Fig. 1a.
The corresponding formula graph in Fig. 1b is constructed by adding edges
(a, b) — (c, b) and (b, a) — (b, c) for each triple (a, b, c) ∈ C. Isolated nodes have
been omitted. Note that that no connected component of the formula graph con-
tains both vertices (a, b) and (b, a) for any a, b ∈ U . Subsequently, the connected
components split into two pairs of complementary components: the two top long
red chains and the two bottom short blue chains. The corresponding colorful
graph in Fig. 1c is constructed by (arbitrarily) taking the top red component
and the right blue component and introducing directed edges corresponding to
the ordered pairs in the component. To solve the instance in Fig. 1a one needs
to decide for each color whether or not to flip the direction of all edges of that
color such that the resulting graph is acyclic. In our case, to avoid the cycle
1 → 2 → 5 → 1, the possible solutions are to either flip all blue edges or all red
edges (but not both, as that leads to cycle 1 → 5 → 2 → 1 instead).

extensively studied in the context of multi-winner elections; see the comprehen-
sive survey of both normative and computational results of Lackner and Skowron
[25]. In an effort to translate the known models of voting to approval elections,
Elkind and Lackner [17] consider twelve models catered to approval voting, the
most general being the domain of possibly single-crossing elections. For all oth-
ers, their paper shows polynomial-time recognition, while Terzopoulou et al. [38]
show that the least restrictive of the others admit finite forbidden substructures
characterizations. We resolve the open case of PSC and show that it admits no
finite forbidden substructures characterization.

Finally, the problem of recognizing possibly single-crossing approval elections
has a similar flavor to the recent work of Mandal et al. [29] on distortion induced
by the preference elicitation mechanism, thus making it interesting and natural
to study. In particular, instead of being interested in recovering voter utilities,
here the objective is recovering the single-crossing axis of the innate preferences,
mitigating the information lost when the electorate casts their votes through
approval ballots; i.e., recovering utilities inducing a single-crossing profile.

Technical Overview. Our approach for proving the main result proceeds
by first translating the input into an instance of the non-betweenness problem,
which asks given a ground set U and a set C of triples (a, b, c) over U to compute a
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linear (i.e., total, irreflexive, antisymmetric, transitive) ordering of the elements
of U such that for none of the triples does b come between a and c. While non-
betweenness is NP-hard in general [22], for the type of instances produced by our
reduction the problem will turn out to be polynomial. To show this, we begin
with an approach to non-betweenness based on boolean satisfiability. In partic-
ular, we introduce for every pair of distinct entries a, b ∈ U a boolean variable
xa,b standing for whether a comes before b in the ordering. Antisymmetry can
be captured by adding clauses requiring that xa,b = xb,a, while for every triple
(a, b, c) ∈ C one can show that non-betweenness is enforced by adding clauses
ensuring that xa,b = xc,b. However, transitivity is substantially trickier to model
without resorting to 3-literal clauses. To overcome this difficulty, taking a step
back, we notice that except for transitivity all constraints are equalities. We
take advantage of this fact by constructing the so-called formula graph, which
has a vertex (a, b) for each variable xa,b in the boolean formula. Edges in the
formula graph correspond to the equalities xa,b = xc,b in the boolean formula-
tion above, together with the inferred opposite equalities xb,a = xb,c. If some
connected component contains both xa,b and xb,a, then the instance is not satis-
fiable. Otherwise, we introduce yet another construct, the colorful graph, which
is an edge-colored directed graph with vertex set G. One can show that at this
point connected components in the formula graph come in complementary pairs
{S, S}, where (a, b) ∈ S whenever (b, a) ∈ S. For each such pair we create a new
color, the edges of this color corresponding to the ordered pairs in set S. Some
colors will only have one edge, which can be safely removed. Our two graph
concepts are illustrated in Fig. 1. We then show that satisfying assignments of
the boolean formula, this time including transitivity, correspond to acyclic ori-
entations of the colorful graph where edges of each color are either all reversed,
or all left in the original orientation. Deciding if such orientations of the colorful
graph exist is still NP-hard, but exhausting over all possible orientations already
shows that the non-betweenness problem is FPT with respect to the number of
colors, a fact which might be of independent interest. At this point, we start
studying the structure of the formula and colorful graphs induced by approval
elections, showing the surprising result that, unless there is a monochromatic cy-
cle, an acyclic orientation exists and can be computed in polynomial time, from
which the election is possibly single-crossing. Proving this result constitutes the
most demanding part of our work, and relies on a mixture of combinatorial and
computer-aided techniques. Most notably, along the way we prove that if some
orientation of the colorful graph is not acyclic, then the induced cycle is either
monochromatic or of length three and not repeating colors. With further work,
we then prove a strong structural result about colors taking part in three-colored
triangles, allowing them to be consistently oriented to complete the proof.



6 A. Constantinescu and R. Wattenhofer

2 Preliminaries

For a non-negative integer n, we write [n] for the set {1, 2, . . . , n}. Given a
statement S, we write [S] for the Iverson bracket: [S] = 1 if S holds, and 0
otherwise.

Given a finite set A, a partial order � over A is an irreflexive, antisymmetric,
transitive relation over A. Two values a, b ∈ A are comparable under � if either
a � b or b � a; otherwise, they are incomparable, in which case we write a ≈≻ b.
When any two distinct elements are comparable (i.e., the order is total), order
� is called a linear order. A partial order � is called a weak order if ≈≻ forms
an equivalence relation (i.e., it is transitive). One can think of weak orders as
linear orders allowing for ties, corresponding to incomparable elements. For this
reason, when � is a weak order, whenever a ≈≻ b we say that � is indifferent
between a and b. We call indifference classes the equivalence classes induced by
a ≈≻ b. We call a weak order with at most k indifference classes a k-weak order.
Note that an order � is k-weak if and only if � can be induced by a scoring
function s : A → [k]; i.e., a � b if and only if s(a) > s(b). Hence, 2-weak orders
are precisely the approval ballots. Given partial orders � and �′, we say that
�′ extends � if a �′ b whenever a � b.

In our setting, an assembly of voters V = [n] expresses their preferences over
a set of candidates (alternatives) C = [m]. The expressed preferences of voter
i ∈ V consist of a weak order �i over the set of candidates C. The collection
of all voter preferences P = (�i)i∈[n] is known as the preference profile. When
P consists solely of linear orders, we say that the electorate has fully-ranked
preferences. When P consists solely of 2-weak orders, we say the electorate has
approval preferences, in which case we will often see P as an m × n approval
matrix, where P[c, v] = 1 if voter v approves of candidate c, and 0 otherwise;
i.e., column v contains the approval ballot cast by voter v. Given two profiles
P and P ′, we say that P ′ is a subprofile of P if P ′ can be obtained from P by
removing voters and/or candidates. For approval ballots, subprofiles correspond
to removing rows and columns from P. If P ′ 6= P in the previous, then P is a
proper subprofile of P.

A profile of weak orders P is said to be seemingly single-crossing (SSC)
with respect to a linear order ◁ over the set of voters V, called the axis, if
there are no three voters i, j, k such that i ◁ j ◁ k and candidates a, b such that
a �i b, b �j a and a �k b. If additionally profile P consists solely of linear orders,
then under the same conditions P is single-crossing (SC) with respect to ◁. A
profile P of weak orders is said to be possibly single-crossing (PSC) with respect
to a linear order ◁ of the voters if for all voters i ∈ V the preference order
�i can be extended to a linear order �′

i such that (�′
i)i∈[n] is single-crossing

with respect to ◁. A profile P is (seemingly/possibly) single-crossing if it is
(seemingly/possibly) single-crossing with respect to some linear order ◁ over V .
For linear orders, the three notions coincide. More surprisingly, Elkind et al. [15]
show that for weak orders the notions of SSC and PSC coincide.3 Moreover,
3 For general partial orders, they show that PSC implies SSC, but not conversely.
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they show that given a linear order ◁ witnessing SSC for profile P, one can
compute in polynomial time for each voter i ∈ V a linear extension �′

i of �i

such that (�′
i)i∈[n] is single-crossing with respect to ◁. In other words, knowing

a seemingly single-crossing axis is enough to compute fully-ranked ballots that
could have produced the cast ballots in polynomial time. For completeness, we
give a streamlined version of their argument in the Appendix B. Therefore, our
focus will be on computing, given a profile P of weak orders, an SSC axis, or
deciding the nonexistence thereof. For general weak orders, Elkind et al. [15]
show that deciding axis existence is NP-hard, but they leave it open for k-weak
orders for k ≥ 2, the case k = 2 corresponding with the approval voting case.

Given a finite ground set U , a non-betweenness (NB) constraint over U is
a triple of distinct elements (i, j, k) ∈ U3. A linear order ◁ over U satisfies a
collection C of NB constraints if for every (i, j, k) ∈ C it does not hold that i◁j ◁k
or k ◁ j ◁ i; i.e., j is not between i and k in ◁. The problem of deciding whether a
linear order ◁ satisfying C exists is NP-hard [22].4 Checking for the SSC property
reduces to verifying whether a set of NB constraints is satisfiable: given a profile
P, construct a set of NB constraints CP over V such that (i, j, k) ∈ CP iff there
are two alternatives a, b ∈ C such that a �i b, b �j a and a �k b. Then, we have
the following, which is intuitively enabled by the fact that SSC is invariant with
respect to reversing the axis:

Lemma 1. P is SSC with respect to a linear order ◁ iff CP is satisfied by ◁.

3 A Boolean Encoding of Non-Betweenness Constraints

In this section, we develop a general technique for deciding the satisfiability of an
arbitrary set C ⊆ V 3 of NB constraints over V. Naturally, our approach does not
lead to a polynomial time algorithm for checking satisfiability, as the problem
is NP-hard, but analysis in later sections will show that when applied to NB
constraint sets CP originating from approval ballots, it leads to a polynomial
algorithm for deciding satisfiability.

First, note that a NB constraint (i, j, k) is satisfied by a linear order ◁ if and
only if [i ◁ j] = [k ◁ j]. Moreover, order ◁ is uniquely determined by the values
[i ◁ j] for i 6= j. These facts suggest a reformulation of the problem of satisfying
NB constraints in terms of the values [i ◁ j], which we do in the following. Given
C, we construct a boolean formula ΦC with a variable xi,j for every ordered pair
of distinct elements (i, j) ∈ V 2. The clauses of ΦC comprise of the following
three constraint sets, corresponding to antisymmetry, agreement with C and
transitivity, respectively:

〈1〉 For every pair of distinct elements (i, j) ∈ V 2 add the constraint xi,j = xj,i.
〈2〉 For every triple (i, j, k) ∈ C, add the constraint xi,j = xk,j .

4 This is used to prove the hardness of our problem for general weak orders, but the
argument requires an unbounded number of indifference classes, so it does not work
for bounded k.
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〈3〉 For every triple of distinct (i, j, k) ∈ V 3 add the constraint (xi,j ∧ xj,k) → xi,k.

In the above we used = for the bi-implication operator ↔, and we wrote x for
logical negation, also commonly denoted by ¬x. Note that, under the presence
of set 〈1〉, set 〈2〉 can be reformulated as below since xj,i = xi,j = xk,j = xj,k:

〈2′〉 For every triple (i, j, k) ∈ C, add the constraints xi,j = xk,j and xj,i = xj,k.

Henceforth, we will mostly use 〈2′〉, but 〈2〉 will still be more convenient
in a few cases. The following lemma formally establishes the correspondence
between linear orders satisfying C and satisfying assignments of ΦC . The proof
is essentially straightforward by following the definitions, so we leave it for the
appendix.

Lemma 2. Linear orders ◁ satisfying the NB constraints in C correspond bijec-
tively to satisfying assignments of ΦC by xi,j = [i ◁ j]. Hence, C is satisfiable iff
ΦC is satisfiable.

Is this the end of the story? Not quite, because constraint set 〈3〉 encodes
transitivity as (xi,j ∧ xj,k) → xi,k ≡ (xi,j ∨ xj,k ∨ xi,k), which is a three-literal
clause. However, constraint sets 〈1〉 and 〈2〉 only require two-literal clauses, so
there is hope. The approach presented so far is similar in spirit to the approach of
Magiera and Faliszewski [28] for recognizing top-monotonic elections. The main
difficulty in their case also stems from enforcing transitivity, which similarly
seems to require 3-literal clauses at a first glance. The essential observation that
they make to progress is that whenever (i, j, k) ∈ C, then the six entries in 〈3〉
enforcing transitivity for the unordered triple {i, j, k} are no longer required, a
fact which also holds true in our case. If for every unordered triple we would have
at least one NB constraint involving its elements, then none of the transitivity
constraints would be required, and the problem could simply be solved by any
polynomial 2-CNF solver. This is the main idea of the approach taken in [28].
In our case, on the other hand, it turns out that it is surprisingly tricky to
completely eliminate the transitivity constraints, so we will need more insight to
deal with them gracefully.

4 Resolving Constraint Sets ⟨1⟩ and ⟨2⟩ Using Connected
Components, The Formula Graph

Before tackling transitivity, we first turn our attention to constraint sets 〈1〉 and
〈2〉 in isolation, providing a precise characterization of the satisfying assignments
of ΦC in the absence of constraint set 〈3〉. This characterization will be instru-
mental later on when reasoning about the transitivity constraints. In contrast,
here Magiera and Faliszewski [28] directly employ a 2-CNF solver in order to
tell whether sets 〈1〉 and 〈2〉 are satisfiable in isolation, but doing so only pro-
duces one satisfying assignment, rather than a compact representation of all of
them, as will be the case for us. Our approach will hinge on the observation that
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constraint set 〈2〉 only consists of equalities. In what follows, we will work with
constraint set 〈2′〉 instead of 〈2〉.

To begin, we define the formula graph of C, denoted by GC . The vertex set
V (GC) of GC consists of all ordered pairs (i, j) ∈ V 2 with i 6= j; i.e., one vertex
per variable in the formula. For a vertex (i, j) in GC we define the complementary
vertex (i, j) to be (j, i). Note that this is a syntactic notation, and is not to be
confused with xi,j , which signifies the logical negation of a variable. For every
constraint xu = xv in 〈2′〉, where u and v are pairs of distinct elements in V ,
we add an undirected edge u — v to GC . Intuitively, each edge in GC signifies
an equality that needs to hold in the satisfying assignments of 〈1〉 and 〈2′〉. We
begin with two preliminary lemmas concerning the connected components of the
formula graph.

Lemma 3. An assignment (xu)u∈V (GC) satisfies constraint set 〈2′〉 if and only
if for each connected component S of GC it holds that xu = xv for all u, v ∈ S.

Lemma 4. Let S be a connected component in GC, then S := {s : s ∈ S} is
also a connected component in GC. Note moreover that S = S or S ∩ S = ∅.

Hence, in light of Lemma 3, if for any connected component S it holds that
S = S, then 〈1〉 and 〈2′〉 cannot be simultaneously satisfied. Otherwise, the
connected components of GC can be paired up into “complementary” pairs of
distinct connected components {S, S}. In particular, V (GC) = ∪k

i=1

(
Si ∪ Si

)
is

a complementary pairs partition of the graph, where (Si)i∈[k] are connected com-
ponents of GC , one per complementary pair. Note that this partition is unique
up to changing the roles of Si and Si for any i, so we will for simplicity refer to it
as “the” complementary pairs partition. With this in mind, one can notice that
solutions to sets 〈1〉 and 〈2′〉 correspond to choosing for each complementary
pair {S, S} one of the two components and setting to true variables correspond-
ing to it and to false variables corresponding to the other component. This is
formalized in the following proposition.

Proposition 5. If S = S for any connected component of GC, then there are
no assignments satisfying 〈1〉 and 〈2′〉. Otherwise, let V (GC) = ∪k

i=1

(
Si ∪ Si

)
be the complementary pairs partition. Then, an assignment satisfies 〈1〉 and 〈2′〉
iff it is obtained from a tuple (s1, . . . , sk) ∈ {0, 1}k by setting all variables xu to
si for u ∈ Si and to si for u ∈ Si.

Note that the condition S 6= S for all connected components S is equivalent
to checking that for all u ∈ V (GC) vertices u and u are in different connected
components. Hence, checking whether solutions to 〈1〉 and 〈2′〉 exist is equivalent
to checking for the latter, which the reader might recognize as the condition used
for checking the satisfiability of general 2-CNFs.5 However, for general 2-CNFs
no characterization of the solution space is known since even counting solutions
is #P-complete (while in our case we know that there are exactly 2k solutions).
5 If we replace our undirected graph by the directed implications graph and the word

“connected” by “strongly-connected.”
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Henceforth, we will assume that V (GC) = ∪k
i=1

(
Si ∪ Si

)
is the complemen-

tary pairs partition (otherwise, just report that constraints in C cannot be satis-
fied). Then, Proposition 5 gives that the assignments satisfying 〈1〉 and 〈2′〉 are
precisely those for which a single value xSi is assigned to each connected com-
ponent Si and, similarly, for the complementary component xSi

= xSi
holds.

Note that this already shows that checking the satisfiability of a set of NB con-
straints is FPT with respect to the number 2k of connected components, since
one could just try out all 2k satisfying assignments for 〈1〉 and 〈2′〉 and check
for transitivity in each case.

5 Transitivity by Acyclic Orientations, the Colorful
Graph

In this section, we provide an equivalent view of the satisfying assignments of sets
〈1〉 and 〈2′〉 as edge-orientations of a certain edge-colored graph. In particular,
all edges have a base orientation, and the orientations satisfying 〈1〉 and 〈2′〉
correspond to selecting for each color whether to leave all edges as they are, or
reverse the direction of all edges of that color. Edge orientations additionally
satisfying constraint set 〈3〉 will be those inducing a directed acyclic graph.

To begin, recall that V (GC) = ∪k
i=1

(
Si ∪ Si

)
is the complementary pairs

partition. Consider some connected component Si. This component consists of
a set of ordered pairs Si = {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)}. To have a satisfying
assignment of 〈1〉 and 〈2′〉, it has to be the case that either xi1,j1 = . . . = xiℓ,jℓ =
1, or xi1,j1 = . . . = xiℓ,jℓ = 0. Both choices lead to satisfying assignments,
independently of the choices made for the other components. By Lemma 2, the
previous gives that either [i1◁j1] = . . . = [iℓ◁jℓ] = 1, or [i1◁j1] = . . . = [iℓ◁jℓ] =
0, and the choice is independent across Si’s.

Any linear order ◁ over V can be seen as a directed tournament graph with
vertex set V , where we draw a directed edge i → j if i ◁ j and a directed edge
j → i if j◁i. Consequently, the constraint [i1◁j1] = . . . = [iℓ◁jℓ] induced by some
connected component Si of the formula graph is equivalent in the tournament
of ◁ to the fact that we either have edges i1 → j1, . . . , iℓ → jℓ, or edges j1 →
i1, . . . , jℓ → iℓ. In other words, every set Si is a directed set of edges that in the
tournament of ◁ either has to have the given orientation, or exactly the reverse
orientation. We call these two options for Si its two possible orientations. We call
a choice between the two options for each of the sets S1, . . . , Sk an orientation
of all edge sets. The following shows that out of those orientations, the ones that
additionally satisfy set 〈3〉 are those where the resulting directed tournament
graph is acyclic. For brevity, we call such orientations acyclic.

Proposition 6. A linear order ◁ over V satisfies the NB constraints in C if and
only if it is given by an acyclic orientation of the edge sets S1, . . . , Sk.

Some edge sets (connected components in the formula graph) Si will be
singletons; i.e., |Si| = 1. Such sets are not relevant for deciding whether an
acyclic orientation exists, because singletons can just be oriented freely after



Recovering Single-Crossing Preferences From Approval Ballots 11

everything else has been oriented. More formally, without loss of generality,
assume that edge sets S1, . . . , Sℓ are non-singletons; i.e., |Si| > 1 for i ∈ [ℓ]; and
that edge sets Sℓ+1, . . . , Sk are singletons; i.e., |Si| = 1 for ℓ < i ≤ k. Then, we
have the following:

Lemma 7. An acyclic orientation of edge sets S1, . . . , Sk exists if and only if
an acyclic orientation of edge sets S1, . . . , Sℓ exists.

Armed as such, we now introduce the colorful graph corresponding to the NB
constraint set C. The colorful graph is a directed graph with vertex set V and
edges colored in ℓ colors, identified by the numbers in [ℓ]. For each i ∈ [ℓ] the
edges colored with color i are those in edge set Si.

Note how for any u, v ∈ V with u 6= v at most one of the edges u → v and
v → u can appear in S1, . . . , Sℓ. Moreover, an edge cannot occur in more than
one of S1, . . . , Sℓ. As a result, the colorful graph has neither parallel nor anti-
parallel edges, and no self-loops. When either edge a → b or b → a exists in the
colorful graph, we say that a — b exists in the colorful graph. In this case, we
write c(a, b) = c(b, a) to denote the color of the respective oriented edge. When
the “undirected” edge a — b exists in the graph, and the corresponding directed
edge is a → b, we say that a — b is oriented from a to b. Finally, when edge
a → b (a — b) bears color c, we write a

c−→ b (a c— b). Note that the colorful
graph is only defined for NB constraint sets C for which the complementary pairs
partition exists.

We can now reformulate our task in terms of the colorful graph. In particular,
we want to check whether the edges of the colorful graph can be reoriented such
that the resulting graph is acyclic, under the constraint that for each color we
choose between flipping (reversing) the direction of all edges of that color or
doing nothing. When flipping the direction of edges of a certain color, we say
that we “flipped” that color.

6 The Case of Approval Ballots

We now switch our attention to colorful graphs induced by approval preference
profiles P; i.e., corresponding to the set of NB constraints CP . The structure
of these graphs is still combinatorially rich, making reasoning about acyclic ori-
entations challenging, but at the same time significantly less general than for
arbitrary sets of NB constraints. Examples of such induced colorful graphs can
be found in Fig. 2. For brevity, we henceforth assume that we have already
checked in polynomial time whether there are any monochromatic cycles and
rejected the input if so. In this section we will prove that if the colorful graph
has passed this test, then an acyclic orientation is guaranteed to exist and can
be determined in polynomial time. To show this, we prove a number of struc-
tural results about inducible colorful graphs, centering around the concept of
biclique colors, which are colors whose corresponding edges can be described by
a cartesian product A×B for two disjoint sets A,B ⊆ V. A color is star biclique
if it is a biclique color with either |A| = 1 or |B| = 1. The two concepts are
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1 2 3 4 5
0 1 0 1 0
0 0 0 0 1
0 0 1 1 0
1 1 0 1 0
1 0 0 0 0

(a) Profile P1.

1

2

3 4

5

(b) Col. graph of P1.

1 2 3 4 5 6 7
0 0 0 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 1 0
1 0 0 0 0 0 1

(c) Profile P2.

1

2

3 5

6

4 7

(d) Colorful graph of P2.

Fig. 2: Two example preference profiles P1,P2, together with the colorful graphs
they induce. In Fig. 2d all colors are biclique colors. Namely, the red edges are
given by {1, 4, 7} × {2}, the green edges by {2} × {3, 5, 6}, the black edges by
{3, 5} × {6} and the blue edges by {1, 4, 7} × {3, 5, 6}. Out of these, red, green
and black are star biclique. In general, not all colors will be biclique, e.g., in
Fig. 2b, only the blue color is biclique.

illustrated in Fig. 2. Not all colors in the inducible colorful graphs are biclique,
as shown in Fig. 2b. However, our result concerning them will be that whenever
edges a — b — c — a exist in the colorful graph and bear different colors, these
three colors are biclique, and, moreover, the three cartesian products describing
them are of the form A×B, B ×C and C ×A. In Fig. 2d this can be observed
for the triangle 1 — 2 — 3 — 1. Using this result, together with an analogue for
star biclique colors, we then prove that if some orientation of the colorful graph
has a cycle, then the smallest such cycle is of length three, showing that, intu-
itively, triangles are all one needs to worry about. To complete the proof of the
main result, we then show that non-monochromatic triangles neccesarily consist
of three different colors, implying that we can ignore all colors taking part in
no three-colored triangles and focus on the rest. Afterward, a direct argument
reusing our theorem about three-colored triangles can be used to construct an
acyclic orientation of the colorful graph in polynomial time, proving the main
claim of the paper.

6.1 Biclique Colors

From now on, all colorful graphs we consider are induced by approval preferences,
unless stated otherwise. In this section, the goal is the prove that whenever
a — b — c — a is a three-colored triangle in the colorful graph, then these three
colors are biclique and their edges are given by A×B, B×C and C×A for some
disjoint sets A,B,C ⊆ V where a ∈ A, b ∈ B, c ∈ C. Following up, we then also
give an instrumental analog for star biclique colors, namely that if a — b — c
are different-colored edges in the colorful graph, and edge a — c does not exist in
the colorful graph, then there is a set B ⊆ V \{a, c} with b ∈ B such that the two
colors consist of edges {a}×B and B×{c} respectively. This can be intuitively
thought of as the case |A| = |C| = 1 of the result for three-colored triangles.
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1

2

4

3

(a) Assumed colors.

1

3

2

4

(b) Implied colors.

Fig. 3: Illustration of Lemma 8. Fig. 3a depicts the assumptions: edge
(1, 2) — (4, 2) exists in the formula graph (red) and edge (2, 3) exists in the
colorful graph and bears a different color (blue). Additionally, edge (1, 3) is nei-
ther red nor blue. Fig. 3b shows the edge colors implied by the setup, where
green is a color different from red and blue.

Henceforth, unless stated otherwise, the preference profiles P that we consider
consist of approval ballots, and are represented through approval matrices.

Our high-level argument will hinge on a number of lower-level results con-
cerning the effect that small local structures in the approval matrix have on the
formula and colorful graphs. Below is the first such result that we will need.
Its proof is a combination of direct reasoning with case analysis over 4× 6 par-
tially filled-in approval matrices. While we have considerably simplified the proof
over naive case exhaustion, we found the details inessential, so left them for the
appendix.

Lemma 8. Consider four voters, say 1, 2, 3, 4, such that the formula graph con-
tains the edge (1, 2) — (4, 2) and that edge (2, 3) exists in the colorful graph and
has a different color than (1, 2). If edge (1, 3) is either not present in the colorful
graph, or it has a different color than (1, 2) and (2, 3), then edge (1, 3) — (4, 3)
is guaranteed to be in the formula graph. The scenario is illustrated in Fig. 3.

It is crucial to notice at this point that Lemma 8, as well as all other results
of a similar flavor that we will prove, continue to hold if some of the involved
voters coincide. This can be seen by imagining cloning the recurring voters and
applying the result with distinct voters. Armed with the previous lower-level
result, we are now ready to prove the main result of the section, concerning the
biclique structure of colors involved in three-colored triangles.

Theorem 9. Consider three voters, say 1, 2 and 3, such that edges (1, 2), (2, 3)
and (3, 1) exist in the colorful graph and have different colors, then there exist
disjoint sets of voters S1, S2 and S3 such that 1 ∈ S1, 2 ∈ S2 and 3 ∈ S3 and the
connected components of (1, 2), (2, 3) and (3, 1) in the formula graph are S1×S2,
S2 × S3 and S3 × S1 respectively.
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1 2

54

3

6

(a) Col. graph for (S1, S2, S3).

1 2

54

7

3

6

(b) Assume (4, 5, 7) ∈ CP .

1 2

54

7

3

6

(c) Contradicts maximality.

Fig. 4: Illustration of the proof of Theorem 9. We consider an inclusion-maximal
triple (S1, S2, S3) such that 1 ∈ S1, 2 ∈ S2, 3 ∈ S3 and S1×S2, S2×S3 and S3×S1

are connected in the formula graph, in this case S1 = {1, 4}, S2 = {2, 5} and
S3 = {3, 6} (Fig. 4a). Then, we assume for a contradiction that these connected
sets are not connected components, in this case because of NB constraint (4, 5, 7)
(Fig. 4b). Finally, this implies that (S1 ∪ {7}, S2, S3) also has the property,
contradicting maximality (Fig. 4c).

Proof. Our proof strategy is summarized in Fig. 4. Consider an inclusion-maximal
triple of disjoint sets (S1, S2, S3) such that 1 ∈ S1, 2 ∈ S2, 3 ∈ S3 and the sub-
graphs of the formula graph induced by S1 × S2, S2 × S3 and S3 × S1 are
connected. By inclusion-maximal we mean that for every v /∈ (S1 ∪ S2 ∪ S3)
the triples (S1 ∪ {v}, S2, S3), (S1, S2 ∪ {v}, S3) and (S1, S2, S3 ∪ {v}) do not
satisfy the property. Note that the connectivity assumption implies that in the
colorful graph edges in S1 × S2 have the color of (1, 2), edges in S2 × S3 have
the color of (2, 3) and edges in S3 × S1 have the color of (3, 1). Denote by
C12, C23 and C31 the connected components of (1, 2), (2, 3) and (3, 1) in the
formula graph. We will now show that C12 = S1 × S2, C23 = S2 × S3 and
C31 = S3 × S1. Assume for a contradiction that this was not the case, then,
without loss of generality, C12 6= S1 × S2. Together with the above, this means
that S1 × S2 ⊊ C12. Because C12 induces a connected subgraph in the formula
graph, and ∅ 6= S1 × S2 ⊊ C12, it follows that there is an edge in the formula
graph crossing the cut (S1×S2, C12 \ (S1×S2)). Without loss of generality, this
edge is of the form (v1, v2) — (x, v2), where v1 ∈ S1, v2 ∈ S2 and x /∈ S1.

Now, we show that for every v3 ∈ S3 there is an edge (v1, v3) — (x, v3) in
the formula graph. Note that this means that all edges of the form (x, v3) for
v3 ∈ S3 have the color of (1, 3). Consider an arbitrary v3 ∈ S3, and note that
we can instantiate Lemma 8 with 1 7→ v1, 2 7→ v2, 3 7→ v3 and 4 7→ x because
(v1, v2) — (x, v2) is in the formula graph and (v1, v2), (v2, v3) and (v3, v1) bear
the colors of (1, 2), (2, 3) and (3, 1), which are different. The instantiation gives
us that there is an edge (v1, v3) — (x, v3) in the formula graph, as required.

From the above, we know that the edge (v1, 3) — (x, 3) exists in the for-
mula graph. Similarly, we now show that for every v′2 ∈ S2 there is an edge
(v1, v

′
2) — (x, v′2) in the formula graph. This is done analogously, by invoking
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Lemma 8 with 1 7→ v1, 2 7→ 3, 3 7→ v′2 and 4 7→ x, which is sound because
(v1, 3) — (x, 3) is in the formula graph and (v1, 3), (3, v

′
2) and (v′2, v1) bear the

colors of (1, 3), (3, 2) and (2, 1), which are different.
At this point, we have shown that (S1 ∪ {x})× S2 and S3 × (S1 ∪ {x}) both

induce connected subgraphs in the formula graph; in particular, all edges from
x to S2 have the color of (1, 2) and all edges from x to S3 have the color of
(1, 3). We will now additionally show that x /∈ (S2 ∪ S3), from which the triple
(S1 ∪ {x}, S2, S3) also satisfies the property we started with, contradicting the
hypothesis that (S1, S2, S3) was inclusion-maximal. First, if x ∈ S3, then (1, 2)
and (2, 3) immediately have the same color, which cannot be the case. Otherwise,
if x ∈ S2, then from our argument (x, 3) has the same color as (1, 3), while the
assumptions tell us that it has the same color as (2, 3), meaning that (1, 3) and
(2, 3) share the same color, which is again not possible.

The following result can be seen as a star biclique analogue of Theorem 9.
Intuitively, one can think of this as the orthogonal case where the edge 1 — 3
does not exist in the colorful graph and S1 = {1}, S3 = {3}. While the two proofs
are very similar in spirit, we could not find a transparent way of unifying the two
arguments, partly because of less symmetry in the scenario. In particular, this
lack of symmetry will require a second low-level result in the spirit of Lemma 8,
stated and proven in the appendix. See the appendix for the relevant proofs.

Theorem 10. Consider three voters, say 1, 2 and 3, such that edges (1, 2) and
(2, 3) exist in the colorful graph and have different colors, while edge (1, 3) does
not exist in the colorful graph. Then, there exists a set of voters S such that
2 ∈ S and 1, 3 /∈ S with the property that the connected components of (1, 2) and
(2, 3) in the formula graph are {1} × S and S × {3} respectively.

6.2 Only Three-Colored Triangles Matter, the Main Result

In this section we prove that if some orientation of the colorful graph has a cycle,
then the smallest such cycle is a triangle. Then, we show that non-monochromatic
triangles neccesarily consist of three different colors. Finally, we prove that any
colorful graph with no monochromatic cycles has an acyclic orientation, hinging
on Theorem 9.

Lemma 11. An orientation of the colors in the colorful graph is acyclic if and
only if it induces no directed cycles of length three.

Proof. The “only if” direction is straightforward. In what follows we prove the
“if” direction. Consider an arbitrary orientation of the colors in the colorful
graph. Cycles of length one and two are not possible because the colorful graph
lacks self-loops and parallel edges, so assume for a contradiction that the length
of the shortest cycle induced by our orientation is at least four. Let such a
shortest cycle be C = v1 → v2 → . . . → vk → v1, where k ≥ 4. Observe that
the minimum-length assumption implies that C is an induced cycle, because any
extra edge in the subgraph of the colorful graph induced by {v1, . . . , vk} would
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imply a shorter cycle. If all edges in C are of the same color, this would contradict
the fact that all colors are acyclic when seen individually, so C consists of at
least two distinct colors, so at least two distinct colors occur along C.

We now prove that all colors c occurring along C are star biclique colors. To
do so, for any such c note that there exists an index 1 ≤ i ≤ k such that vi

c−→ vi+1

and vi+1
c′−→ vi+2, where c′ 6= c is some color other than c and index arithmetic

is performed modulo k such that vk+1 = v1, etc. Because C is an induced
cycle, it follows that edge vi — vi+2 does not appear in the colorful graph. Since
additionally c 6= c′, instantiating Theorem 10 with 1 7→ vk, 2 7→ vk+1, 3 7→ vk+2

gives that c and c′ are star biclique colors.
Since all colors occurring along C are star biclique, every color can only occur

in C at most once, as any second occurrence would imply that the common node
of the edges in a star is reused, meaning C is not a simple cycle, and hence not
minimal. Therefore, let c1, c2, . . . , ck be the pairwise distinct colors of the edges
in C, in order.

Now, applying Theorem 10 with 1 7→ v1, 2 7→ v2, 3 7→ v3 gives that the
connected component of (v1, v2) in the formula graph is {v1} × S and that of
(v2, v3) is S×{v3}, for some S such that v1, v3 /∈ S. Similarly, applying Theorem
10 with 1 7→ v2, 2 7→ v3, 3 7→ v4 gives that the connected component of (v2, v3) in
the formula graph is {v2}×S′ and that of (v3, v4) is S′ ×{v4}, for some S′ such
that v2, v4 /∈ S′. As a result, the connected component of (v2, v3) is at the same
time S ×{v3} and {v2}× S′. Setting the two equal yields S ×{v3} = {v2}× S′,
from which the connected component is actually exactly {(v2, v3)}, contradicting
the fact that (v2, v3) occurs in the colorful graph.

Next, we prove that only three-colored triangles need to be considered; e.g.,
the case in Fig. 1c cannot occur. For this we will need the following stronger
form of Lemma 8:

Lemma 12 (Strengthened Lemma 8). Consider four voters, say 1, 2, 3, 4,
such that the formula graph contains the edge (1, 2) — (4, 2) and that edge
(2, 3) exists in the colorful graph. If the formula graph does not contain edges
(3, 2) — (1, 2) and (3, 2) — (4, 2), then the formula graph is guaranteed to con-
tain the edge (1, 3) — (4, 3).

The proof closely follows that of Lemma 8, but the weaker assumptions make
it significantly more difficult to proceed as before in a principled manner. Instead,
we resort to a computer program to perform the case analysis (see appendix for
details).

Lemma 13. Consider three voters, say 1, 2, 3 such that edges 1 — 2 and 2 — 3
are the same color and oriented 1 → 2 and 2 → 3 in the colorful graph. If edge
1 — 3 appears in the colorful graph, then it is of the same color as 1 — 2 — 3.

Proof. Without loss of generality, assume that 1 — 3 is oriented 1 → 3 in the
colorful graph. Assume for a contradiction that the color of 1 — 2 — 3 is c
and the color of 1 — 3 is c′ 6= c. Because 1

c−→ 2 and 2
c−→ 3 are the same
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color, it follows that there is a simple path in the formula graph (1, 2) =
(a1, b1) — (a2, b2) — . . . — (ak, bk) = (2, 3). We will prove by induction on
1 ≤ ℓ ≤ k that aℓ

c′−→ 3 and bℓ
c−→ 3, which is a contradiction since bk = 3

and there are no self-loops in the colorful graph. The base case ℓ = 1 is true by
assumption. Assume that aℓ

c′−→ 3 and bℓ
c−→ 3 for some ℓ < k, we then want

to prove that aℓ+1
c′−→ 3 and bℓ+1

c−→ 3. By construction of the formula graph,
distinguish two cases:

If aℓ+1 = aℓ, then we instantiate Lemma 12 with 1 7→ bℓ, 2 7→ aℓ, 3 7→ 3, 4 7→
bℓ+1. This is sound because edge (bℓ, aℓ) — (bℓ+1, aℓ) is in the formula graph and
edges (3, aℓ) — (bℓ, aℓ) and (3, aℓ) — (bℓ+1, aℓ) are not, since 3 — aℓ is color c′,
while the other two are color c by assumption. The instantiation gives that edge
(bℓ, 3) — (bℓ+1, 3) is in the formula graph, from which bℓ+1

c−→ 3.

If bℓ+1 = bℓ, then we instantiate Lemma 12 with 1 7→ aℓ, 2 7→ bℓ, 3 7→ 3, 4 7→
aℓ+1. This is sound because edge (aℓ, bℓ) — (aℓ+1, bℓ) is in the formula graph
and edges (3, bℓ) — (aℓ, bℓ) and (3, bℓ) — (aℓ+1, bℓ) are not, since the colorful
graph has edges aℓ

c−→ bℓ, aℓ+1
c−→ bℓ and bℓ

c−→ 3, which together with any of
(3, bℓ) — (aℓ, bℓ) or (3, bℓ) — (aℓ+1, bℓ) in the formula graph would lead to a
path between (bℓ, 3) and (3, bℓ) in the formula graph, which cannot be the case.
The instantiation gives us that the edge (aℓ, 3) — (aℓ+1, 3) exists in the formula
graph, from which aℓ+1

c−→ 3.

Corollary 14. An orientation of the colors in the colorful graph is acyclic if and
only if it induces no directed cycles of length three consisting of three different
colors.

Theorem 15. An acyclic orientation of the colorful graph exists and can be
computed in poly-time.

Proof. By Corollary 14, only colors participating in three-colored triangles have
to be considered (all other colors we can orient arbitrarily). Let C = {c1, . . . , ck}
be the set of such colors. For each color ci ∈ C, applying Theorem 9 to an
arbitrary three-colored triangle involving ci gives that ci is a biclique color, so
the set of edges colored with color ci in the colored graph is Ai × Bi for some
disjoint sets of vertices Ai, Bi. For a finite set of numbers S, we write minS for
the minimum number in S. We now construct an orientation of the colors in
C as follows: for color ci ∈ C we orient the edges of color ci to go Ai → Bi

if minAi < minBi and Bi → Ai otherwise. Note that minAi 6= minBi as
Ai ∩ Bi = ∅. We now prove that this orientation is acyclic to complete the
proof. Assume for a contradiction that the orientation induced a cycle a → b →
c → a. Then, by Corollary 14, the three edges involved in the cycle bear different
colors in the colorful graph, so, by Theorem 9, there exist three disjoint vertex
sets A,B,C such that a ∈ A, b ∈ B, c ∈ C and the connected components of
a → b, b → c and c → a in the formula graph are given by A × B, B × C
and C × A. However, by construction of the orientation, this would mean that
minA < minB < minC < minA, a contradiction.
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Armed as such, we can now prove the main result of our paper.

Theorem 16. There is a polynomial time algorithm taking as input a collection
of approval ballots that outputs a profile of single-crossing preferences that could
have lead to the given approval votes. If this is not possible, the algorithm reports
accordingly.

Proof. Start with the approval ballots and build the formula graph. If there are
pairs of complementary nodes in the same connected component, report impos-
sibility. Otherwise, build the colorful graph. If a monochromatic cycle exists,
report impossibility. Otherwise, use Theorem 15 to compute an acyclic orien-
tation, and extend it to a linear order ◁. Finally, use the approach of Elkind
et al. [15], explained in Appendix B, to compute a single-crossing profile with
respect to the known axis ◁.

7 Conclusions and Future Work

We gave a polynomial time algorithm computing a collection of fully-ranked bal-
lots that could have been induced by the given approval ballots. Furthermore, we
showed that there is no finite substructures characterization of possibly single-
crossing elections (deferred to Appendix A). To prove our main result, we devel-
oped a new algorithm for the non-betweenness problem, showing that it is FPT
with respect to the number of colors in a certain colorful graph. We expect this
FPT algorithm to lead to polynomial algorithms for other ordering problems re-
ducing to the non-betweenness problem by combinatorial analysis of the induced
colorful graphs. We note that betweenness reduces to non-betweenness since the
constraint “b has to be between a and c” can be modeled as the conjunction of
two non-betweenness constraints, namely: “a should not be between b and c”
and “c should not be between a and b”, so our framework can also be used for
betweenness.

As steps for future research, the most natural next question to ask is the
complexity of recognizing possibly single-crossing for multi-valued approval, the
case of three indifference classes being a natural first candidate to consider. We
have empirically found that our proof of correctness no longer applies in this
case, since for instance Lemma 8 fails to hold for 3-valued approval. However,
we could not find instances where the algorithm as a whole fails the recognition
task. We leave it open to settle this question. Another promising avenue for
further investigation stands in the case when our algorithm reports that voters’
innate preferences are not single-crossing. In this case, one might hope that they
are at least somewhat close to being single-crossing, so it would be interesting
to investigate how to recover preferences that are nearly single-crossing from
approval ballots (see [18, Section 4.8] for a discussion of related results).

Acknowledgements We thank Finn Harbeke and Edith Elkind for the many
fruitful discussions regarding this work. We moreover thank Finn Harbeke for



Recovering Single-Crossing Preferences From Approval Ballots 19

checking whether our proposed approach works for 3-valued approval and mak-
ing suggestions to improve the paper. We thank the anonymous reviewers for
their constructive feedback and useful suggestions contributing to improving the
paper.

References

1. Arrow, K.: Social Choice and Individual Values. John Wiley and Sons (1951)
2. Barberà, S., Moreno, B.: Top monotonicity: A common root for single peakedness,

single crossing and the median voter result. Games Econ. Behav. 73, 345–359
(2011)

3. Bartholdi, J., Trick, M.A.: Stable matching with preferences derived from a psy-
chological model. Oper. Res. Lett. 5(4), 165–169 (Oct 1986)

4. Beresnev, V.L., Davydov, A.I.: On matrices with connectedness property. Up-
ravlyaemye Sistemy 19 (1979), in Russian

5. Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional
representation. J. Artif. Int. Res. 47(1), 475–519 (May 2013)

6. Black, D.: On the rationale of group decision-making. Journal of Political Economy
56(1), 23–34 (1948)

7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. JCSS 13(3), 335–379 (1976)

8. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.): Handbook
of Computational Social Choice. Cambridge University Press, USA, 1st edn. (2016)

9. Bredereck, R., Chen, J., Woeginger, G.J.: A characterization of the single-crossing
domain. Social Choice and Welfare 41(4), 989–998 (2013)

10. Busing, F.M.T.A.: Advances in multidimensional unfolding. Ph.D. thesis (2010)
11. Chen, J., Hatschka, C., Simola, S.: Efficient algorithms for monroe and cc rules

in multi-winner elections with (nearly) structured preferences. In: ECAI’23. pp.
397–404 (2023)

12. Constantinescu, A.C., Elkind, E.: Proportional representation under single-crossing
preferences revisited. AAAI’21 35(6), 5286–5293 (May 2021)

13. Doignon, J.P., Falmagne, J.C.: A polynomial time algorithm for unidimensional
unfolding representations. J. Algorithms 16(2), 218–233 (Mar 1994)

14. Elkind, E., Faliszewski, P.: Recognizing 1-euclidean preferences: An alternative ap-
proach. In: Lavi, R. (ed.) Algorithmic Game Theory. pp. 146–157. Springer Berlin
Heidelberg (2014)

15. Elkind, E., Faliszewski, P., Lackner, M., Obraztsova, S.: The complexity of recog-
nizing incomplete single-crossing preferences. AAAI’15 29(1) (Feb 2015)

16. Elkind, E., Faliszewski, P., Slinko, A.: Clone structures in voters’ preferences. Pro-
ceedings of the ACM Conference on Electronic Commerce pp. 496–513 (2012)

17. Elkind, E., Lackner, M.: Structure in dichotomous preferences. In: IJCAI’15. pp.
2019–2025 (2015)

18. Elkind, E., Lackner, M., Peters, D.: Preference restrictions in computational social
choice: A survey (2022)

19. Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity.
pp. 366–370. IOS Press, NLD (2008)

20. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: The shield that
never was: Societies with single-peaked preferences are more open to manipulation
and control. In: TARK’09. pp. 118–127. ACM, New York, NY, USA (2009)



20 A. Constantinescu and R. Wattenhofer

21. Fitzsimmons, Z.: Single-peaked consistency for weak orders is easy. In: Ramanujam,
R. (ed.) TARK’15. vol. 215, pp. 127–140 (2016)

22. Guttmann, W., Maucher, M.: Variations on an ordering theme with constraints.
In: IFIP TCS (2006)

23. Klinz, B., Rudolf, R., Woeginger, G.J.: Permuting matrices to avoid forbidden
submatrices. Discrete Applied Mathematics 60(1), 223–248 (1995)

24. Knoblauch, V.: Recognizing one-dimensional euclidean preference profiles. Journal
of Mathematical Economics 46, 1–5 (01 2010)

25. Lackner, M., Skowron, P.: Multi-Winner Voting with Approval Preferences.
Springer International Publishing, Cham (2023)

26. Laslier, J.F., Sanver, M.R. (eds.): Handbook on Approval Voting. Springer Berlin,
Heidelberg (2010)

27. Lu, T., Boutilier, C.: Budgeted social choice: From consensus to personalized de-
cision making. In: IJCAI’11. pp. 280–286 (01 2011)

28. Magiera, K., Faliszewski, P.: Recognizing top-monotonic preference profiles in poly-
nomial time. In: IJCAI’17. pp. 324–330 (2017)

29. Mandal, D., Procaccia, A.D., Shah, N., Woodruff, D.P.: Efficient and thrifty voting
by any means necessary. In: NeurIPS’19. Curran Associates Inc., Red Hook, NY,
USA (2019)

30. Mattei, N., Walsh, T.: Preflib: a library for preferences http://www.preflib.org. In:
Algorithmic Decision Theory. pp. 259–270. Springer Berlin Heidelberg (2013)

31. Mirrlees, J.: An exploration in the theory of optimum income taxation. The Review
of Economic Studies 38(2), 175–208 (1971)

32. Peters, D.: Recognising multidimensional euclidean preferences. In: AAAI’17. pp.
642–648 (2017)

33. Pierczyński, G., Skowron, P.: Core-stable committees under restricted domains. In:
WINE’22. pp. 311–329. Springer International Publishing, Cham (2022)

34. Procaccia, A., Rosenschein, J., Zohar, A.: On the complexity of achieving propor-
tional representation. Social Choice and Welfare 30, 353–362 (02 2008)

35. Roberts, K.: Voting over income tax schedules. Journal of Public Economics 8(3),
329–340 (1977)

36. Skowron, P., Yu, L., Faliszewski, P., Elkind, E.: The complexity of fully propor-
tional representation for single-crossing electorates. Theoretical Computer Science
569, 43–57 (2015)

37. Sornat, K., Williams, V.V., Xu, Y.: Near-tight algorithms for the chamberlin-
courant and thiele voting rules. In: De Raedt, L. (ed.) IJCAI’22. pp. 482–488
(2022)

38. Terzopoulou, Z., Karpov, A., Obraztsova, S.: Restricted domains of dichoto-
mous preferences with possibly incomplete information. pp. 2023–2025. AAMAS’20
(2020)



Recovering Single-Crossing Preferences From Approval Ballots 21

1 2 3 4 5
1 1 1 0 0 0
2 0 1 1 0 0
3 0 0 1 1 0
4 0 0 0 1 1
5 1 0 0 0 1

(a) Approval matrix of P5.
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3

3

4 4

5

5

(b) Bipartite graph representation of P5.

Fig. 5: Construction used in the impossibility proof for n = 5 voters/alternatives.
Fig. 5a shows the approval matrix. Fig. 5b shows the corresponding bipartite
preference graph, with voters represented by red squares and candidates by blue
circles.

A Impossibility of Finite Forbidden Substructures
Characterization

Single-crossing elections can be characterized as those elections not containing
as subprofiles two specific elections consisting of three voters and six alterna-
tives, and four voters and four alternatives [9]. In this appendix, we show that,
in contrast, possibly single-crossing elections do not admit such a characteriza-
tion in terms of finitely many forbidden subprofiles. To do so, for n ≥ 2 define
an approval profile Pn where n voters cast approval ballots over m = n alter-
natives, voter i ∈ [n] approving of candidates i and i − 1 and disapproving of
the rest (Fig. 5a).6 A useful notion for understanding these profiles is that of
the preference graph of an approval profile, obtained by introducing a vertex
for each voter and a vertex for each candidate, together with undirected edges
drawn between voters and the candidates that they approve of.7 Subprofiles of
a profile then correspond to induced subgraphs of the preference graph respect-
ing node types. In the case of Pn, the preference graph is a cycle (Fig. 5b).
We call a profile that is not seemingly single-crossing minimal if it has no non-
seemingly-single-crossing proper subprofiles. The following shows that (Pn)n≥4

is an infinite family of minimal not seemingly single-crossing profiles, implying
that this family has to be part of any forbidden substructures characterization,
and hence the conclusion.

Lemma 17. For n ≥ 4 the profile Pn is not seemingly single-crossing. More-
over, any profile formed from Pn by removing voters and/or candidates is seem-
ingly single-crossing.
6 Here we assume that addition and subtraction are performed modulo n, using the

fact that 0 ≡ n (mod n)
7 This is the same as interpreting the approval matrix as a bipartite adjacency matrix.
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Proof. To show the first part, fix some n ≥ 4 and for brevity write P = Pn. We
proceed by considering the set of NB constraints CP induced by P. We first look
at voter 1. Consider another voter i /∈ {1, 2, n}. Note that voter 1 approves of
candidate 1, but disapproves of candidate i, while voters i and i+1 disapprove of
candidate 1, but approve of candidate i. Consequently, we get the NB constraints
(i, 1, i + 1) for i /∈ {1, 2, n}. Additionally, voter 1 approves of candidate n, but
disapproves of candidate 2, while voters 2 and 3 do the opposite,8 so we also get
the NB constraint (2, 1, 3). Together, so far we have the NB constraints (i, 1, i+1)
for i /∈ {1, n}. In other words, voter 1 cannot be between any other two voters,
so has to go either first or last in order for CP to be satisfied. By symmetry of
the construction; i.e., see Fig. 5b; the same argument also applies to the other
voters, but this cannot be the case, as at most two voters can go first/last in
the order. To show the second part, by symmetry (see Fig. 5b) it is enough to
consider the cases of removing voter 1 or candidate n. In either case, one can
check that the linear order 1 ◁ 2 ◁ . . . ◁ n witnesses the seemingly single-crossing
property.

B Equivalence of SSC and PSC for Weak Orders
In this appendix, we show that a profile of weak orders is seemingly single-
crossing (SSC) with respect to an axis ◁ if and only if it is possibly single-crossing
(PSC) with respect to ◁. The latter implies the former straightforwardly, so we
focus on the non-trivial direction, namely that SSC with respect to ◁ implies
PSC with respect to ◁. To this end, we show that under the assumption that
the profile is SSC with respect to ◁, we can extend each weak order into a linear
order such that the resulting profile is single-crossing with respect to ◁. As is
required by our main algorithm (Theorem 16), this can be done in polynomial
time. The proof that we give is a streamlined version of the argument of Elkind
et al. [15].
Theorem 18. Given a preference profile of weak orders P = (�i)i∈[n] and a
linear order ◁ over [n] such that P is seemingly single-crossing with respect to ◁,
one can compute in polynomial time for each voter i ∈ [n] a linear extension �′

i

of �i such that (�′
i)i∈[n] is single-crossing with respect to ◁.

Proof. Recall that C = [m] is the set of candidates/alternatives. First, if there
exists a pair of distinct candidates (a, b) ∈ C2 such that a ≈i b for all voters
i ∈ [n], then remove b and apply the theorem recursively to the reduced instance.
After getting an answer for the reduced instance, add back candidate b into all
voters’ rankings right next to a such that a �′

i b holds for all voters i ∈ [n].
Hence, we may now assume that no such pair (a, b) exists.9 Without loss of
generality, further assume that 1 ◁ . . . ◁ n.

8 No longer true for n ≤ 3, from which the need for n ≥ 4 becomes apparent. In fact,
P2 and P3 are actually SSC.

9 Note that if the input is presented in matrix form, the recursive steps that are
performed for a given instance correspond to identifying and removing equal rows
in the preference matrix, and then adding back the removed candidates at the end.
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We construct the linear extensions (�′
i)i∈[n] of (�i)i∈[n] by specifying for

each pair of alternatives (a, b) ∈ C2 with 1 ≤ a < b ≤ m and each voter i ∈ [n]
whether a �′

i b or b �′
i a. Consider such a pair (a, b). For each voter i ∈ [n]

proceed as follows: compute the highest j such that 1 ≤ j ≤ i and a 6≈j b. If no
such j exists, then take j to be the smallest j such that i < j ≤ n and a 6≈j b.
Note that such a j has to exist since we assumed that for any pair of distinct
alternatives, at least one voter is not indifferent between them. If a �j b, then
we make �′

i compare a and b as a �′
i b. Conversely, if b �j a, then we make it

compare a and b as b �′
i a. In Iverson bracket notation, the two cases can be

more succinctly expressed as setting [a �′
i b] = [a �j b]. Implicitly, we also set

[b �′
i a] = [b �j a]. This completes the construction, which can be seen to only

require polynomial time to compute.
Next, we show the correctness of the construction. First, observe that orders

(�′
i)i∈[n] are extensions of (�i)i∈[n]. This is because if a 6≈i b then j = i will be

chosen in the construction, implying the required. Next, let us show that (�′
i)i∈[n]

is single-crossing with respect to ◁. This amounts to showing that for any two
distinct candidates (a, b) ∈ C2 there are no three voters i ◁ j ◁k such that a �′

i b,
b �′

j a and a �′
k b. Equivalently, for any two candidates (a, b) ∈ C2 with a < b

there are no three voters i◁j◁k such that a �′
i b, b �′

j a, a �′
k b, or b �′

i a, a �′
j b,

b �′
k a. To show this, consider the sequence (s′i)i∈[n] where s′i = [a �′

i b]; i.e.,
s′i = 1 if a �′

i b and 0 if b �′
i a. The statement then amounts to there not existing

indices 1 ≤ i < j < k ≤ n such that (s′i, s
′
j , s

′
k) ∈ {(0, 1, 0), (1, 0, 1)}, which is in

turn equivalent to s′ being either monotonically increasing or decreasing. We now
show that this monotonicity property is indeed satisfied: consider additionally
the sequence (si)i∈[n] where si ∈ {⊥, 0, 1} satisfies si = ⊥ if a ≈i b and otherwise
si = [a �i b] holds. Our construction of (�′

i)i∈[n] from (�i)i∈[n] can then be
reformulated as follows: for every pair of distinct candidates (a, b) ∈ C2 with
a < b we construct s′ from s by replacing si = ⊥ entries by either 0 or 1. In
particular, if si = ⊥, then we compute the last non-⊥ element to the left of i
inclusively, or the first non-⊥ element to the right of i if none of the previous
kind were found, and then setting s′i to that element. Because P is SSC with
respect to ◁, it follows that s is either monotonically increasing or decreasing if
we ignore ⊥ elements, so this procedure completes s into a sequence s′ without
⊥ elements that is also monotonically increasing/decreasing, as required.

It remains to show that the relations (�′
i)i∈[n] produced from (�i)i∈[n] are

indeed linear orders. By construction, they are already total, irreflexive, and
antisymmetric, so it remains to show that they are also transitive. Assume for a
contradiction that for some voter i ∈ [n] order �′

i is not transitive. Hence, there
exist three candidates a, b, c ∈ C such that a �′

i b �′
i c �′

i a. We will show that
this cannot be the case. To do so, consider how the values [a �′

i b], [b �′
i c] and

[c �′
i a] were constructed. For ease of writing, define a linear ⊏ order on [n] such

that i ⊏ . . . ⊏ 1 ⊏ i+ 1 ⊏ . . . ⊏ n. Then:
• [a �′

i b] = [a �jab b] where jab = min⊏{j | a 6≈j b};
• [b �′

i c] = [b �jbc c] where jbc = min⊏{j | b 6≈j c};
• [c �′

i a] = [c �jca a] where jca = min⊏{j | c 6≈j a}.
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Without loss of generality, assume min⊏(jab , jbc , jca) = jab . Recall that �jab is
a weak order and note that a �jab b.

If a ≈jab c, then a �jab b implies that c �jab b. Consequently, jbc = jab , from
which c �′

i b, contradicting the assumption that b �′
i c. As a result, a 6≈jab c

must hold.
If b ≈jab c, then a �jab b implies that a �jab c. Consequently, jca = jab , from

which a �′
i c, contradicting the assumption that c �′

i a. As a result, b 6≈jab c,
must hold.

Since a 6≈jab c and b 6≈jab c both hold, it follows that jab = jbc = jca , and so
�jab restricted to a, b, c is a total order, from which �′

i also is, contradicting the
assumed violation of transitivity a �′

i b �′
i c �′

i a.

C Proofs Omitted From the Main Body

In this appendix, we provide the proofs missing from the main text. In some
cases, the proofs will require stating and proving additional intermediate results.

C.1 Proof of Lemma 1

Lemma 1. P is SSC with respect to a linear order ◁ iff CP is satisfied by ◁.

Proof. Assume P is not SSC with respect to ◁. Then, there are voters i ◁ j ◁ k
and candidates a, b ∈ C such that a �i b, b �j a and a �k b. By construction of
CP , this means that (i, j, k) ∈ CP , so CP is not satisfied by ◁. Conversely, assume
CP is not satisfied by ◁. Then, there is (i, j, k) ∈ CP such that either i ◁ j ◁ k or
k ◁ j ◁ i. By construction of CP , this means that a �i b, b �j a, a �k b and either
i ◁ j ◁ k or k ◁ j ◁ i. Either way, this means that P is not SSC with respect to ◁.

C.2 Proof of Lemma 2

Recall the following basic fact:

Proposition 20. A NB constraint (i, j, k) is satisfied by a linear order ◁ iff
[i ◁ j] = [k ◁ j].

Lemma 2. Linear orders ◁ satisfying the NB constraints in C correspond bijec-
tively to satisfying assignments of ΦC by xi,j = [i ◁ j]. Hence, C is satisfiable iff
ΦC is satisfiable.

Proof. Assume linear order ◁ satisfies the constraints in C, then let us set xi,j =
[i ◁ j]. As a result, constraints in 〈2〉 are satisfied due to Proposition 20, while
constraints in 〈1〉 and 〈3〉 are satisfied because ◁ is antisymmetric and transitive.
Conversely, assume values xi,j are a satisfying assignment of ΦC . Then, one can
define ◁ by setting [i ◁ j] = xi,j , which is a linear order because 〈1〉 and 〈3〉
enforce antisymmetry and transitivity. Moreover, ◁ satisfies the constraints in C
because ΦC satisfies constraint set 〈2〉, by using Proposition 20.
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C.3 Proof of Lemmas 3 and 4

Lemma 3. An assignment (xu)u∈V (GC) satisfies constraint set 〈2′〉 if and only
if for each connected component S of GC it holds that xu = xv for all u, v ∈ S.

Proof. Assume x is an assignment satisfying set 〈2′〉. Let S be a connected
component of GC and u, v ∈ S be arbitrary. Since S is a connected component,
consider a path u = t0 — t1 — . . . — tk = v in GC . By construction of GC ,
this path corresponds to constraints in set 〈2′〉 stipulating that xt0 = . . . = xtk ,
from which we get xu = xv as x satisfies constraint set 〈2′〉. Conversely, assume
x is an assignment and that for each connected component S of GC it holds
that xu = xv for all u, v ∈ S. Consider a constraint xu = xv in set 〈2′〉. By
construction of GC , the edge u — v exists in GC , so u and v are in the same
connected component of GC , from which our assumption gives that xu = xv, so
the constraint in 〈2′〉 is satisfied.

Lemma 4. Let S be a connected component in GC, then S := {s : s ∈ S} is
also a connected component in GC. Note moreover that S = S or S ∩ S = ∅.

Proof. By construction of GC , an edge a — b exists in GC if and only if the
edge a — b also exists in GC . By induction, a and b are connected by a path
in GC if and only if a and b are connected by a path in GC . This means that
vertex set S is connected in GC . To show that S is a connected component,
assume for a contradiction that S was contained in a larger connected component
S ⊊ S′ ⊆ V (GC). Note that this also means that S = S ⊊ S′. By the same
argument as before applied to S′ instead of S, we get that S′ is connected in
GC . However, S ⊊ S′, contradicting the fact that S is a connected component.

C.4 Proof of Lemma 8

In this section, we prove Lemma 8. Before commencing, we make an elementary
observation:

Proposition 24. Appending to an approval matrix P a copy of one of the rows
of P leaves the set of NB constraints CP unchanged. Naturally, the formula and
colorful graphs also remain unchanged.

This fact will be useful in our proofs because it allows for assuming without
loss of generality that any collection of NB constraints in CP is generated by
pairwise disjoint unordered pairs of rows/candidates; e.g., if (1, 2, 3) and (4, 5, 6)
are NB constraints witnessed by candidate pairs {a, b} and {c, d}, then without
loss of generality {a, b}∩ {c, d} = ∅. This is because had this not been the case,
one could have added copies of the rows which are mentioned multiple times.

To prove Lemma 8, we will need two intermediate results that together will
give the conclusion.
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(a) Assumed edge colors.

1

2 4

3 5

(b) Implied edge colors.

(1, 2)

(1, 4)

(2, 3)

(1, 3)

(1, 5)

(4, 3)

(2, 5) (4, 5)

(c) Impl. edges in formula graph.

Fig. 6: Illustration of Lemma 25. Fig. 6a depicts the assumptions: edges
(1, 2) — (1, 4) and (2, 3) — (2, 5) exist in the formula graph, with the first two
colored red and the last two blue. Additionally, edge (1, 3) is neither red nor
blue. Fig. 6b shows the edge colors implied by the setup, where green is some
arbitrary color other than red and blue. Fig. 6c shows the implied edges in the
formula graph, whose existence lead to the color configuration in the second
figure.

0 1 x 1 z
1 0 y 0 t
u 0 1 p 1
v 1 0 q 0

(a) Notation.

0 1 0 1 z
1 0 0 0 t
0 0 1 p 1
0 1 0 q 0

(b) x, y, u, v are 0.

0 1 0 1 z
1 0 0 0 0
0 0 1 p 1
0 1 0 q 0

(c) t is 0.

0 1 0 1 0
1 0 0 0 0
0 0 1 p 1
0 1 0 q 0

(d) z is 0.

0 1 0 1 0
1 0 0 0 0
0 0 1 0 1
0 1 0 q 0

(e) p is 0.

Fig. 7: Steps in the proof of Lemma 25. The final matrix reached implies the
conclusions regardless of the value of q ∈ {0, 1}.

Lemma 25. Consider five voters, say 1, 2, 3, 4 and 5, such that the formula
graph has edges (1, 2) — (1, 4) and (2, 3) — (2, 5), and that, moreover, (1, 2) and
(2, 3) have different colors in the colorful graph. If edge (1, 3) is either not present
in the colorful graph, or it has a different color than (1, 2) and (2, 3), then the
formula graphs is guaranteed to also contain edges (1, 3) — (1, 5), (4, 3) — (4, 5),
(2, 3) — (4, 3) and (2, 5) — (4, 5). The scenario is illustrated in Fig. 6.

Proof. Matrix P induces NB constraints (2, 1, 4) and (3, 2, 5). By Proposition
24 and the discussion afterward, we can assume that matrix P has the form
in Fig. 7a. First, we prove that x = y. Assume the contrary, and make a case
distinction:

If xy = 01, then P induces the NB constraint (1, 2, 3), so edge (1, 2) — (3, 2)
is in the formula graph, so (1, 2) and (3, 2) are in the same component, meaning
that they bear the same color, contradicting the hypothesis.

If xy = 10, then P induces the NB constraint (2, 1, 3), so edge (2, 1) — (3, 1)
is in the formula graph, so the component of edge (3, 1) has size at least two,
meaning that it occurs in the colored graph, contradicting the hypothesis.
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Subsequently, we prove that u = v. Assume the contrary. If uv = 10, then
P induces the NB constraint (1, 2, 3), and a contradiction follows similarly to
the first case above. If uv = 01, then P induces the NB constraint (2, 3, 1),
from which the edge (2, 3) — (1, 3) is in the formula graph, so the component
of edge (3, 1) has size at least two, meaning that it occurs in the colored graph,
contradicting the hypothesis.

Now, let us prove that x = u. Assume the contrary. If xu = 01, then P induces
the NB constraint (1, 2, 3), and a contradiction follows as before. If xu = 10, then
P again induces the NB constraint (1, 2, 3), again a contradiction.

Since P and P, which is the profile obtained from P by exchanging zeros
and ones, induce the same graphs, note that the cases with x = 1 and x = 0 are
isomorphic with respect to complementing the matrix and permuting the row
pairs (1, 2) and (3, 4). Therefore, it is enough to consider the case x = 0, so our
matrix has the form in Fig. 7b.

Now, note that if t = 1, then P induces the NB constraint (1, 2, 5), from
which (1, 2) and (5, 2) have the same color in the colored graph, contradicting
our hypothesis, so t = 0. Therefore, matrix P has the form in Fig. 7c. Notice
that this induces the NB constraint (3, 1, 5).

Moreover, observe that if z = 1, then P induces the NB constraint (2, 1, 5),
which, together with the presence of constraint (3, 1, 5) means that (1, 2) and
(1, 3) are colored with the same color, contradicting the hypothesis, so z = 0
holds. The matrix right now looks like in Fig. 7d.

Finally, observe that if p = 1, then P induces the NB constraint (4, 1, 5),
which, together with the presence of constraints (3, 1, 5) and (2, 1, 4), means that
(1, 2) and (1, 3) are colored with the same color, contradicting the hypothesis, so
p = 0 holds. The matrix now looks like in Fig. 7e. Looking only at the first three
rows, we already get the conclusion. It can also be checked that both options for
q lead to no contradictions, but this is not necessary.

Recall that a critical point to note is that Lemma 25 continues to hold when
some of the five voters happen to be the same, as can be seen by creating distinct
copies of such voters and then invoking the lemma. Similar considerations hold
for all our results of this sort.

Lemma 26. Consider five voters, say 1, 2, 3, 4 and 5, such that the formula
graph has edges (1, 2) — (4, 2) and (2, 3) — (2, 5), and that, moreover, (1, 2) and
(2, 3) have different colors in the colorful graph. If edge (1, 3) is either not present
in the colorful graph, or it has a different color than (1, 2) and (2, 3), then the
formula graphs is guaranteed to also contain edges (4, 3) — (1, 3), (4, 3) — (4, 5),
(1, 3) — (1, 5) and (4, 5) — (1, 5). The scenario is illustrated in Fig. 8.

Proof. Matrix P induces NB constraints (1, 2, 4) and (3, 2, 5). By Proposition
24 and the discussion afterwards, we can assume that matrix P has the form in
Fig. 9a. Notice that matrices in Fig. 9a and Fig. 7a differ only in the two red
entries in column 4 being swapped, so the proof of Lemma 25 works unmodified
until the first time column 4 is mentioned, so we get that it is enough to consider
the case x = y = u = v = z = t = 0, depicted in Fig. 9b. Moreover, notice that, in
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(b) Implied edge colors.

(1, 2)

(4, 2)

(4, 3)

(2, 3)

(2, 5)

(4, 5)

(1, 3)

(1, 5)

(c) Impl. edges in formula graph.

Fig. 8: Illustration of Lemma 26. Fig. 8a depicts the assumptions: edges
(1, 2) — (4, 2) and (2, 3) — (2, 5) exist in the formula graph, with the first two
colored red and the last two blue. Additionally, edge (1, 3) is neither red nor
blue. Fig. 8b shows the edge colors implied by the setup, where green is some
arbitrary color other than red and blue. Fig. 8c shows the implied edges in the
formula graph, whose existence lead to the color configuration in the second fig-
ure.

0 1 x 0 z
1 0 y 1 t
u 0 1 p 1
v 1 0 q 0

(a) Notation.

0 1 0 0 0
1 0 0 1 0
0 0 1 p 1
0 1 0 q 0

(b) x, y, u, v, z, t are 0.

0 1 v 0 q
1 0 u 1 p
y 0 1 t 1
x 1 0 z 0

(c) Self-symmetry.

0 1 0 0 0
1 0 0 1 0
0 0 1 0 1
0 1 0 0 0

(d) p, q are 0.

Fig. 9: Steps in the proof of Lemma 26.

contrast to the previous lemma, the scenario in Fig. 8a is symmetric with respect
to interchanging the red/blue components. In particular, if we interchange the
roles of candidate pairs (1, 3) and (4, 5) and additionally permute row pairs
(1, 4) and (2, 3) in Fig. 9a we get the matrix in Fig. 9c, which is identical up to
relabelling of the variables x, y, etc. Consequently, reapplying our argument so
far to the matrix in Fig. 9c gives us that v = u = y = x = q = p = 0. Altogether,
we now know that x = y = u = v = z = t = p = q = 0, fact depicted in Fig. 9d.
Once again, looking only at the first three rows, we get our conclusion.

We can now prove Lemma 8 by combining Lemmas 25 and 26, as follows:

Lemma 8. Consider four voters, say 1, 2, 3, 4, such that the formula graph con-
tains the edge (1, 2) — (4, 2) and that edge (2, 3) exists in the colorful graph and
has a different color than (1, 2). If edge (1, 3) is either not present in the colorful
graph, or it has a different color than (1, 2) and (2, 3), then edge (1, 3) — (4, 3)
is guaranteed to be in the formula graph. The scenario is illustrated in Fig. 3.

Proof. Since edge (2, 3) is in the colorful graph, an edge (2, 3) — (x, y) has to
exist in the formula graph. By construction of the formula graph, either x = 2
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(a) Assumed edge colors.
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(b) Implied edge colors.

(1, 2)

(1, 4)

(1, 5)

(2, 3)

(4, 3)

(5, 3)

(c) Impl. edges in formula graph.

Fig. 10: Illustration of Lemma 28. Fig. 10a depicts the assumptions: edges
(1, 2) — (1, 4) and (2, 3) — (5, 3) exist in the formula graph, with the first two
colored red and the last two blue. Additionally, edge (1, 3) is neither red nor blue.
Fig. 10b shows the edge colors implied by the setup. Fig. 10c shows the implied
edges in the formula graph, whose existence lead to the color configuration in
the second figure.

0 1 x 1 z
1 0 y 0 t
u 0 1 p 0
v 1 0 q 1

(a) Notation.

0 1 0 1 z
1 0 0 0 t
0 0 1 p 0
0 1 0 q 1

(b) x, y, u, v are 0.

0 1 0 1 z
1 0 0 0 0
0 0 1 p 0
0 1 0 q 1

(c) t is 0.

0 1 0 1 z
1 0 0 0 0
0 0 1 0 0
0 1 0 q 1

(d) p is 0.

Fig. 11: Steps in the proof of Lemma 28. The final matrix reached implies the
conclusions regardless of the values of (q, z) ∈ {0, 1}2.

or y = 3. If x = 2, then Lemma 26 gives the conclusion. If y = 3, then Lemma
25 gives the conclusion.

C.5 Proof of Theorem 10

In this section, we prove Theorem 10. In order to do so, we will need yet another
intermediate result similar in spirit to Lemmas 25 and 26, as follows:

Lemma 28. Consider five voters, say 1, 2, 3, 4 and 5, such that the formula
graph has edges (1, 2) — (1, 4) and (2, 3) — (5, 3), and that, moreover, (1, 2)
and (2, 3) have different colors in the colorful graph. If edge (1, 3) is either not
present in the colorful graph, or it has a different color than (1, 2) and (2, 3),
then the formula graphs is guaranteed to also contain edges (1, 2) — (1, 5) and
(2, 3) — (4, 3). The scenario is illustrated in Fig. 10.

Proof. Matrix P induces NB constraints (2, 1, 4) and (2, 3, 5). By Proposition
24 and the discussion afterwards, we can assume that matrix P has the form in
Fig. 11a. Notice that matrices in Fig. 11a and Fig. 7a differ only in the two blue
entries in column 5 being swapped, so the proof of Lemma 25 works unmodified
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(a) Assumed colors.

1

2 4

3

(b) Implied colors.

Fig. 12: Illustration of Lemma 29. Fig. 12a depicts the assumptions: edge
(1, 2) — (1, 4) exists in the formula graph (colored red) and edge (2, 3) exists
in the colorful graph and bears a different color (colored blue). Additionally,
edge (1, 3) is neither red nor blue. Fig. 12b shows the colors implied by the
setup.

until the first time column 5 is mentioned, so we get that it is enough to consider
the case x = y = u = v = 0, depicted in Fig. 11b.

Now, notice that if t = 1, then P induces the NB constraint (1, 3, 5), from
which (1, 3) and (5, 3) have the same color in the colorful graph, which happens
to also be the color of (2, 3), contradicting our hypothesis, so t = 0 holds, fact
depicted in Fig. 11c.

Similarly, notice that if p = 1, then P induces the NB constraint (3, 1, 4), from
which (1, 3) and (1, 4) have the same color in the colorful graph, which happens
to also be the color of (1, 2), contradicting our hypothesis, so p = 0 holds, fact
depicted in Fig. 11d. As a remark, observe that we could have also argued that
Fig. 8a is symmetric with respect to interchanging red/blue components, and
then use a symmetry argument like in the proof of Lemma 26 to deduce that
p = 0, but this time not much work is saved in contrast to a direct argument.

Finally, irrespective of the values of q and t, the current matrix P already
induces NB constraints (2, 1, 5) and (2, 3, 4), implying our conclusion. It can also
be checked that all four options for (z, q) ∈ {0, 1}2 lead to no contradictions, but
this is not necessary.

In order to streamline the proof of Theorem 10, we summarize the essence
of Lemmas 25 and 28 into the following lemma, similar in spirit to Lemma 8:

Lemma 29. Consider four voters, say 1, 2, 3, 4, such that the formula graph con-
tains the edge (1, 2) — (1, 4) and that edge (2, 3) exists in the colorful graph and
has a different color than (1, 2). If edge (1, 3) is either not present in the colorful
graph, or it has a different color than (1, 2) and (2, 3), then edge (2, 3) — (4, 3)
is guaranteed to be in the formula graph. The scenario is illustrated in Fig. 12a
and Fig. 12b.

Proof. Since edge (2, 3) is in the colorful graph, an edge (2, 3) — (x, y) has to
exist in the formula graph. By construction of the formula graph, either x = 2
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or y = 3. If x = 2, then Lemma 25 gives the conclusion. If y = 3, then Lemma
28 gives the conclusion.

We are now ready to prove Theorem 10, as follows:

Theorem 10. Consider three voters, say 1, 2 and 3, such that edges (1, 2) and
(2, 3) exist in the colorful graph and have different colors, while edge (1, 3) does
not exist in the colorful graph. Then, there exists a set of voters S such that
2 ∈ S and 1, 3 /∈ S with the property that the connected components of (1, 2) and
(2, 3) in the formula graph are {1} × S and S × {3} respectively.

Proof. Consider an inclusion-maximal set S such that 2 ∈ S, 1, 3 /∈ S and the
subgraphs of the formula graph induced by {1} × S and S × {3} are connected.
Note that the connectivity assumption implies that in the colorful graph edges
in {1} × S have the color of (1, 2) and edges in S × {3} have the color of (2, 3).
Denote by C12 and C23 the connected components of (1, 2) and (2, 3) in the
formula graph. We will now show that C12 = {1}×S and C23 = S×{3}. Assume
for a contradiction that this was not the case, then, by symmetry, without loss
of generality, C12 6= {1} × S. Together with the above, this means that {1} ×
S ⊊ C12. Because C12 induces a connected subgraph in the formula graph, and
∅ 6= {1}×S ⊊ C12, it follows that there is an edge in the formula graph crossing
the cut ({1} × S,C12 \ ({1} × S)). This edge can be of one of two forms: either
(1, s) — (x, s) or (1, s) — (1, x), where s ∈ S and x /∈ {1, s}. We tackle the two
cases separately in the paragraphs below.

If the edge crossing the cut is of the form (1, s) — (x, s), then instantiate
Lemma 8 with 1 7→ 1, 2 7→ s, 3 7→ 3 and 4 7→ x. This is sound because the edge
(1, s) — (x, s) exists in the formula graph and (1, s), (s, 3) have different colors
in the colorful graph, together with the fact that (1, 3) does not appear in the
colorful graph. As a result, we get that edge (1, 3) — (x, 3) is in the formula
graph, contradicting the nonexistence of edge (1, 3) in the colorful graph.

On the other hand, if the edge crossing the cut is of the form (1, s) — (1, x),
then this time we instantiate Lemma 29, with values 1 7→ 1, 2 7→ s, 3 7→ 3 and
4 7→ x. This is sound because edge (1, s) — (1, x) is in the formula graph and
(1, s), (s, 3) have different colors in the colorful graph, together with the fact
that (1, 3) does not appear in the colorful graph. As a result, we get that edge
(s, 3) — (x, 3) appears in the formula graph. As a result, the subgraphs induced
by {1} × (S ∪ {x}) and (S ∪ {x}) × {3} in the formula graph are connected.
If we could also show that x /∈ (S ∪ {1, 3}) then we would get that our S was
not maximal with respect to inclusion, a contradiction. We now show this last
fact to conclude the proof: x = 1 was forbidden above; x = 3 would make our
cut edge be (1, s) — (1, 3), implying that (1, 3) appeared in the colorful graph,
a contradiction; finally x ∈ S would mean that (1, s) — (1, x) is not a cut edge.

C.6 Proof of Lemma 12

In this section, we prove Lemma 12, which we repeat below for convenience:
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Lemma 12 (Strengthened Lemma 8). Consider four voters, say 1, 2, 3, 4,
such that the formula graph contains the edge (1, 2) — (4, 2) and that edge
(2, 3) exists in the colorful graph. If the formula graph does not contain edges
(3, 2) — (1, 2) and (3, 2) — (4, 2), then the formula graph is guaranteed to con-
tain the edge (1, 3) — (4, 3).

The proof closely follows that of Lemma 8, except for requiring stronger
versions of Lemmas 25 and 26, which we state and prove next. The proofs re-
main similar in spirit, by identifying small matrices with blanks to be filled in,
like Fig. 7a. Unfortunately, the weaker assumptions make it rather challenging
to proceed as before in a principled manner. Instead, we employ a computer
program to try out all the possibilities.

Lemma 32 (Strengthened Lemma 25). Consider five voters, say 1, 2, 3, 4
and 5, such that the formula graph has edges (1, 2) — (1, 4) and (2, 3) — (2, 5),
and that, moreover, the formula graph does not contain edges (1, 2) — (3, 2)
or (1, 2) — (5, 2). Then, the formula graphs is guaranteed to contain the edge
(1, 3) — (1, 5).

Proof. Similarly to the proof of Lemma 25, we can assume that matrix P has
the form in Fig. 7a. However, this time our premises are weaker, so we did not
manage to write a direct “linear” argument. However, we tried out all 28 = 256
options for the tuple (x, y, z, t, u, v, p, q) with a computer and 68 of them did not
contradict our hypothesis, and for all of them the conclusion held. The relevant
code is included with the paper, and instructions for running it can be found in
Appendix C.7.

Lemma 33 (Strengthened Lemma 26). Consider five voters, say 1, 2, 3, 4
and 5, such that the formula graph has edges (1, 2) — (4, 2) and (2, 3) — (2, 5),
and that, moreover, the formula graph does not contain edges (1, 2) — (3, 2)
or (1, 2) — (5, 2). Then, the formula graphs is guaranteed to contain the edge
(1, 3) — (1, 5).

Proof. Similarly to the proof of Lemma 26, we can assume that matrix P has
the form in Fig. 9a. However, this time our premises are weaker, so we did not
manage to write a direct “linear” argument. However, we tried out all 28 = 256
options for the tuple (x, y, z, t, u, v, p, q) with a computer and 59 of them did not
contradict our hypothesis, and for all of them the conclusion held. The relevant
code is included with the paper, and instructions for running it can be found in
Appendix C.7.

C.7 Code for Proofs of Lemmas 32 and 33

Together with the paper, we include a C++ source file called exhaust_proof.cpp.
This file can be found at https://github.com/Andrei1998/rec-sc-from-approval/.

To compile the code, use the following command:

https://github.com/Andrei1998/rec-sc-from-approval/
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g++ -std=c++11 -O2 exhaust_proof.cpp -o exhaust_proof

To run the check required in the proof of Lemma 32, invoke the compiled program
as:

echo "1" | ./exhaust_proof

To run the check required in the proof of Lemma 33, invoke the compiled program
as:

echo "2" | ./exhaust_proof
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