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Abstract. We propose a novel randomized algorithm for computing a dominat-
ing set based clustering in wireless ad-hoc and sensor networks. The algorithm
works under a model which captures the characteristics of the set-up phase of
such multi-hop radio networks: asynchronous wake-up, the hidden terminal prob-
lem, and scarce knowledge about the topology of the network graph. When mod-
elling the network as a unit disk graph, the algorithm computes a dominating set
in polylogarithmic time and achieves a constant approximation ratio.

1 Introduction

Ad-hoc and sensor networks are formed by autonomous nodes communicating via ra-
dio, without any additional infrastructure. In other words, the communication infras-
tructure is provided by the nodes themselves. When being deployed, the nodes initially
form anunstructuredradio network, which means that no reliable and efficient com-
munication pattern has been established yet. Before any reasonable communication can
be carried out, the nodes must establish a media access control (MAC) scheme which
provides reliable point-to-point connections to higher-layer protocols and applications.
The problem of setting up an initial structure in radio networks is of great importance in
practice. Even in a single-hop ad-hoc network such as Bluetooth and for a small num-
ber of devices, the initialization tends to be slow. Clearly, in a multi-hop scenario with
many nodes, the time consumption for establishing a communication pattern increases
even further. In this paper, we address thisinitialization process.

One prominent approach to solving the problem of bringing structure into a multi-
hop radio network is aclustering, in which each node in the network is either a cluster-
head or has a cluster-head within its communication range (such that cluster-heads can
act as coordination points for the MAC scheme) [1, 4, 6]. When we model a multi-hop
radio network as a graphG = (V, E), this clustering can be formulated as a classic
graph theory problem: In a graph, adominating setis a subsetS ⊆ V of nodes such
that for every nodev, either a)v ∈ S or b) v′ ∈ S for a direct neighborv′ of v. As it
is desirable to compute a dominating set with fewdominators, we study theminimum
dominating set(MDS) problem which asks for a dominating set of minimum cardinal-
ity.

The computation of dominating sets for the purpose of structuring networks has
been studied extensively and a variety of algorithms have been proposed, e.g. [4, 7, 9,
10, 12]. To the best of our knowledge, all these algorithms operate on an existing MAC
layer, providing point-to-point connections between neighboring nodes. While this is



valid in structured networks, it is certainly an improper assumption for the initialization
phase. In fact, by assuming point-to-point connections, many vital problems arising in
unstructured networks (collision detection, asynchronous wake-up, or the hidden termi-
nal problem) are simply abstracted away. Consequently, none of the existing dominating
set algorithms helps in the initialization process of such networks.

We are interested in a simple and practical algorithm which quickly computes a
clustering fromscratch. Based on this initial clustering, the MAC layer can subse-
quently be established. An unstructured multi-hop radio network can be modelled as
follows:

– The network ismulti-hop, that is, there exist nodes that are not within their mutual
transmission range. Being multi-hop complicates things since some of the neigh-
bors of a sending node may receive a transmission, while others are experiencing
interference from other senders and do not receive the transmission.

– The nodes do not feature a reliablecollision detectionmechanism [2, 5, 8]. In many
scenarios not assuming any collision detection mechanism is realistic. Nodes may
be tiny sensors in a sensor network where equipment is restricted to the minimum
due to limitations in energy consumption, weight, or cost. The absence of colli-
sion detection includes sending nodes, i.e., the sender does not know whether its
transmission was received successfully or whether it caused a collision.

– Our model allows nodes to wake-upasynchronously. In a multi-hop environment, it
is realistic to assume that some nodes wake up (e.g. become deployed, or switched
on) later than others. Consequently, nodes do not have access to a global clock.
Asynchronous wake-up rules out an ALOHA-like MAC schemes as this would
result in a linear runtime in case only one single node wakes up for a long time.

– Nodes have only limited knowledge about the total number of nodes in the network
and no knowledge about the nodes’ distribution or wake-up pattern.

In this paper, we present a randomized algorithm which computes an asymptotically
optimal clustering for this harsh model in polylogarithmic time only. Section 2 gives an
overview over relevant previous work. Section 3 introduces our model as well as some
well-known facts. The algorithm is developed and analyzed in Sections 4 and 5.

2 Related Work

The problem of finding a minimum dominating set was proven to be NP-hard. Fur-
thermore, it has been shown in [3] that the best possible approximation ratio for this
problem isln ∆ where∆ is the highest degree in the graph, unless NP has deterministic
nO(log log n)-time algorithms. For unit disk graphs, the problem remains NP-hard, but
constant factor approximations are possible. Several distributed algorithms have been
proposed, both for general graphs [7, 9, 10] and the Unit Disk Graph [4, 12]. All the
above algorithms assume point-to-point connections between neighboring nodes and
are thus unsuitable in the context of initializing radio networks.

A model similar to the one used in this paper has previously been studied in the
context of analyzing the complexity of broadcasting in multi-hop radio networks, e.g.
[2]. A striking difference to our model is that throughout the literature on broadcast



in radio networks,synchronous wake-upis considered, i.e. all nodes have access to a
global clock and start the algorithm simultaneously. A model featuring asynchronous
wake-up has been studied in recent papers on thewake-up problemin single-hop net-
works [5, 8]. In comparison to our model, these papers define a muchweaker notion
of asynchrony. Particularly, it is assumed that sleeping nodes arewoken upby a suc-
cessfully transmitted message. In a single-hop network, the problem of waking up all
nodes thus reduces to analyzing the number of time-slots until one message is success-
fully transmitted. While this definition of asynchrony leads to theoretically interesting
problems and algorithms, it does not closely reflect reality.

3 Model

We model themulti-hopradio network with the well knownUnit Disk Graph(UDG).
In a UDGG = (V,E), there is an edge{u, v} ∈ E iff the Euclidean distance between
u andv is at most 1. Nodes may wake upasynchronouslyat any time. We call a node
sleepingbefore its wake-up, andactivethereafter. Sleeping nodes can neither send nor
receive any messages, regardless of their being within the transmission range of a send-
ing node. Nodes do not have any a-priori knowledge about the topology of the network.
They only have an upper boundn̂ on the number of nodesn = |V | in the graph. Whilen
is unknown, all nodes have the same estimaten̂. As shown in [8], without any estimate
of n and in absence of a global clock, every algorithm requires at least timeΩ(n/ log n)
until one single message can be transmitted without collision.

While our algorithm does not rely on synchronized time-slots in any way, we do
assume time to be divided into time-slots in the analysis section. This simplification is
justified due to the trick used in the analysis of slotted vs. unslotted ALOHA [11], i.e., a
single packet can cause interference in no more than two consecutive time-slots. Thus,
an analysis in an “ideal” setting with synchronized time-slots yields a result which is
only by a constant factor better as compared to the more realistic unslotted setting.

We assume that nodes have three independent communication channelsΓ1, Γ2, and
Γ3 which may be realized with an FDMA scheme. In each time-slot, a node can either
send or not send. Nodes do not have acollision detection mechanism, that is, nodes are
unable to distinguish between the situation in which two or more neighbors are sending
and the situation in which no neighbor is sending. A node receives a message on channel
Γ in a time-slot only ifexactly one neighborhas sent a message in this time-slot onΓ . A
sending node does not know how many (if any at all!) neighbors have correctly received
its transmission. The variablespk andqk denote the probabilities that nodek sends a
message in a given time-slot onΓ1 andΓ2, respectively. Unless otherwise stated, we
use the termsum of sending probabilitiesto refer to the sum of sending probabilities on
Γ1. We conclude this section with two facts. The first was proven in [8] and the second
can be found in standard mathematical textbooks.

Fact 1 Given a set of probabilitiesp1 . . . pn with ∀i : pi ∈ [0, 1
2 ], the following in-

equalities hold:(1/4)
∑n

k=1 pk ≤ ∏n
k=1 (1− pk) ≤ (1/e)

∑n
k=1 pk .

Fact 2 For all n, t, with n ≥ 1 and|t| ≤ n, et
(
1− t2/n

) ≤ (1 + t/n)n ≤ et.



Algorithm 1 Dominator Algorithm

decided := dominator := false;
upon wake-up do:
1: for j := 1 to δ · dlog n̂e by 1 do
2: if message received in current time-slotthen decided := true;fi
3: end for
4: for j := dlog n̂e to 0 by−1 do
5: p := 1/

(
2j+β

)
;

6: for i := 1 to δ by 1 do
7: b

(1)
i := 0; b

(2)
i := 0; b

(3)
i := 0;

8: if not decided then
9: b

(1)
i := 1 , with probabilityp;

10: if b
(1)
i = 1 then dominator := true;

11: else if message received in current time-slotthen decided := true;
12: fi
13: end if
14: if dominator then
15: b

(2)
i := 1 , with probabilityq; b

(3)
i := 1 , with probabilityq/ log n̂;

16: end if
17: if b

(1)
i = 1 then send message onΓ1 fi

18: if b
(2)
i = 1 then send message onΓ2 fi

19: if b
(3)
i = 1 then send message onΓ3 fi

20: end for
21: end for
22: if not decided then dominator := decided := true;fi
23: if dominator then
24: loop
25: send message onΓ2 andΓ3, with probabilityq andq/ log n̂, respectively;
26: end loop
27: end if

4 Algorithm

A node starts executing the dominator algorithm (Algorithm 1) upon waking up. In
the first phase (lines 1 to 3), nodes wait for messages (on all channels) without sending
themselves. The reason is that nodes waking up late should not interfere with already
existing dominators. Thus, a node first listens for existing dominators in its neighbor-
hood before actively trying to become dominator itself.

The main part of the algorithm (starting in line 4) works in rounds, each of which
containsδ time-slots. In every time-slot, a node sends with probabilityp on channel
Γ1. Starting from a very small value, this sending probabilityp is doubled (lines 4
and 5) in every round. When sending its first message, a node becomes a dominator
and, in addition to its sending on channelΓ1, it starts sending on channelsΓ2 andΓ3

with probabilityq andq/ log n, respectively. Once a node becomes a dominator, it will
remain so for the rest of the algorithm’s execution. For the algorithm to work properly,
we must prevent the sum of sending probabilities on channelΓ1 from reaching too



high values. Otherwise, too many collisions will occur, leading to a large number of
dominators. Hence, upon receiving its first message (without collision) on any channel,
a node becomesdecidedand stops sending onΓ1. Being decided means that the node
is covered by a dominator and consequently, the node stops sending onΓ1.

Thus, the basic intuition is that nodes, after some initial listening period, compete to
become dominator by exponentially increasing their sending probability onΓ1. Chan-
nelsΓ2 andΓ3 then ensure that the number of further dominators emerging in the neigh-
borhood of an already existing dominator is bounded.

The parametersq, β, andδ of the algorithm are chosen as to optimize the results
and guarantee that all claims hold with high probability. In particular, we defineq :=
(2β · dlog n̂e)−1, δ := dlog(n̂)/ log(503/502)e, andβ := 6. The parameterδ is chosen
large enough to ensure that with high probability, there is a round in which at least one
competing node will send without collision. The parameterq is chosen such that during
the “waiting time-slots”, a new node will receive a message from an existing dominator.
Finally, β maximizes the probability of a successful execution of the algorithm. The
algorithm’s correctness and time-complexity (defined as the number of time-slots of a
node between wake-up and decision) follow immediately:

Theorem 1. The algorithm computes a correct dominating set. Moreover, every node
decides whether or not to become dominator in timeO

(
log2n̂

)
.

Proof. The first for-loop is executed δ · dlog n̂e times. The two nested loops of
the algorithm are executed dlog n̂e+1 and δ times, respectively. After these two
loops, all remaining undecided nodes decide to become dominator.

5 Analysis

In this section, we show that the expected number of dominators in the network is within
O(1) of an optimal solution. As argued in Section 3, we can simplify the analysis by
assuming all nodes operate in synchronized time-slots.

Ci

R

r

Di

Fig. 1. CirclesCi andDi

We cover the plane with circlesCi

of radiusr = 1/2 by a hexagonal lattice
shown in Figure 1. LetDi be the circle
centered at the center ofCi having ra-
diusR = 3/2. It can be seen in Figure 1
thatDi is (fully or partially) covering 19
smaller circlesCj . Note that every node
in a circle Ci can hear all other nodes
in Ci. Nodes outsideDi are not able to
cause a collision inCi.

The proof works as follows. We first
bound the sum of sending probabilities in a circleCi. This leads to an upper bound
on the number of collisions in a circle before at least one dominator emerges. Next,
we give a probabilistic bound on the number of sending nodes per collision. In the last
step, we show that nodes waking up being already covered do not become dominator.



All these claims hold with high probability. Note that for the analysis, it is sufficient to
assumên = n, because solving minimum dominating set forn′ < n cannot be more
difficult than forn. If it were, the imaginary adversary controlling the wake-ups of all
nodes could simply decide to letn−n′ sleep infinitely long, which is indistinguishable
from havingn′ nodes.

Definition 1. Consider a circleCi. Let t be a time-slot in which a message is sent by
a nodev ∈ Ci on Γ1 and received (without collision) by all other nodes inCi. We say
that circleCi clearsitself in time-slott. Lett0 be the first such time-slot. We say thatCi

terminatesitself in time-slott0. For all time-slotst′ ≥ t0, we callCi terminated.

Definition 2. Lets(t) :=
∑

k∈Ci
pk be the sum of sending probabilities onΓ1 in Ci at

timet. We define the time slottji so that for thejth time inCi, we haves(tji − 1) < 1
2β

ands(tji ) ≥ 1
2β . We further define the IntervalIj

i := [tji . . . tji + δ − 1].

In other words,t0i is the time-slot in which the sum of sending probabilities inCi

exceeds1
2β for the first time andtji is the time-slot in which this threshold is surpassed

for thejth time inCi.

Lemma 1. For all time-slotst′ ∈ Ij
i , the sum of sending probabilities inCi is bounded

by
∑

k∈Ci
pk ≤ 3/2β .

Proof. According to the definition of tji , the sum of sending probabilities
∑

k∈Ci
pk

at time tji − 1 is less than 1
2β . All nodes which are active at time tji will double

their sending probability pk exactly once in the following δ time-slots. Previ-
ously inactive nodes may wake up during that interval. There are at most n
of such newly active nodes and each of them will send with the initial sending
probability 1

2β n̂
in the given interval. In Ij

i , we get

∑

k∈Ci

pk ≤ 2 · 1
2β

+
∑

k∈Ci

1
2βn̂

≤ 2 · 1
2β

+
n

2βn̂
≤ 3

2β
.

Using the above lemma, we can formulate a probabilistic bound on the sum of sending
probabilities in a circleCi. Intuitively, we show that before the bound can be surpassed,
Ci does either clear itself or some nodes inCi become decided such that the sum of
sending probabilities decreases.

Lemma 2. The sum of sending probabilities of nodes in a circleCi is bounded by∑
k∈Ci

pk ≤ 3/2β with probability at least1− o
(

1
n2

)
. The bound holds for allCi in

G with probability at least1− o
(

1
n

)
.

Proof. The proof is by induction over all intervals Ij
i and the corresponding time-

slots tji in ascending order. Lemma 1 states that the sum of sending probabilities
in Ci is bounded by 3

2β in each interval Ij
i . In the sequel, we show that in Ij

i ,
the circle Ci either clears itself or the sum of sending probabilities falls back
below 1

2β with high probability. Note that for all time-slots t not covered by any



interval Ij
i , the sum of sending probabilities is below 1

2β . Hence, the induction
over all intervals is sufficient to prove the claim.

Let t′ := t0i be the very first critical time-slot in the network and let I ′
the corresponding interval. If some of the active nodes in Ci receive a message
from a neighboring node, the sum of sending probabilities may fall back below
1
2β . In this case, the sum does obviously not exceed 3

2β . If the sum of sending
probabilities does not fall back below 1

2β , the following two inequalities hold for
the duration of the interval I ′:

1
2β

≤
∑

k∈Ci

pk ≤ 3
2β

: in Ci (1)

0 ≤
∑

k∈Cj

pk ≤ 3
2β

: in Cj ∈ Di, i 6= j. (2)

The second inequality holds because t′ is the very first time-slot in which the
sum of sending probabilities exceeds 1

2β . Hence, in each Cj ∈ Di, the sum of
sending probabilities is at most 3

2β in I ′. (Otherwise, one of these circles would
have reached 1

2β before circle Ci and t′ is not the first time-slot considered).
We will now compute the probability that Ci clears itself within I ′. Circle

Ci clears itself when exactly one node in Ci sends and no other node in Di \Ci

sends. The probability P0 that no node in any neighboring circle Cj ∈ Di, j 6= i
sends is

P0 =
∏

Cj∈Di

j 6=i

∏

k∈Cj

(1− pk) ≥
Fact 1

∏

Cj∈Di

j 6=i

(
1
4

)∑
k∈Cj

pk

≥
Lemma 1

∏

Cj∈Di

j 6=i

(
1
4

) 3
2β

≥
[(

1
4

) 3
2β

]18

. (3)

Let Psuc be the probability that exactly one node in Ci sends:

Psuc =
∑

k∈Ci


pk ·

∏

l∈Ci
l 6=k

(1− pl)


 ≥

∑

k∈Ci

pk ·
∏

l∈Ci

(1− pl)

≥
Fact 1

∑

k∈Ci

pk ·
(

1
4

)∑
k∈Ci

pk

≥ 1
2β
·
(

1
4

) 1
2β

.

The last inequality holds because the previous function is increasing in [ 1
2β , 3

2β ].
The probability Pc that exactly one node in Ci and no other node in Di sends

is therefore given by

Pc = P0 · Psuc ≥
[(

1
4

) 3
2β

]18

· 1
2β

(
1
4

) 1
2β

=
β=6

29/32

256
.



Pc is a lower bound for the probability that Ci clears itself in a time-slot t ∈ I ′.
The reason for choosing β = 6 is that this value maximizes Pc. The probability
Pterm that circle Ci does not clear itself during the entire interval is Pterm ≤
(1 − 29/32/256)δ ≤ n−2.3 ∈ o

(
n−2

)
. We have thus shown that within I ′, the

sum of sending probabilities in Ci either falls back below 1
2β or Ci clears itself.

For the induction step, we consider an arbitrary tji . Due to the induction
hypothesis, we can assume that all previous such time-slots have already been
dealt with. In other words, all previously considered time-slots tj

′

i′ have either lead
to a clearance of circle Ci′ or the sum of probabilities in Ci′ has decreased below
the threshold 1

2β . Immediately after a clearance, the sum of sending probabilities
in a circle Ci is at most 1

2β , which is the sending probability in the last round of
the algorithm. This is true because only one node in the circle remains undecided.
All others will stop sending on channel Γ1. By Lemma 1, the sum of sending
probabilities in all neighboring circles (both the cleared and the not cleared ones)
is bounded by 3

2β in Ij
i (otherwise, this circle would have been considered before

tji ). Therefore, we know that the bounds (1) and (2) hold with high probability
and the computation for the induction step is the same as for the base case t′.

Because there are n nodes to be decided and at most n circles Ci, the number
of induction steps tji is at most n. Hence, the probability that the claim holds
for all steps is at least

(
1− o

(
1

n2

))n ≥ 1− o
(

1
n

)
.

Using Lemma 2, we can now compute the expected number of dominators in each
circleCi. In the analysis, we will separately compute the number of dominatorsbefore
andafter the termination (i.e., the first clearance) ofCi.

Lemma 3. Let C be the number of collisions (more than one node is sending in one
time-slot onΓ1) in a circle Ci. The expected number of collisions inCi before its ter-
mination isE [C] < 6 andC < 7 log n with probability at least1− o

(
n−2

)
.

Proof. Only channel Γ1 is considered in this proof. We assume that Ci is not yet
terminated and we define the following events

A : Exactly one node in Di is sending
X : More than one node in Ci is sending
Y : At least one node in Ci is sending
Z : Some node in Di \ Ci is sending

For the proof, we consider only rounds in which at least one node in Ci sends.
(No new dominators emerge in Ci if no node sends). We want to bound the
conditional probability P [A | Y ] that exactly one node v ∈ Ci in Di is sending.
Using P [Y | X] = 1 and the fact that Y and Z are independent, we get

P [A | Y ] = P
[
X | Y ] · P [

Z | Y ]
= (1− P [X | Y ]) (1− P [Z])

=
(

1− P [X] P [Y | X]
P [Y ]

)
(1− P [Z]) =

(
1− P [X]

P [Y ]

)
(1− P [Z]) . (4)



We can now compute bounds for the probabilities P [X], P [Y ], and P [Z]:

P [X] = 1−
∏

k∈Ci

(1− pk)−
∑

k∈Ci


pk

∏

l∈Ci
l 6=k

(1− pl)




≤ 1−
(

1
4

)∑
k∈Ci

pk

−
∑

k∈Ci

pk ·
(

1
4

)∑
k∈Ci

pk

= 1−
(

1 +
∑

k∈Ci

pk

)(
1
4

)∑
k∈Ci

pk

The first inequality for P [X] follows from Fact 1 and inequality (4). Using Fact
1, we can bound P [Y ] as P [Y ] = 1−∏

k∈Ci
(1− pk) ≥ 1− (1/e)

∑
k∈Ci

pk . In the
proof for Lemma 2, we have already computed a bound for P0, the probability
that no node in Di \ Ci sends. Using this result, we can write P [Z] as

P [Z] = 1−
∏

Cj∈Di\Ci

∏

k∈Cj

(1− pk) ≤
Eq. (3)

1−
[(

1
4

) 3
2β

]18

.

Plugging all inequalities into equation (4), we obtain the desired function for
P [A | Y ]. It can be shown that the term P [X] /P [Y ] is maximized for

∑
k∈Ci

pk =
3
2β and thus, P [A | Y ] = (1− P [X] /P [Y ]) · (1− P [Z]) ≥ 0.18.

This shows that whenever a node in Ci sends, Ci terminates with constant
probability at least P [A | Y ]. This allows us to compute the expected number of
collisions in Ci before the termination of Ci as a geometric distribution, E [C] =
P [A | Y ]−1 ≤ 6. The high probability result can be derived as P [C ≥ 7 log n] =
(1− P [A | Y ])7 log n ∈ O

(
n−2

)
.

So far, we have shown that the number of collisions before the clearance ofCi is con-
stant in expectation. The next lemma shows that the number ofnew dominators per
collision is also constant. In a collision, each of the sending nodes may already be dom-
inator. Hence, if we assume that every sending node in a collision is a new dominator,
we obtain an upper bound for the true number of new dominators.

Lemma 4. LetD be the number of nodes inCi sending in a time-slot and letΦ denote
the event of a collision. Given a collision, the expected number of sending nodes is
E [D | Φ] ∈ O(1). Furthermore,P [D < log n | Φ] ≥ 1− o

(
1

n2

)
.

Proof. Let m, m ≤ n, be the number of nodes in Ci and N = {1 . . . m}. D is a
random variable denoting the number of sending nodes in Ci in a given time-
slot. We define Ak := P [D = k] as the probability that exactly k nodes send.
Let

(
N
k

)
be the set of all k -subsets of N (subsets of N having exactly k elements).



Defining A′k as A′k :=
∑

Q∈(N
k)

∏
i∈Q

pi

1−pi
we can write Ak as

Ak =
∑

Q∈(N
k)


∏

i∈Q

pi ·
∏

i/∈Q

(1− pi)




=




∑

Q∈(N
k)

∏

i∈Q

pi

1− pi


 ·

m∏

i=1

(1− pi) = A′k ·
m∏

i=1

(1− pi). (5)

Fact 3 The following recursive inequality holds between two subsequent A′k:

A′k ≤ 1
k

m∑

i=1

pi

1− pi
·A′k−1 , A′0 = 1.

Proof. The probability A0 that no node sends is
∏m

i=1 (1− pi) and therefore
A′0 = 1, which follows directly from equation (5). For general A′k, we have to
group the terms

∏
i∈Q

pi

1−pi
in such a way that we can factor out A′k−1:

A′k =
∑

Q∈(N
k)

∏

j∈Q

pj

1− pj
=

1
k

m∑

i=1


 pi

1− pi
·

∑

Q∈(N\{i}
k−1 )

∏

j∈Q

pj

1− pj




≤ 1
k

m∑

i=1


 pi

1− pi
·

∑

Q∈( N
k−1)

∏

j∈Q

pj

1− pj




=
1
k

m∑

i=1

pi

1− pi
·




∑

Q∈( N
k−1)

∏

j∈Q

pj

1− pj


 =

1
k

m∑

i=1

pi

1− pi
·A′k−1.

We now continue the proof of Lemma 4. The conditional expected value
E [D | Φ] is E [D | Φ] =

∑m
i=0 (i · P [D = i | Φ]) =

∑m
i=2 Bi where Bi is defined as

i ·P [D = i | Φ]. For i ≥ 2, the conditional probability reduces to P [D = i | Φ] =
P [D = i] /P [Φ]. In the next step, we consider the ratio between two consecutive
terms of

∑m
i=2 Bi.

Bk−1

Bk
=

(k − 1) · P [D = k − 1 | Φ]
k · P [D = k | Φ]

=
(k − 1) · P [D = k − 1]

k · P [D = k]

=
(k − 1) ·Ak−1

k ·Ak
=

(k − 1) ·A′k−1

k ·A′k
.

It follows from Fact 3, that each term Bk can be upper bounded by

Bk =
kA′k

(k − 1)A′k−1

·Bk−1 ≤
Fact 3

k
(

1
k

∑m
i=1

pi

1−pi
·A′k−1

)

(k − 1)A′k−1

·Bk−1

=
1

k − 1

m∑

i=1

pi

1− pi
·Bk−1 ≤ 2

k − 1

m∑

i=1

pi ·Bk−1.



The last inequality follows from ∀i : pi < 1/2 and pi ≤ 1/2 ⇒ pi

1−pi
≤ 2pi.

From the definition of Bk, it naturally follows that B2 ≤ 2. Furthermore, we
can bound the sum of sending probabilities

∑m
i=1 pi using Lemma 2 to be less

than 3
2β . We can thus sum up over all Bi recursively in order to obtain E [D | Φ]:

E [D | Φ] =
m∑

i=2

Bi ≤ 2 +
m∑

i=3

[
2

(i− 1)!

(
6
2β

)i−2
]
≤ 2.11.

For the high probability result, we solve the recursion of Fact 3 and obtain

A′k ≤ 1
k!

(∑m
i=1

pi

1−pi

)k

. The probability P+ := P [D ≥ log n | Φ] is

P+ =
m∑

k=dlog me
Ak ≤

m∑

k=dlog me
A′k ≤

m∑

k=dlog me


 1

k!
·
(

m∑

i=1

pi

1− pi

)k



≤
m∑

k=dlog me


 1

k!
·
(

2 ·
m∑

i=1

pi

)k

 ≤

Lm. 2
(m− dlog me) · (2 ·∑m

i=1 pi)
dlog me

dlog me!

≤ m ·
(

2 ·
m∑

i=1

pi

)dlog me

≤ m ·
(

6
2β

)dlog me
∈ O

(
1

m2

)
.

The last key lemma shows that the expected number of new dominatorsafter the
termination of circleCi is also constant.

Lemma 5. Let A be the number of new dominators after the termination ofCi. Then,
A ∈ O(1) with high probability.

Proof. We define B and Bi as the set of dominators in Di and Ci, respectively.
Immediately after the termination of Ci, only one node in Ci remains sending
on channel Γ1, because all others will be decided. Because C and D | Φ are
independent variables, it follows from Lemmas 3 and 4 that |Bi| ≤ τ ′ log2n
for a small constant τ ′. Potentially, all Cj ∈ Di are already terminated and
therefore, 1 ≤ |B| ≤ 19 · τ log2n for τ := 19 · τ ′. We distinguish the two cases
1 ≤ |B| ≤ τ log n and τ log n < |B| ≤ τ log2n and consider channels Γ2 and Γ3 in
the first and second case, respectively. We show that in either case, a new node
will receive a message on one of the two channels with high probability during
the algorithm’s waiting period.

First, consider case one, i.e. 1 ≤ |B| ≤ τ log n. The probability P0 that one
dominator is sending alone on channel Γ2 is P0 = |B| · q · (1− q)|B|−1. This is a
concave function in |B|. For |B| = 1, we get P0 = q = (2β · dlog ne)−1 and for
|B| = τ log n, n ≥ 2, we have

P0 =
τ log n

2βdlog ne ·
(

1− 1
2βdlog ne

)τ log n−1

≥ τ

2β
·
(

1− τ/2β

τ log n

)τ log n

≥
Fact 2

τ

2β
e−

τ

2β

(
1− (τ/2β)2

τ log n

)
≥

(n≥2)

τ

2β
e−

τ

2β

(
1− τ

22β

)
∈ O(1) .



A newly awakened node in a terminated circle Ci will not send during the first
δ · dlog n̂e rounds. If during this period, the node receives a message from an
existing dominator, it will become decided and hence, will not become dominator.
The probability that such an already covered node does not receive any messages
from an existing dominator is bounded by Pno ≤ (1− (2β · dlog ne)−1)δ·dlog ne ≤
e−δ/2β ∈ O

(
n−7

)
. Hence, with high probability, the number of new dominators

is bounded by a constant in this case. The analysis for the second case follows
along the same lines (using Γ3 instead of Γ2) and is omitted.

Finally, we formulate and prove the main theorem.

Theorem 2. The algorithm computes a correct dominating set in timeO
(
log2n̂

)
and

achieves an approximation ratio ofO(1) in expectation.

Proof. Correctness and running time follow from Theorem 1. For the approx-
imation ratio, consider a circle Ci. The expected number of dominators in Ci

before the termination of Ci is E [D] = E [C] ·E [D | Φ] ∈ O(1) by Lemmas 3 and
4. By Lemma 5, the number of dominators emerging after the termination of Ci

is also constant. The Theorem follows from the fact that the optimal solution
must choose at least one dominator in Di.
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