
Deterministic Multi-Channel Information Exchange

Stephan Holzer
Distributed Computing Group

ETH Zurich, Switzerland
stholzer@ethz.ch

Thomas Locher
ABB Corporate Research

Baden-Dättwil, Switzerland
thomas.locher@ch.abb.com

Yvonne-Anne Pignolet
ABB Corporate Research

Baden-Dättwil, Switzerland
yvonne-anne.pignolet@ch.abb.com

Roger Wattenhofer
Distributed Computing Group

ETH Zurich, Switzerland
wattenhofer@ethz.ch

ABSTRACT
In this paper, we study the information exchange problem
on a set of multiple access channels: k arbitrary nodes have
information they want to distribute to the entire network
via a shared medium partitioned into channels. We present
algorithms and lower bounds on the time and channel com-
plexity for disseminating these k information items in a
single-hop network of n nodes. More precisely, we devise
a deterministic algorithm running in asymptotically opti-
mal time O(k) using O(nlog(k)/k) channels if k ≤ 1

6
logn

and O(log1+ρ(n/k)) channels otherwise, where ρ > 0 is
an arbitrarily small constant. In addition, we show that
Ω(nΩ(1/k) + logk n) channels are necessary to achieve this
time complexity.

Categories and Subject Descriptors
F.2.3. [Theory of Computation]: Analysis of Algo-
rithms and Problem Complexity—Tradeoffs among Com-
plexity Measures

General Terms
Algorithms, Theory

Keywords
Information Dissemination, Wireless Networks, Single-Hop,
Multi-Channel, No Collision Detection.

1. INTRODUCTION
A fundamental problem of many communication systems

that rely on a shared communication medium, e.g., wireless
and bus networks, is (co-channel) interference, which oc-
curs when more than one network entity tries to transmit a
message over the same communication channel at the same
time. Such simultaneous (or interleaved) transmissions of
two or more messages over the same channel are commonly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

referred to as collisions. Typically, a collision distorts all
transmitted messages significantly, which entails that none
of the messages can be decoded successfully at the receivers.
Hence, there is a need for mechanisms scheduling the mes-
sage transmissions appropriately in order to enable an effi-
cient exchange of messages over the communication medium.
There are various techniques to address or simplify this ba-
sic scheduling problem: By introducing a notion of time,
the network entities can transmit in synchronized time slots,
which reduces the potential for collisions. Another common
trick is to use randomization, as in, e.g., the Aloha proto-
col. If the network entities further have the ability to detect
collisions, which allows the entities to learn that other enti-
ties strive to transmit as well, back-off mechanisms can be
applied to ensure an eventual transmission of all messages.

Moreover, in various communication systems several non-
conflicting communication channels are available, which can
be leveraged to disseminate information. While there is a
lot of work on scheduling message transmissions for vari-
ous models of communication channels, surprisingly little
is known about the benefits and limits of using multiple
channels for the purpose of information dissemination. This
is the focus of this paper, which addresses the question of
how many communication channels are required in order to
solve an information exchange problem as quickly as pos-
sible. More generally, we study the power of having addi-
tional channels at one’s disposal when trying to disseminate
information. We believe that this is an important missing
piece in the study of communication over shared channels.
Before giving a more formal definition of the considered in-
formation exchange problem, we present the communication
model used throughout this paper.

1.1 Model
In this paper, we consider a simple network topology, the

complete (single-hop) communication network in which ev-
ery node can communicate with every other node. There
are n nodes in total, each with a given, unique identifier
in the range [n] := {1, . . . , n} (when using an initialization
algorithm that assigns identifiers to nodes, e.g., [17, 18],
this assumption can be dropped). We assume that multi-
ple channels are available for communication and that local
computations require zero time (since we focus on commu-
nication complexity). Additionally, we make the simplifying
assumption that time is divided into synchronized time slots,
i.e., we study slotted protocols: In any time slot, each node
v may choose a channel i and perform exactly one of two
operations, send, which means that v broadcasts a message

on channel i or receive, in which case v listens on channel
i.1 A transmission is successful if and only if exactly one
node transmits its message on a given channel in a specific
time slot. A node listening on a particular channel i only
receives a message in a given time slot if there is a success-
ful transmission on this channel. Messages are of bounded
size, i.e., we assume that each message can only contain one
information item (e.g., a node identifier). We further as-
sume that there is no collision detection, i.e., if a node v
does not receive a message when listening on a channel i,
node v cannot determine whether there was a collision or no
message was sent. This is a reasonable assumption as, e.g.,
simple wireless devices often do not have a reliable collision
detection mechanism. Moreover, solutions in this model can
be applied in settings with collision detection but not vice
versa. We study the following problem in this communica-
tion model without collision detection.

Definition 1. (Information Exchange Problem.) There is
an arbitrary subset of k ≤ n nodes (called reporter nodes
or simply reporters) where each of the k nodes is given a
distinct piece of information. This subset is determined by
an adversary before the first time slot. The objective is to
disseminate these k information items to every node in the
network. The subset of reporters is not known initially. The
number n of nodes and the number k of reporters may or
may not be known.

This problem lies between two fundamental information
dissemination problems: broadcasting (one-to-all communi-
cation) and gossiping (total information exchange). In other
words, we generalize the Information Exchange Problem [12]
(also known as k-Selection [15] and Many-to-All Communi-
cation [8]) for networks with several communication chan-
nels. In order to measure the quality of a solution to the
Information Exchange Problem, we must define adequate
complexity measures. Clearly, it takes a certain number of
time slots to distribute all information items. As mentioned
before, the goal is to disseminate all information items as
quickly as possible. Therefore, the primary objective pur-
sued in this paper is to find an algorithm A with an optimal
time complexity, which is defined as the maximum number of
synchronous time slots that A requires to disseminate all k
items for a worst-case selection of reporters. Since only one
information item can be transmitted in any message, i.e.,
items cannot be bundled, and each node can only listen on
one channel per time slot, it follows that the time complex-
ity of any algorithm is at least Ω(k). The key question thus
becomes how many channels does an algorithm for the In-
formation Exchange Problem require in order to achieve an
asymptotically optimal time complexity of Θ(k)? Chlebus
and Kowalski [7] prove that it is not possible to disseminate
all information items in time O(k) with only one communi-
cation channel by giving a lower bound of Ω(k + logn). If
more channels are available, the lower bound Ω(k) can be
matched using randomized algorithms [14]. However, these
algorithms need a large number of channels and there is a
(small) probability that these algorithms fail.

1.2 Contributions
In this paper, we propose deterministic algorithms for the

Information Exchange Problem when n and k are known. In
particular, we introduce two algorithms both exhibiting an

1Naturally, a node may also choose not to perform any op-
eration in a given time slot.

asymptotically optimal time complexity of Θ(k), which are
appropriate for different values of k, and give bounds on the
number of channels that each algorithm requires for a given
interval of k. The first algorithm, called Algorithm AS , is
useful for small values of k, that is for k ≤ 1

6
logn,2 and

requires O(nlog(k)/k) channels. For larger values of k we
apply Algorithm AL using O(log1+ρ(n)) channels for some
constant ρ > 0 when k ∈ (1

6
logn, log(n) · log log(n)) and

O(log(n/k)) channels for larger k up to n − 2dlogne. Note
that for k > n − 2dlogne we can simply iterate over all
nodes to find the reporters in time O(k) = O(n), therefore
we ignore this case in the remainder of this paper.

We complement these results with a lower bound on the
number of channels that any deterministic algorithm needs
in order to achieve an optimal time complexity: Any de-
terministic algorithm with a time complexity of O(k) must

use at least Ω(nΩ(1/k) + logk n) channels (Theorem 5). The
following table summarizes these results.

Range of k
[
1, 1

6
logn

] (
1
6

logn, log(n) log logn
)

Algorithm AS (Thm. 3) AL (Thm. 4)

Channels O
(
nlog(k)/k

)
O
(
log1+ρ(n)

)
Lower Bound Ω

(
nΩ(1/k)

)
Ω (log(n)/ log log(n))

R. [log(n) · log log(n), n− 2dlogne) [n− 2dlogne, n]

A. AL (Thm. 4) Text above
C. O(log(n/k)) 1
L. Ω(logk n) 1

We derive the lower bound on the number of channels by
first proving a lower bound on the time complexity when
the (maximum) number of channels c is given. The lower
bounds for a given number c of channels are of interest since
in reality the number of available channels is often limited
to a number c and does not grow with n or k. If c chan-
nels are available, the lower bound on the time complexity
of deterministic algorithms is Ω(logc(n/k) + k) (see proof of
Theorem 5 combined with Ω(k)). This lower bound holds
even in a less restrictive model where nodes can detect col-
lisions and listen on all channels simultaneously. In light of
this, it is surprising that the proposed algorithms are almost
able to match the given lower bounds for certain values of k
and n.

1.3 Related Work
Several papers study the information exchange problem

for single-channel and multi-channel networks without col-
lision detection. Kowalski [15] proves the existence of an
oblivious deterministic algorithm without collision detection
that distributes k information items on a single channel in
time O(k log(n/k)) based on selectors as well as a matching
lower bound. Moreover, he presents an explicit polynomial-
time construction with time complexity O(k polylogn) to
solve this problem deterministically. Later these results have
been improved and extended by Chlebus et al. [7] to multi-
hop networks and the authors provide bounds for centralized
and distributed algorithms. In contrast to our assumptions,
they assume that all k information items fit into one mes-
sage. When restricted to single hop networks, they present

2Note that the base of the logarithm is 2 throughout the
paper.

a randomized algorithm for one channel that disseminates
all information items in time O(log(k) · (log2 n+ k)) whpk,
i.e., with probability at least 1 − 1/kλ, where λ ≥ 1 is a
parameter in the algorithm or in the analysis.

Kushilevitz and Mansour [16] proved a lower bound of
Ω(k+logn) on the expected time of randomized algorithms.
The average time complexity in directed networks is ad-
dressed by Chlebus et al. [8] who present an upper and a
lower bound of O(min{k log(n/k), n logn}) and Ω(k/ logn+
logn), respectively. Moreover, they devised a protocol for
the case when information items have to be delivered sepa-
rately as in our model within time O(k log(n/k) · logn) and
a lower bound of Ω(k logn).

Recently, Fernandez et al. [1] presented a randomized al-
gorithm for single-channel, single-hop networks that works
without information on the number of contenders and of
the size of the network in time O(k) whpk. The authors of
[14] showed that better bounds can be achieved by exploit-
ing the availability of multiple channels: the dissemination
problem can be solved with an asymptotically optimal time
complexity of Θ(k). However, the randomized algorithms
provided in their paper require

√
n channels for k <

√
logn

and nlog(k)/k channels for
√

logn < k < logn. Moreover,
their deterministic algorithm uses n channels.

The information exchange problem in networks suffering
from adversarial interference has been studied in [10, 11]
where n nodes inform each other about n − t values and
an adversary can disturb communication on t channels by
jamming.

In a recent paper by Gilbert and Kowalski [12] upper and
lower bounds are given for the information exchange prob-
lem in single-channel networks where some of the nodes ex-
hibit Byzantine behavior.

The closely related problems of consensus and mutual ex-
clusion have lately been studied in [3, 9] for single-channel
networks with and without a global clock, collision detec-
tion, and knowledge of the number of nodes in the network.
Some parts of our algorithms are inspired by the algorithms
presented in [6]. In this paper, Chlebus and Kowalski pro-
pose algorithms based on lossless expander graphs for the
renaming problem [2]. In the renaming problem, each of
n processes initially has a unique identifier in the range
[n] := {1, . . . , n}. The goal is to assign new unique names3

from a smaller range to a subset of k processes using r shared
registers. The algorithm must be correct for every selection
of k processes. The renaming problem has been studied in
a variety of communication models, mainly in shared mem-
ory and message passing models (see [5] for a recent survey).
The time complexity of renaming algorithms depends on the
communication model, the (un)known parameters, the num-
ber of reporters relative to the network size, and the range
of the output names.

We adapt the compete operation of [6] for MAC models
and introduce a new class of bipartite graphs as a base for
our renaming algorithms. The special nature of the commu-
nication medium and the fact that no external devices (such
as registers) can be used requires new ideas. We prove the
existence of graphs with different properties leading to bet-
ter results for our model. To the best of our knowledge, this
paper is the first to provide renaming algorithms for MAC.

3We refer to the identifiers in the old namespace as “identi-
fiers” while the identifiers in the new namespace are simply
called “names”.

2. BUILDING BLOCKS
While the algorithms introduced in the subsequent section

are based on different techniques, they still share certain
basic algorithmic ideas, which are discussed in this section.
Note that throughout the paper we assume that k ≥ 2 as
the information exchange problem is trivial for k ≤ 1.

2.1 Matching Graphs
A core concept used in our algorithms is a special class of

bipartite expander graphs G = (V ∪W,E), where the edges
in E connect the nodes in the two disjoint node sets V and
W , which we refer to as matching graphs. In these graphs
each node is provided with a fixed ordering of its incident
edges. Using this order, a weak unique-neighbor property
is satisfied in matching graphs: for any subset X ⊆ V of
a certain maximum size and an arbitrarily small but fixed
constant parameter ε ∈ (0, 1), there is an edge index i such
that at least dε|X|e nodes in W are adjacent to exactly one
(and thus a unique) neighbor v ∈ X when we consider the
subgraph Gi induced by the ith edges of each node v ∈ X.
Therefore, a matching between dε|X|e nodes in X and nodes
in W can be found by iterating over the edges according
to the fixed edge order of the nodes in X. These graphs
have certain expansion properties that are implied by their
unique-neighbor property. Note that matching graphs are
inspired by lossless expanders (see, e.g., [4]) used in the con-
text of asynchronous exclusive selection [6]. While lossless
expanders are well suited for asynchronous exclusive selec-
tion, the less restrictive matching graphs yield better results
in our wireless setting.4 Formally, matching graphs are de-
fined as follows.

Definition 2. ((K,∆, ε)-matching Graphs.) Let G = (V ∪
W,E) be a bipartite graph, where V and W are the disjoint
node sets and E ⊆ V ×W is the edge set. For each v ∈ V ,
there is an edge ordering and Γ(v, i) denotes the ith neighbor
of v. G is a (K,∆, ε)-matching graph if each v ∈ V has ∆
neighbors, and for each subset X ⊆ V of size at most K,
there is an index 1 ≤ i ≤ ∆ such that at least dε|X|e nodes in
X have a unique i-neighbor. For each node v ∈ X and index
i, node Γ(v, i) is a unique i-neighbor if Γ(v, i) 6= Γ(w, i) for
all w ∈ X \ {v}.

We would like to have a matching graph with a small
node set W and a small degree ∆ while keeping ε as large as
possible. It is not hard to see that the minimum cardinality
of W depends not only on ∆, K, and ε, but also on the
size of V . Given these parameters, we prove that matching
graphs exist if the following restriction on the minimum size
of the node set W holds.

Theorem 1. For any ε ∈ (0, 1), α > 2
1−ε , K ≥ 2, and

∆ ≥ 1, a (K,∆, ε)-matching graph G = (V ∪W,E) exists if
the following two conditions are satisfied:

|W | ≥ |V |
α
∆ (1)

|W | ≥ e
(1+ε)α

(1−ε)α−2

(
1 + ε

2

) (1−ε)α
(1−ε)α−2

·K
(2−ε)α

(1−ε)α−2 (2)

Proof. We use the probabilistic method to prove this
statement. Specifically, we show that letting each node
v ∈ V choose ∆ neighbors Γ(v, 1),Γ(v, 2), . . . ,Γ(v,∆) in W
uniformly at random results in a (K,∆, ε)-matching graph

4All lossless expanders are also matching graphs.

7

6

5

4

3

2

1 1

1

1

2

1

2

2

2

V

W

Figure 1: An example of a (4, 2, 1/2)-matching graph
with |V | = 4 and |W | = 3 is shown. The index num-
bers on the edges define the order of the neigh-
bors. Edges with index 1 are dashed, edges with
index 2 are full lines. If we consider, e.g., the set
X = {1, 3, 4}, the edges with index 1 do not pro-
vide a sufficiently large matching since two out of
the three nodes share the same 1-neighbor (nodes
3 and 4). However, index 2 delivers a sufficiently
large matching since all nodes (and thus at least
half of the nodes in X) have a unique 2-neighbor.
For X = {2, 3} index 1 can be used, while index 2
cannot. For X = {1, 2} both indices can be chosen.
For any other subset X ⊆ V , there is always at least
one index that works.

with positive probability if Condition (1) and Condition (2)
are satisfied.

Given such a randomly constructed graph, consider any
subsetX ⊂ V of cardinality x ≤ K. Let the random variable
Ni denote the number of nodes in W that are neighbors of
the nodes in X if we only consider the ith edge of each node
v ∈ X. Formally, Ni = |{w ∈ W | ∃v ∈ X : Γ(v, i) = w}|.
We now prove that the probability that Ni is at least d 1+ε

2
xe

is large. For this purpose, we need the following inequality:

|W |(
1−ε

2
− 1
α)x

(2)

≥

e (1+ε)α
(1−ε)α−2

(
1 + ε

2

) (1−ε)α
(1−ε)α−2

·K
(2−ε)α

(1−ε)α−2

(1−ε
2
− 1
α)x

= e
1+ε

2
x

(
1 + ε

2

) 1−ε
2
x

·K
1−ε

2
x+ x

2

K≥x≥2

≥ e
1+ε

2
x

(
1 + ε

2

) 1−ε
2
x

· x
1−ε

2
x+1

> e
1+ε

2
x

(
1 + ε

2
x

) 1−ε
2
x+1

. (3)

Since there are
(|W |
j

)
ways to choose j nodes in W and there

are at most jx ways to choose neighbors for the nodes in X
in such a way that all j nodes are chosen at least once, we

get that P[Ni = j] ≤
(|W |
j

)
jx

|W |x . The probability that Ni is

smaller than d 1+ε
2
xe is upper bounded by

P
[
Ni <

⌈
1 + ε

2
x

⌉]
=

d 1+ε
2
xe−1∑

j=1

P[Ni = j]

≤
d 1+ε

2
xe−1∑

j=1

(
|W |
j

)
jx

|W |x <
d 1+ε

2
xe−1∑

j=1

(
|W |e
j

)j
jx

|W |x .

We observe that when we consider (|W |e
j

)j as a function of

j ∈ R it is strictly monotonically increasing in the range
j ∈ R ∩ [|W |], which implies that the above probability is
upper bounded by(⌈

1 + ε

2
x

⌉
− 1

)(
|W |e⌈

1+ε
2
x
⌉
− 1

)d 1+ε
2
xe−1 (⌈ 1+ε

2
x
⌉
− 1
)x

|W |x

<

(
1 + ε

2
x

)(
|W |e
1+ε

2
x

) 1+ε
2
x
(

1+ε
2
x
)x

|W |x

=
e

1+ε
2
x
(

1+ε
2
x
) 1−ε

2
x+1

|W |
1−ε

2
x

(3)
<

1

|W | xα
(1)

≤ 1

|V | x∆
< 1.

If there are at least d 1+ε
2
xe neighbors in W , then there are

at least dεxe unique i-neighbors. Therefore, the probability
that fewer than dεxe nodes in X have a unique i-neighbor
for a certain i is strictly smaller than 1.

For any subset of size x, let the random variable Fx denote
the event that there are fewer than dεxe unique i-neighbors
for all i ∈ [∆]. Since the random variables N1, N2, . . . , N∆

are independent, we immediately get that P[Fx] < |V |−x.
Let the random variable F be the event that Fx occurs for
any subset of size x for any size x ∈ {2, . . . ,K}. The prob-
ability of this event is upper bounded by

P[F] ≤
K∑
x=2

(
|V |
x

)
P[Fx] <

∞∑
x=2

(
|V |
x

)
|V |−x = e− 2 < 1.

Hence, there is a positive probability that such a randomly
chosen graph is a (K,∆, ε)-matching graph, which proves
that such a graph must exist.

In the remainder of this paper, we use matching graphs
with ε = 1/8, which are guaranteed to exist if

|W | ≥ |V |8/∆ and |W | ≥ 3K3. (4)

Note that the constants in the exponents can be reduced
with a more elaborate analysis.

2.2 Reporter-Free Set
A reporter-free set is, as the name implies, a set of nodes

that are not reporters. Depending on k, different techniques
can be employed to compute such a set. A procedure that
finds such a set of cardinality x in O(k) time using one chan-
nel has been described in the literature [14]. We now discuss
an extension of this procedure, which we call FindRFS(x).

Case 1: If k is in the same order of magnitude as x or
larger, there exists a constant c > 0 such that x ≤ c · k.
Finding a reporter-free set of size x can be accomplished
by letting the nodes with identifiers 1, 2, . . . , k + x transmit
(on the single channel) if they are reporters or not. This
procedure stops after x non-reporters have been found, or
the k reporters have been detected and the information ex-
change problem is solved (and the reporter-free set is thus
not needed anymore).

Case 2: Alternatively, we can compute a reporter-free set
of size x ≤ n/(k+ 1), which is more suitable for smaller val-
ues of k, as follows. The first two nodes (with identifier 1 and
2) are assigned the roles of leader and guard. All nodes are
partitioned into k+ 1 groups based on their identifiers, each
containing roughly n/(k + 1) nodes. In the first time step,
the reporters in the first group (if any) transmit a message
on a single predefined channel while the leader is listening
unless it is a reporter itself. The guard node also transmits
a message containing its identifier if it is not a reporter,
otherwise it remains silent. As a consequence, if the leader
receives the guard’s message, none of the other nodes in the
first group are reporters. The leader can then (depending
on the guard’s message and its own status) announce in the
next time step whether the first group is reporter-free and
the algorithm terminates. Otherwise, the leader instructs
the nodes to continue, in which case all reporters in the sec-
ond group and also the guard node send a message in the
next time step. Again, if the leader only receives the guard’s
message, it has found a reporter-free set of size n/(k + 1),
otherwise the same steps are repeated with the third group,
fourth group, etc. until a reporter-free group is found. The
first x nodes of this group are then assigned to the reporter-
free set.

Lemma 1 (Extension of Lemma 5.1 of [14]).
Procedure FindRFS(x) ensures deterministically that after
its completion all nodes know the identifiers of a reporter-
free set of size x after O(k) time steps using one channel if
(i) x ≤ c · k for some constant c or (ii) x ≤ n/(k + 1).

Proof. Case 1: The correctness of the algorithm is im-
mediate. The number of time steps required is at most
min{(c+ 1)k, n} ∈ O(k).

Case 2: For all groups it holds that receiving the guard’s
message implies that the group does not contain any re-
porters: For the first group, the guard only transmits if it is
not a reporter, and due to possible collisions the leader only
receives this message if all other nodes in the first group
remain silent, i.e., no node is a reporter. For any group
2, . . . , k+ 1, the guard always sends, and the leader receives
this message if there are no reporters in the corresponding
group. Since there are k + 1 groups, there is at least one
group that does not contain reporters. Hence, a reporter-free
set of size x ≤ n/(k+1) is always found. It takes 2 time steps
to determine whether a group is reporter-free and to broad-
cast this information. As there are k+1 groups, the number
of time steps is upper bounded by 2(k + 1) ∈ O(k).

Corollary 1. Lemma 1 implies that a reporter-free set
of size Ω(k+n/k) = Ω (

√
n) can be found in O(k) time slots.

As we will see in Section 3, our algorithms start by com-
puting such a set. After this computation, in order to sim-
plify the notation, we assume that each node that is not
part of the reporter-free set chooses a (potentially) new
unique name in the range 1, . . . , n′, where n′ is the number
of nodes not in the reporter-free set minus the number of
reporters that have already been detected while computing
the reporter-free set. This renaming does not require any
communication because the set of nodes in the reporter-free
set is globally known.

2.3 Renaming
Renaming is an important concept that is used repeatedly

in our algorithms. Initially, the identifiers of the k reporters

are in the range [n] = {1, . . . , n}. The goal of renaming is
to assign new names to the reporters in order to reduce the
size of the possible range with reporters so that the reporters
can be determined quickly by examining this smaller range.
In this section, we describe Procedure BasicRename(k, n),
which uses matching graphs for efficient renaming.

Let W denote the target namespace, i.e., once
BasicRename(k, n) terminates, each reporter has a new
unique name in W , and let the names in this set be
1, . . . , |W |. A prerequisite for BasicRename(k, n) is a
reporter-free set of size |W |, which we assume to be given.
As we will see, the namespace W can be chosen to be small
enough for all our purposes such that a reporter-free set
of size |W | can be computed in O(k) time using procedure
FindRFS(x) (Corollary 1). The nodes in the reporter-free
set are called guard nodes. Moreover, we assume that there
are |W | channels 1, . . . , |W |. Procedure BasicRename(k, n)
itself consists of two phases: a competition phase and a con-
flict resolution phase.

The goal of the competition phase is to assign a new name
in W to each reporter. It is possible that several reporters
obtain the same name in this phase. A reporter v competes
for a name i ∈ W by sending its own identifier on chan-
nel i. The ith guard node gi in the reporter-free set listens
on channel i. If it receives an identifier, we say that the
reporter v that sent this message won the competition for
name i ∈W . In this case, gi adds v’s identifier to the list of
identifiers that acquired this name. In the subsequent time
step, gi transmits v’s identifier on channel i and v listens.
This way v is informed that it has won the competition.
Each reporter remains active until it wins its first compe-
tition, i.e., it continues to compete for a name by sending
its identifier on the corresponding channel and listen for the
retransmission in the subsequent time slot until it succeeds.
Once a reporter wins, it becomes inactive, which means that
it remains silent until the end of the competition phase. The
sequence of names that each individual reporter v competes
for is determined using a (shared) (K,∆, ε)-matching graph
G = (V ∪W,E), where K ≥ k. The set V represents the
original n = |V | node identifiers, and W represents the tar-
get namespace (the new temporary node“names”). Reporter
v first competes for its 1-neighbor Γ(v, 1), and then for its 2-
neighbor Γ(v, 2), etc. If it loses the competition for Γ(v,∆),
it starts again with Γ(v, 1), i.e., a reporter cycles through
its neighbors until it wins. After ∆ · dlog k/ log(1/(1 − ε))e
competitions, the competition phase is over. We show in
the proof of Theorem 2 that this number of competitions
suffices to guarantee that each reporter indeed wins one of
the competitions.

The goal of the conflict resolution phase is to ensure that
each reporter obtains a unique name in W. For this purpose,
the reporter-free set is partitioned into d|W |/ke groups, each
consisting of at most k guard nodes based on their identifiers.
Since the identifiers of the nodes in the reporter-free set are
known, no communication is necessary for this partitioning.
Consider the jth such guard group. The guard node with
the smallest identifier starts transmitting the identifiers of
the reporters that won a competition for its name on chan-
nel j. Once it has transmitted all winning identifiers, the
guard node with the next larger identifier starts transmit-
ting on channel j and so on until all guards have transmit-
ted their winners. Each reporter v that won the competition
for a name i listens to the communication in the group to
which the guard of i belongs and records the identifiers of
all reporters that won a competition in this group (includ-

Algorithm 1 Procedure BasicRename(k, n): Guard node
gi assigned to channel i

// ** competition phase starts
1: winnerList := ∅
2: for t := 1, . . . , 9∆dlog ke do
3: receive message on channel i
4: if identifier id received then
5: send id on channel i
6: winnerList := winnerList ∪ {id}
7: else
8: send ⊥ on channel i
9: end if

10: end for
11: nextGuard := 1; winnerId := ⊥

// ** conflict resolution phase starts
12: for t := 1, . . . , 2k − 1 do
13: if nextGuard = i mod k then
14: if winnerList = ∅ then
15: nextGuard := nextGuard+ 1
16: else
17: winnerId := min{id | id ∈ winnerList}
18: winnerList := winnerList \ {winnerId}
19: end if
20: send [nextGuard,winnerId] on channel di/ke
21: else
22: receive message [guard, id] on channel di/ke
23: nextGuard := guard
24: end if
25: end for

ing its own). If v listens to the communication in group j
and v’s identifier is at position pos ∈ [k] in the ordered list
of all received identifiers, node v renames itself using name
(j − 1) · k + pos. After the execution of this algorithm all
reporters know their own new name. Note that they know
nothing about the new names of the other reporters; what
knowledge the other nodes have gained is not considered.

The actions of the guard nodes and the reporters are
summarized in Algorithm 1 and Algorithm 2, respectively.
Throughout the entire paper, we use the convention that
time only passes in the pseudo code if the node waits until a
certain time or if it sends or receives a message. More pre-
cisely, if a node sends/receives a message at time t, the time
is t + 1 after this operation, i.e., receiving is non-blocking
(in the sense that the operation lasts exactly one time step).
If a node waits until time t, it is exactly time t after this op-
eration. The following theorem summarizes the properties
of procedure BasicRename(k, n).

Theorem 2. Given a (K,∆, 1/8)-matching graph G(V ∪
W,E), where |V | = n and K ≥ k, and a reporter-free set
of size |W |, BasicRename(k, n) assigns a unique name in
[|W |] to all k reporters in time O(∆ · log(k) + k) using |W |
channels.

Proof. The time complexity follows from the description
of the algorithm: The competition phase takes O(∆ · log k)
time steps and the conflict resolution phase takes 2k − 1
time steps, i.e., the overall time complexity is O(∆ · log(k)+
k) as claimed. While the competition phase requires |W |
channels, dW/ke channels suffice for the conflict resolution
phase. Thus, |W | channels are used in total.

It remains to prove the correctness of the algorithm. For
each competition it holds that if there is exactly one con-

Algorithm 2 Procedure BasicRename(k, n): Reporter v

// ** competition phase starts
1: for t := 1, . . . , 9∆dlog ke do
2: send idv on channel Γ(v, (t mod ∆) + 1)
3: receive message on channel Γ(v, (t mod ∆) + 1)
4: if idv received then
5: winningChannel := Γ(v, (t mod ∆) + 1)
6: sleep 2(9∆dlog ke − t) time slots
7: break for-loop
8: end if
9: end for

10: winnerList := ∅

// ** conflict resolution phase starts
11: for i := 1, . . . , 2k − 1 do
12: receive message [guard, id] on

channel dwinningChannel/ke
13: winnerList := winnerList ∪ {id}
14: end for
15: pos := v’s position in winnerList
16: rename to (dwinningChannel/ke − 1) · k + pos

tending node v for channel i, then v wins the competition
for name i; otherwise, all competitors lose. This property
holds due to the synchronous nature of our model and the
fact that the guard node only receives a message if exactly
one node competes for the channel at a given point in time.

Since the nodes use a (K,∆, 1/8)-matching graph, it holds
that for some i ≤ ∆ at least 1/8 of the k ≤ K re-
porters have a unique i-neighbor and thus have competed
for a channel successfully after ∆ competitions. Hence,
at most b7k/8c reporters are active after ∆ competitions,
1/8 of which win in the next ∆ competitions and so on,
i.e, after i∆ competitions at most b(7/8)i · kc reporters are
left. Consequently, there are no active reporters left after
∆ · d(log k/ log(8/7))e < 6∆ · log k competitions as required.
At the end of the competition phase, all reporters listen-
ing to the same group j choose distinct names in the range
[(j − 1)k, jk]. Assume that v listening to group j and v′ lis-
tening to group j′ 6= j choose the same name. Without loss
of generality, assume that j > j′. In this case, reporter v
chooses the name (j−1)k+p ≥ j′k+p = (j′−1)k+ (k+p)
for some p, implying that the position in the ordered list
of all received identifiers for v′ is at least k + p /∈ [k], a
contradiction.

Note that the nodes are not required to store a matching
graph for all possible values of k and ∆. As we will see in
the subsequent sections, we only use matching graphs if k is
polylogarithmic in n. Since we do not optimize constants,
it hence suffices to store O(log log n) matching-graphs for
k = 2, 4, 8, 16 and so on. The right choice of ∆ for these
graphs is discussed in Section 3.

2.4 Information Propagation on Trees
This building block is a procedure that disseminates in-

formation over a binary tree. This technique is used in our
algorithms for two different purposes: In one algorithm, it
is used to inform one node, the root of the tree, about all
k reporters, and in the other algorithm, the tree is used
to disseminate information about the number of collisions
recorded at the leaves. We consider trees containing N ≤ n
nodes of the network whose identifiers are known to all other

nodes participating in the tree-algorithm such that each
node can determine its positions in the tree accordingly.

Lemma 2. The time complexity of disseminating b items
on a balanced binary tree of N nodes is O(b + logN) using
O(N) channels.

Proof. In the standard synchronous message-passing
model, a straightforward algorithm to gather information at
the root is to forward each information item to the parent,
and potentially receive information items from the children,
in every time step. The time complexity of this algorithm
when forwarding b items to the root in a tree of height h is
b+ h− 1. Unfortunately, this simple scheme does not work
in our setting because a) a node cannot send and receive
simultaneously and b) it cannot listen to different nodes at
the same time. However, these problems can be solved by
splitting each round into four sub-rounds and ordering the
actions in these sub-rounds according to the level in the tree:
Every node vi in the tree has its own channel i. If a node is
at an even (or odd) level and it is the left child of its par-
ent, it sends on channel i in the first sub-round. If it is the
right child, it sends in the second sub-round. In the third
and fourth sub-round, it listens to transmissions from its left
and right child on their channels, respectively. If a node is
at an odd (or even) level, it first listens to its children on
their channels and transmits either in the third or fourth
sub-round on its own channel depending on whether it is its
parent’s left or right child. It is not hard to see that the four
sub-rounds simulate a single round in the message passing
model and that there are no conflicts.

Note that the same bound on the time complexity holds
if information is disseminated from the root to the leaves
of the tree. If the nodes are required to forward an aggre-
gate of the information in their subtree, such as, e.g., the
sum of nodes in its subtrees, every node only needs to send
a message to its parent once (upon receiving the necessary
information from its children). The structure of the tree is
based on the participating node identifiers, i.e., it is known
a-priori; hence, all nodes in the tree can compute their sched-
ule locally without any communication. As the height of a
binary tree with N nodes is O(logN) and every node uses
its own channel for communication, the statement of the
lemma follows.

3. ALGORITHMS
Having discussed the basic building blocks, we now de-

scribe our information exchange algorithms. The algorithms
presented in this paper are composed of two phases, a
scheduling phase and a broadcast phase. In the scheduling
phase, the reporter nodes (and some of the other nodes) ex-
change messages on the available channels in order to derive
a schedule for the broadcast phase. This schedule defines an
injective function from the set of reporters to the O(k) time
slots of the broadcast phase. In other words, assuming that
the first time slot of the broadcast phase occurs at the log-
ical time 1, every reporter is assigned a unique time slot in
the range [C · k] for some constant C > 1 after the schedul-
ing phase. In the broadcast phase, each reporter transmits
its information in its assigned time slot on channel 1 while
all other nodes listen. The time complexity of the broad-
cast phase is thus O(k), and it guarantees that all nodes
know all information items in the end using only one chan-
nel. Hence, the time complexity of an algorithm and the
number of channels used depend on the scheduling phase

only. Moreover, since the broadcast phase always works the
same way, it suffices to discuss the scheduling phase of each
algorithm. In order to guarantee that the time complexity
of the scheduling phase is always O(k) we apply different
techniques for different values of k.

3.1 Algorithm AS for k ≤ 1
6

logn

For small values of k, we propose an information exchange
algorithm, denoted by AS , that uses matching graphs and
the procedures described in the previous section.

The algorithm works as follows. First, we determine a
reporter-free set of size n/(k + 1) using FindRFS (in time
O(k), see Corollary 1). Subsequently, BasicRename(k, n)
is executed using a (k,∆, 1/8)-matching graph for which

∆ := b10k/ log kc and |W | := d|V |8/∆e. In the proof of
Theorem 3, we show that such a graph exists. In the next
step, a case distinction is required.

Case 1: If |W | ≤ 26k, we use a binary tree containing |W |
nodes from the reporter-free set that have been computed
with FindRFS. The tree is built up layer by layer based on
the nodes’ identifiers: The node with the smallest identifier
is the root, the node with the second smallest identifier is
its left child, the node with the third smallest is its right
child, etc. Note that no communication is necessary to
build this tree as the nodes in the reporter-free set and
their identifiers are known to all nodes in the network. The
identifiers of the k reporters are forwarded to the root as
described in Section 2.4. The root can then distribute all
identifiers of reporters in the next k communication rounds.

Case 2: If |W | > 26k, BasicRename(k, n) is executed again
using the new names as the “input-identifiers”. We refer to
the new set of names as V ′ (which is identical to W). The

same number ∆ of neighbors is used, and |W ′| := d|V ′|8/∆e.
Again, the existence of such a graph is shown in the proof.
Afterwards, all distinct k-element subsets of W ′ are assigned
to distinct nodes in the reporter-free set. This assignment
can be computed locally as all nodes in the reporter-free
set are known. Each reporter-free node that is assigned at
least one subset is called a listener (we will get back to this
assignment in more detail later). A listener may be assigned
at most two distinct subsets.

In the next step, each reporter transmits its identifier on
the channel that corresponds to its unique name in W ′, dur-
ing the next 2k time slots. Simultaneously, each listener
listens for one time slot on each of the channels in its first
assigned subset during the first k time slots, and then, if it
is assigned a second subset, it listens on each channel in the
second assigned subset for one time slot.

Finally, the listener receiving identifiers in each of the k
communication rounds for a given assigned subset informs
the remaining nodes on channel 1 about the reporters in
the next k communication rounds. In the proof of Theorem
3 we show that there is one unique listener broadcasting
this. Therefore no collisions occur and all nodes know the
identifiers of all reporters. Thus the information items can
easily be disseminated in the broadcast phase. We get the
following result.

Theorem 3. Algorithm AS solves the information ex-
change problem for k ≤ 1

6
logn in time O(k) using

O(nlog(k)/k) channels.

Proof. We start by proving the existence of
the matching graph used in the first step. Since

∆ ≤ 10k/log k and k ≤ 1
6

logn, we have that

|V |8/∆ ≥ n
4
5

log k
k ≥ n

24/5 log k
logn = k24/5

k≥2
> 3k3. This

bound together with Theorem 1 implies that such a graph
indeed exists. According to Theorem 2, the time required
for this renaming is bounded by O(∆ log k + k) = O(k).

Case 1: Corollary 2 states that |W | − 1 ∈ O(nlog(k)/k)
channels are required, i.e., the same number as for the
renaming. The bound |W | ≤ 26k entails that the time
complexity is bounded by 4(k+h−1) ≤ 4(k+log |W |−1) <
28k ∈ O(k). Since the renaming also takes O(k) time, the
total time complexity is O(k) as claimed. The correctness
follows from the correctness of the renaming and the
propagation protocol on trees.

Case 2: Since |W | > 26k, we get that |V ′|8/∆ = |W |8/∆ >

248k/∆ ≥ 224 log(k)/5 = k24/5
k≥2
> 3k3. Thus, Theorem 1

again implies that there is a matching graph where |W ′| =

d|V ′|8/∆e.
We now show an upper bound on |W ′|. As |W ′| > 3k3 ≥

24, we have that |W ′| < |V ′|8/∆ + 1 < |V ′|8/∆ + 1
24
|W ′| and

thus

a) |W ′| < 24

23
|V ′|8/∆, b) |V ′| < 24

23
n8/∆

c) ∆ >
10k

log k
− 1 >

28

3

k

log k
(5)

since |V ′| > 3k3 ≥ 24, with a similar argument as above,
and the fact that k/ log k is larger than 3/2 for all k implies
the third inequality. If we combine these bounds, we get
that

|W ′|
(5a,b)
<

(
24

23

)1+8/∆

n(8/∆)2

(5c)
<

(
24

23

)1+ 6 log k
7k

n(6 log k
7k)

2

<

(
24

23

) 11
7

n
1
k .(6)

Hence, the number of k-element subsets of W ′ is upper

bounded by
(|W ′|
k

)
< |W ′|k

k!

(6)
<

(24
23)

11
7
k
n

k!

k≥2
< 2 n

k+1
. Thus, the

subsets can be assigned in such a way that each node in the
reporter-free set is assigned at most two subsets. Therefore,
a unique listener determines the identifiers of the k reporters
within 2k time slots, which proves the correctness of the
algorithm in this case. Since both the second renaming and
the computation of the correct k-element subset need fewer
channels than the first renaming, the number of channels
required is |W | = |V ′| ∈ O(nlog(k)/k). The second renaming
also takes O(∆ log k+k) = O(k) time, and the computation
of the subset requires 2k time slots. Hence, Algorithm AS
needs O(k) time slots in total for Case 2 as well.

3.2 Algorithm AL for k ∈
(

1
6

logn, n− 2dlog(n)e
)

For k ∈
(

1
6

logn, n− 2dlog(n)e
)

we use a different ap-
proach than in Algorithm AS . We start with a high-level
descriptions of Algorithm AL and its main building block
called an epoch which is discussed in more detail in Sec-
tion 3.2.1 and Section 3.2.2.

High-level description of Algorithm AL: After some
preprocessing, Algorithm AL executes a sequence of epochs.
The goal of an epoch is to identify some previously unknown
reporters. The number of epochs that need to be carried
out depends on the number k of reporters. If k is smaller

than log(n) · log log(n) (Case 1), we run a procedure called
DetectFraction several times, to reduce the number of un-
known reporters. During the execution of DetectFraction,
temporary names are assigned to the reporters using match-
ing graphs. The range of these temporary names is smaller
than the range of the identifiers of the nodes. Subsequently,
multiple epochs are executed using these temporary names.
Due to the smaller range of temporary names, not all tempo-
rary names are unique and thus an epoch might detect only
a few reporters because the messages of reporters with the
same temporary names collide. Procedure DetectFraction
executes ∆ epochs, one for each neighbor index of the used
matching graph, which will be specified later. This allows
us to guarantee that in at least one of these epochs the num-
ber of unknown reporters is reduced significantly. Otherwise
(Case 2), one epoch is sufficient to detect all reporters. After
O(k) time slots all reporters are known in both cases.

High-level description of an epoch: Given k′ re-
porters with temporary names in a temporary namespace
[n′] that were not detected in a previous epoch, an epoch
finds and broadcasts the identifiers (in [n]) of reporters with
a unique temporary name in [n′]. This is achieved as follows.
First, the temporary namespace is partitioned into groups.
The assignment of temporary names to the groups is then
refined in a number of phases. At the beginning of a phase,
each group comprises a range of temporary names and each
reporter’s temporary name belongs to exactly one group.
After a phase, the number of groups is the same but the
temporary names belonging to a group change. Moreover,
each group contains fewer temporary names than before and
it still holds that each reporter’s temporary name belongs
to exactly one group.

Since the number of temporary names per group decreases
in each phase, the number of temporary names in each group
is one after a certain number of phases. If this left-over
temporary name belongs to exactly one reporter, we can
determine whether this node is a reporter and broadcast its
identifier to the whole network. Multiple channels are used
to ensure that the time complexity of each epoch is small
enough.

3.2.1 Description of Algorithm AL
Algorithm AL uses 2c := 2τ · dlog(n/k)e channels, for

some τ defined later, and a reporter-free set of 2c nodes.
Among these 2c nodes, c nodes are master nodes de-
noted by {m1, . . . ,mc}, the other c nodes are helper nodes
{h1, . . . , hc}. Master mj communicates on channel j unless
stated otherwise. As mentioned in the high-level descrip-
tion, AL executes one or more epochs to detect unknown
reporters with unique temporary names in [n′]. We distin-
guish between two cases.
Case 1: If k < log(n) · log log(n), we set τ :=
dlogρ ne for some constant ρ > 0. Next, we run Proce-
dure DetectFraction (Line 9) multiple times. This proce-
dure comprises several epochs and detects a constant frac-
tion of the k′ remaining unknown reporters. We repeatedly
execute DetectFraction until at most 1

6
logn reporters are

unknown (Lines 8–10). Once k′ ≤ 1
6

logn, Algorithm AS is
called to detect the remaining unknown reporters (Line 11).

Procedure DetectFraction uses a (k,∆, ε)-matching
graph G with ∆ = dlog log ne, ε = 1/8, |V | = n, |W | =

n′ := dn8/∆e (Line 13). Theorem 1 proves the existence of
such a graph. This graph is utilized to compute the tempo-
rary names that are used throughout one of the ∆ epochs

Algorithm 3 Sketch of Algorithm AL
1: if k < log(n) · log log n then

// ** Case 1:
2: τ := dlogρ ne; c := τ · dlog(n/k)e; k′ := k
3: compute c master and c helper nodes
4: while k′ > 1

6
logn do

5: run DetectFraction()
6: end while
7: run Algorithm AS for remaining reporters
8: else

// ** Case 2:
9: τ := 2; c := τ · dlog(n/k)e

10: compute c master and c helper nodes
11: run epoch on temporary namespace [n′] := [n]
12: end if

Procedure DetectFraction:
13: G := (k, dlog logne, 1/8)-matching graph

with |W | = n′ = dn8/dlog lognee
14: for i := 1, . . . , dlog logne do
15: temporary names according to ith neighbor in G
16: run epoch with these temporary names in [n′]
17: k′ := k′−#reporters detected in epoch
18: end for

of DetectFraction; in the ith epoch, the unknown reporters
use temporary names according to their ith neighbor in the
(k,∆, ε)-matching graph. In each of the epochs, a few re-
porters are able to tell their original identifiers to the rest of
the nodes. The temporary name l in [n′] of a node v (called
vl) may not always be unique. Although there can be sev-
eral nodes with the same temporary name, we write vl when
we refer to one of these nodes.
Case 2: If k ≥ log(n) · log log(n) (Lines 2–4 in Algorithm
3), only one epoch with temporary namespace [n′] := [n]
and τ := 2 is used (Line 2). Before executing this epoch
(Line 4), Algorithm AL starts the preprocessing by com-
puting a reporter-free set of size 2c, and assigns master and
helper nodes accordingly (Line 3).

In Section 3.2.3 we prove that Algorithm AL successfully
identifies the k reporters in O(k) time.

3.2.2 Description of an Epoch
Throughout the entire execution of an epoch, each un-

known reporter vi is a member of exactly one out of at most
τ · k′ disjoint groups. Observe that we defined groups to
contain temporary names. For simplicity we also treat them
as if they contained nodes: a node is a member of a group
if its temporary name is contained in this group.

As mentioned earlier, an epoch consists of several phases.
Group membership of a name/node remains the same
throughout the course of a phase but it may change at the
end of each phase. Therefore we introduce a group number
g(i) for each temporary name i, which indicates to which
group node vi belongs due to its temporary name i in the
current time slot. I.e., g(i) = j indicates that vi is in the
jth group, where j ∈ {1, . . . , τ · k′}. In phase 1, a node vi
belongs to group g(i) = di · τ · k′/n′e, i.e., any reporter with
a temporary name less than dn′/(τ · k′)e belongs to group
number 1, reporters among the next dn′/(τ · k′)e nodes to
group number 2 and so on. In other words, at the beginning
of an epoch the temporary namespace [n′] is partitioned into

disjoint ranges of length at most dn′/(τ ·k′)e, each associated
with one group.

In every phase, reporter vi also stores the range r(i) :=
[l, r] of temporary names lying in its group’s range, i.e., l
is the lowest temporary name such that g(l) = g(i) and r
is the largest temporary name such that g(r) = g(i). This
range is updated each time vi’s group changes.

The algorithm ensures that at the end of an epoch, if vi
has a unique temporary name i, it is the only reporter in the
group with identifier g(i). Otherwise, group g(i) contains
either no reporters or more than one reporter.

Now we specify how reporters and masters communicate.
Each master communicates with reporters belonging to at
most s := dτ · k′/ce = dk′/dlog(n/k)ee distinct groups: m1

communicates on channel 1 with reporters in the first s
groups, m2 communicates on channel 2 with reporters in
the next s groups, and so on, i.e., master mj communicates
on channel j with reporters in the group ` if j = d`/se. We
say that these groups belong to master mj . In each phase,
reporter vi only communicates with the master mdg(i)/se to
which the group number g(i) belongs, i.e., it uses channel
dg(i)/se for communication. Furthermore, each reporter vi
stores its group’s position p(i) := g(i) mod s in the sorted
list of all groups that belong to its group’s master. The po-
sition is used to determine the communication time slot be-
tween the nodes in a specific group and its master. Note that
a master mj always communicates with the same groups,
but these might contain different reporters in each phase.

Since every phase is identical, it suffices to study the op-
eration of a single phase to understand an epoch. The goal
of a phase is to reduce the number of nodes contained in
each group. Recall that at the beginning of a phase, each
group contains a certain number of temporary names. Each
reporter is contained in some group due to its temporary
name. After a phase, the number of groups is the same,
the temporary names contained in a group might differ, but
each group contains a smaller temporary namespace than
before. It still holds that each reporter is contained in some
group via its temporary name.

A phase consists of three parts. Since the helper nodes
only operate in the first part of any given phase and act
at the same times on the same channels as their masters,
pseudo code for the helpers is omitted. The execution of
a phase is described for masters in Algorithm 4 and for re-
porters in Algorithm 5. As every phase takes the same num-
ber of time steps, we can assume for ease of notation that
every phase starts at a (logical) time t = 0. Note that mas-
ter, helper and reporter nodes execute their specific code at
the same time in synchronized time slots.

We now proceed to describe the steps of a phase in greater
detail. The three parts of a phase work as follows.
Part 1 of a phase: Detect all groups that contain
at least one reporter. See Lines 1–7 in Algorithm 4 and
Lines 1–4 in Algorithm 5. We denote the set of groups in
whichmj detects a reporter by Cj . To compute Cj , each mas-
ter mj checks each of its s = dτ · k′/ce groups for reporters
one after another. Any master mj listens and its helper hj
sends an arbitrary message on channel j for s time steps,
while each reporter vi sends a message on channel dg(i)/se
to its master at time p(i). Remember that vi is in the p(i)th

group that belongs to mdg(i)/se at that time. Thus, we can
conclude that if a master mj receives a message at a time
t + q, q ∈ {1, . . . , c}, on channel j, it must be the message
sent by helper hj , i.e., mj learns that there are no reporters

Algorithm 4 Code executed by master mj during a phase
within Algorithm AL.

// ** Part 1:
1: Cj := ∅
2: for t := 0 . . . s− 1 do
3: receive message on channel j
4: if no message received then
5: Cj := Cj ∪ {t}; // ** collision in the tth group
6: end if
7: end for

// ** Part 2:
8: collj−1 := sumOfCollisionsAtMasters(m1, . . . ,mj−1, |Cj |)
9: wait until t = s− 1 + 8dlog ce

// ** Part 3:
10: for γ := 0 . . . s− 1 do
11: if γ ∈ Cj then
12: send collj−1 on channel γ
13: collj−1 := collj−1 + 1
14: end if
15: end for

in its qth group. On the other hand, if no message is re-
ceived, a collision must have occurred due to some node vi
with dg(i)/se = j and p(i) = q, implying that the qth group
contains at least one reporter. Thus, each masters mj knows
its set Cj after Part 1.
Part 2 of a phase: Redefine groups. Each master mj

computes for each group it is responsible the range of tem-
porary names that mj will assign in Part 3 to the (new)
groups that result from splitting any group in which mj

detected a collision in Part 1. See Line 8 in Algorithm 4.
First, each master mj (with j > 1) has to learn the number

collj−1 :=
∑j−1
p=1 |Cp| of all collisions that occurred at the

masters m1, . . . ,mj−1 (thus collj−1 is at most (j − 1) · s).
This is achieved by calling the function sumOfCollisionsAt-
Masters, which uses a balanced binary tree (see Section 2.4)
of depth log c to compute collj−1 for master mj (for all
j ∈ {1, c − 1} simultaneously.) In this tree, the c masters
are the leaves and c− 1 helpers are used as the inner nodes.
By aggregating the number of collisions |C1|, . . . , |Cc−1| from
the leaves, each inner node h knows the number of collisions
that occurred at the masters in its left and right subtree.
Let `h denote the number of collisions in its left subtree.
Aggregating the total sum of collisions at the root (e.g., h1)
takes at most 4dlog ce time steps and at most c channels as
discussed in Section 2.4. The number of collisions at the
leaves (masters) in the left subtree of the root is then com-
puted as follows: The root sends 0 to its left child and the
number `h1 of collisions in its left tree to its right child. Any
inner node h that receives x from its parent sends x to its
left child and x + `h to its right child. It is easy to verify
that each master mj receives exactly the number of collisions∑j−1
p=1 |Cp| that were reported by the masters m1, . . . ,mj−1

since these are positioned to mj ’s left in the tree. This is
exactly collj−1. Propagating this information from the root
to the leaves takes at most 4dlog ce time steps as shown in
Section 2.4.
Part 3 of a phase: Each group that contains at least
one reporter is split into τ (new) groups. Group
identifiers are reassigned to these (new) groups. See
Lines 9–15 in Algorithm 4 and Lines 5–12 in Algorithm 5.
First, each master mj creates τ · |Cj | new groups: τ new
groups for each of the |Cj | groups in which it detected a

Algorithm 5 Code executed by reporter vi in group g(i)
with range r(i) = [l, r] during a phase within Algorithm AL.

// ** Part 1:
1: c(i) := dg(i)/se // ** channel of this group
2: t := 0 // ** beginning of phase
3: wait until t = p(i) // ** position of this group
4: send “message” on channel c(i)

// ** Part 2: reporters sleep
// ** Part 3:

5: wait until t = s− 1 + 8dlog ce+ p(i)
// ** The master of vi’s group is mj with j := dg(i)/se

6: receive collj−1 on channel c(i)
7: compute j, s.t., vi ∈ [l+ j(r− l)/τ, l+ (j+ 1)(r− l)/τ]
8: g(i) := τ · collj−1 + j
9: r(i) := [l + j(r − l)/τ, l + (j + 1)(r − l)/τ]

10: p(i) := g(i) mod s // ** update position of this
group in the list of its (new) master

collision. Since node mj knows that the total number of
collisions that occurred at the masters {m1, . . . ,mj−1} is
collj−1, it can assign the group numbers from τ · collj−1 to
τ · (collj−1 + |Cj |)− 1 to these new groups.

The reporters are informed about their new group num-
bers by executing a code sequence similar to Part 1 again, in
which the roles of sender and receiver are switched, and the
helper nodes remain silent. That is, the masters broadcast
group identifiers and the reporters receive them. Afterwards,
temporary names are reassigned to the new groups: Each
new group with group number in [τ · collj−1, τ · (collj−1 +
|Cj |)−1] receives a 1/τ fraction of the temporary names of an
original group that is split. A reporter vi changes its group
membership g(i) to τ · coll(dg(i)/se)−1 + ` if its temporary

name i lies in the range of the `th new group that its master
mdg(i)/se created. Each reporter knows what to change by
listening to the corresponding channel as indicated in the
pseudocode of Algorithm 5. Each reporter is able to deter-
mine which master its group belongs to in the next phase
by performing the computations described earlier.

3.2.3 Analysis of Algorithm AL
First, we study the time and channel complexity of an

epoch.

Lemma 3. Given a reporter-free set of size 2c, one epoch
of Algorithm AL for k′ unknown reporters detects all re-
porters with unique temporary names in the temporary
namespace [n′] using 2c = 2τ · dlog(n/k)e channels in time

O
((

k′

log(n/k)
+ log c

)
·
(

log n′
τ·k′

log τ

))
.

Proof. Correctness: Since every master has its own
channel to communicate with its groups, there are no col-
lisions between the masters. Consider master mj and its
groups. According to the description, only the reporters of
the same group send at the same time together with the
helper hj , i.e., collisions among reporters with distinct tem-
porary names can only occur if two or more reporters are in
the same group, which proves that the groups with reporters
with distinct temporary names are detected correctly. The
information propagation on the tree is correct as discussed
in Section 2.4, and thus the masters can successfully narrow
down the ranges of the temporary names that belong to at
least one reporter in each phase and inform the reporters
about their new group memberships.

Time complexity: The execution of the tree algorithm
in each phase depends on the height of the tree, which is
logarithmic in the number of masters and thus takes time
O(log c). Hence, the time complexity of a single phase is

O(s+ log c) = O
(

k′

log(n/k)
+ log c

)
,

taking the length of the for and the while loops
into account. Since the maximum number of tem-
porary names contained in a group in phase 0 is
dn′/(τ · k′)e, which is divided by τ in each phase, one

epoch consists of at most
⌈
logτ

⌈
n′

τ ·k′

⌉⌉
∈ O

(
log n′

τ·k′
log τ

)
phases. Hence the time complexity of one epoch is

O
((

k′

log(n/k)
+ log c

)
·
(

log n′
τ·k′

log τ

))
.

Theorem 4. Algorithm AL solves the information ex-
change problem in time O(k) using

Case 1: O(log1+ρ n) channels for some constant
ρ > 0 if k ∈ (1

6
logn, log(n) · log logn).

Case 2: O(log(n/k)) channels if k ≥ log(n) · log logn.

Proof. Note that for both cases a reporter-free set of size
2c can be found in time O(k) as shown in Lemma 1, which
is a prerequisite for the correctness and the time complexity.

Case 1: Correctness: Note that messages sent by reporters
with the same temporary name in [n′] always collide and
their groups are detected, and therefore their identifiers can-
not be detected at the end of an epoch. However, their
participation does not disturb the course of the algorithm.
Due to the property of the (k,∆, 1/8)-matching graphs used,
at least 1/8 of the unknown reporters have unique tempo-
rary names during some epoch, and will be detected in this
epoch. We conclude that the number of unknown reporters
is reduced in each call of the Procedure DetectFraction and
only an (1 − 1/8) = 7/8-fraction of the reporters that were
unknown before calling DetectFraction remain unknown.
At some point, all but 1

6
logn reporters have been detected.

These remaining reporters are then determined by Algo-
rithm AS , and it follows that Algorithm AL correctly iden-
tifies all reporters.

Complexity: It holds that at least 1
8
k′old of the k′old re-

porters that were unknown before executingDetectFraction
are detected during Procedure DetectFraction. Proce-
dure DetectFraction is called again if the new number k′new
of still unknown nodes is k′new >

1
6

logn.

Claim 1. If there are k′ reporters, DetectFraction needs
time O(k′) and O(log1+ρ n) channels.

Proof. By applying Lemma 3 with n′ := dn8/dlog lognee
and τ := dlogρ ne, we can deduce that 2c = 2τ ·dlog(n/k)e ∈
O
(
log1+ρ n

)
channels suffice and the time complexity of one

epoch is

O

((
k′

log(n/k)
+ log c

)
·

(
log n′

τ ·k′

log τ

))

= O
(

k′

log(logn) · log τ
+

log(c) · logn

log(logn) · log τ

)
= O

(
k′

(log logn)2
+

logn

log logn

)
,

which is O
(

k′

log logn

)
due to the range of k that we con-

sider in this case. In total, ∆ = log logn epochs are executed
and the claim follows.

When starting with k′ := k, in each call of Procedure
DetectFraction at least 1/8 of the remaining reporters are
detected. After i calls, k′ is reduced to at most (7/8)ik.
Claim 1 proves that k′ is less than 1

6
logn after at most∑log7/8(k− 1

6
logn)

i=0 O((7/8)ik) = O(k) time slots and we can
apply Algorithm AS .

Case 2: The correctness of Algorithm AL for the second
range of k follows directly from Lemma 3. Analogously,
both the channel and the time complexity can be derived by
applying Lemma 3 with n′ = n, τ = 2 and k′ = k: We get a
bound on the channel complexity of O(log(n/k)), and a time

complexity of O
((

k
log(n/k)

+ log c
)
· log(n/k)

)
= O(k).

4. LOWER BOUND
In this section, we prove a lower bound on the number of

channels required to achieve a time complexity of O(k) in a
deterministic setting. Again, we assume that k > 1 as the
information exchange problem is trivial for k ≤ 1. Through-
out this section, the nodes are allowed to send and listen
on all c channels at the same time; moreover, the nodes can
detect collisions, i.e., they have the ability to distinguish be-
tween a collision and a transmission-free channel. Thus, the
lower bound holds in a stronger model than the algorithms
we described.

We proceed by first showing that for any deterministic al-
gorithmA there is an assignment of the k reporters such that
it takes at least a certain number of communication rounds
to detect them given a specific number of channels c. As
we will see, this result directly implies a lower bound on the
number of channels required to guarantee a time complexity
of O(k). In order to prove that there is such an assignment,
we introduce the notion of potential reporters, which are all
the nodes that may be reporters after a certain number of
communication rounds. In particular, this means that an
“adversary” may still decide for each node among the poten-
tial reporters whether or not it is a reporter subject to the
constraint that k nodes must be reporters. Formally, let R`

denote the set of all potential reporters after ` ≥ 0 rounds
of communication. Naturally, we have that R0 = V . The
following lemma, which states that there is an assignment
of reporters for which the number of potential reporters is
reduced by at most a factor of (c + 1)2 per communication
round, is key for the arguments used later.

Lemma 4. Assume that all nodes only know that the k
reporters are in R`, where |R`| ≥ (c+1)2 ·(k+2), after ` ≥ 0
rounds of communication. The reporters can be assigned in
such a way that after ` + 1 rounds of communication all
nodes only know that the k reporters are in R`+1, where
|R`+1| ≥ b|R`|/(c+ 1)2c.

Proof. Consider the actions of the nodes when executing
round `+1 of algorithm A. Let R`(i,j) denote the set of nodes

that would send on channel i ∈ {0, 1, . . . , c} if they were a
reporter and send on channel j ∈ {0, 1, . . . , c} if they were
a non-reporter, where sending on channel 0 simply means
that the node remains silent. Thus, there are exactly (c+1)2

possible actions. Consequently, there must be a set R`(i′,j′) ⊆
R` of size |R`(i′,j′)| ≥ b|R`|/(c + 1)2c ≥ k + 2. We now

argue that we can set R`+1 := R`(i′,j′) and that all nodes
do not know anything about the reporters except that they
are in R`+1. Note that by definition, the k reporters all
send on channel i′ and the 2 or more non-reporters send on
channel j′, causing collisions on these channels. Of course,
it is possible that i′ = j′, in which case they only cause one
collision, or even no collision if i′ = j′ = 0. Either way, no
message is transmitted, and all nodes may at best learn that
the reporters are in R`(i′,j′) ∪R`(j′,i′) ⊇ R`(i′,j′). If the nodes

in V \R`(i′,j′) cause additional collisions, the set of potential
reporters may only become larger. It is possible that some of
these nodes successfully transmit messages. However, since
they do not possess any information that the other nodes do
not already know from always listening on all channels, these
transmissions cannot reduce the size of the set of potential
reporters, which proves the claim.

While Lemma 4 is used in the proof of Theorem 5 for
small k, the next lemma strengthens our bound for large k .

Lemma 5. Any deterministic information exchange algo-
rithm with time complexity O(k) needs Ω(logk n) channels.

Proof. A time complexity lower bound of Ω(k logk n)
has been proven in the same model for one channel [13]. Any
algorithm that is restricted to using one channel can simulate
an algorithm that uses c channels by splitting each round
into c sub-rounds and sending the messages that would be
transmitted on channel i ∈ {1, . . . , c} in the ith sub-round.
Thus, simulating an algorithm on up to c channels takes at
most c times longer, implying a time complexity of at least

Ω(k logk n

c
) for any algorithm on up to c channels. Restricting

the time to O(k) communication rounds, implies that the
number of channels must be at least Ω(logk n).

We can now prove the following theorem.

Theorem 5. If 1 < k < n1−ε for some constant ε > 0
and n is sufficiently large, any deterministic information
exchange algorithm whose time complexity is O(k) needs

Ω(nΩ(1/k) + logk n) channels.

Proof. Lemma 4 states that there is an assignment of
reporters such that the set of potential reporters shrinks at
most by a factor of (c + 1)2 in each communication round,
which entails that the set of potential reporters is larger than
k after ` < 1

2
log(c+1)

(
n
k

)
rounds. Thus, the time complexity

is at least Ω(logc
n
k

). In order to achieve an upper bound

of O(k), it must therefore hold that c ∈ Ω((n/k)Ω(1/k)) =

Ω(nΩ(1/k)), where we use that k < n1−ε. Hence the number
of channels is at least Ω(logk n) according to Lemma 5.

5. REFERENCES
[1] A. F. Anta, M. A. Mosteiro, and J. R. Muñoz.

Unbounded Contention Resolution in Multiple-access
Channels. In Proc. 25th International Symposium on
Distributed Computing (DISC), pages 225–236, 2011.

[2] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and
R. Reischuk. Renaming in an Asynchronous
Environment. Journal of the ACM (JACM),
37(3):524–548, 1990.

[3] M. Bienkowski, M. Klonowski, M. Korzeniowski, and
D. R. Kowalski. Dynamic Sharing of a Multiple Access
Channel. In Proc. 27th International Symposium on
Theoretical Aspects of Computer Science (STACS),
pages 83–94, 2010.

[4] M. Capalbo, O. Reingold, S. Vadhan, and
A. Wigderson. Randomness Conductors and
Constant-degree Lossless Expanders. In Proc. 34th
Annual ACM Symposium on Theory of Computing
(STOC), pages 659–668, 2002.

[5] A. Castañeda, S. Rajsbaum, and M. Raynal. The
Renaming Problem in Shared Memory Systems: an
Introduction. Technical report, INRIA, 2010.

[6] B. Chlebus and D. Kowalski. Asynchronous Exclusive
Selection. In Proc. 27th Annual ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 375–384, 2008.

[7] B. Chlebus, D. Kowalski, and T. Radzik.
Many-to-Many Communication in Radio Networks.
Algorithmica, 54(1):118–139, 2009.

[8] B. Chlebus, D. Kowalski, and M. Rokicki.
Average-time Complexity of Gossiping in Radio
Networks. In Proc. 13th International Colloquium in
Structural Information and Communication
Complexity (SIROCCO), pages 253–267, 2006.

[9] J. Czyzowicz, L. Gasieniec, D. R. Kowalski, and
A. Pelc. Consensus and Mutual Exclusion in a
Multiple Access Channel. In Proc. 23rd International
Conference on Distributed Computing (DISC), pages
512–526, 2009.

[10] S. Dolev, S. Gilbert, R. Guerraoui, and C. Newport.
Secure Communication Over Radio Channels. In Proc.
27th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages
105–114, 2008.

[11] S. Gilbert, R. Guerraoui, D. Kowalski, and
C. Newport. Interference-resilient Information
Exchange. In Proc. 28th IEEE Conference on
Computer Communications (INFOCOM), 2009.

[12] S. Gilbert and D. Kowalski. Trusted Computing for
Fault-Prone Wireless Networks. In Proc. 24th
International Symposium on Distributed Computing
(DISC), pages 359–373, 2010.

[13] A. Greenberg and S. Winograd. A Lower Bbound on
the Time Needed in the Worst Case to Resolve
Conflicts Deterministically in Multiple Access
Channels. Journal of the ACM (JACM),
32(3):589–596, 1985.

[14] S. Holzer, Y. Pignolet, J. Smula, and R. Wattenhofer.
Time-Optimal Information Exchange on Multiple
Channels. In Proc. 7th ACM SIGACT-SIGMOBILE
International Workshop on Foundations of Mobile
Computing (FOMC), 2011.

[15] D. Kowalski. On Selection Problem in Radio
Networks. In Proc 24th Annual ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 158–166, 2005.

[16] E. Kushilevitz and Y. Mansour. An Ω(D log(N/D))
Lower Bound for Broadcast in Radio Networks. SIAM
Journal on Computing (SICOMP), 27(3):702–712,
1998.

[17] K. Nakano and S. Olariu. Randomized Initialization
Protocols for Ad Hoc Networks. IEEE Transactions
on Parallel and Distributed Systems (TPDS),
11(7):749–759, 2000.

[18] D. E. Willard. Log-logarithmic Selection Resolution
Protocols in a Multiple Access Channel. SIAM Journal
on Computing (SICOMP), 15(2):468–477, 1986.

