
Dept. of Computer Science 
Distributed Computing Group

Asymptotically Optimal 
Mobile Ad-Hoc Routing

Fabian Kuhn

Roger Wattenhofer

Aaron Zollinger



Distributed Computing Group

Overview

• Introduction

• Model

• Face Routing

• Adaptive Face Routing

• Lower Bound

• Conclusion



Distributed Computing Group

Model I (Ad-Hoc Network)

• Nodes are points in R2

• All nodes have the same transmission
range (normalized to 1)

⇒ network is a unit disk graph

• Distance between any two nodes is
lowerbounded by a constant d0

⇒ Ω(1)-model
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Model II (Geometric Routing)

• Nodes know the geometric positions of 
themselves and of their neighbors

• Source s knows the coordinates of 
destination t

• Nodes not allowed to store anything

• In the message, only O(logn) additional 
bits can be stored
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Cost Model I

• Cost of sending a message over a link 
(edge) e is c(e)

• Cost of a path p is the sum over the 
costs of its edges

• Cost of a routing algorithm A is the sum 
over the costs of the traversed edges
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Cost Model II

3 different cost metrics:

• Link distance metric (c (e)≡1)

• Euclidean distance (cd(e))
• Energy metric (cE(e):=cd

2(e))
more general: cE(e):=cd

α(e) for an α≥2
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Costs are Equivalent

Lemma:

In the Ω(1)-model the link, Euclidean, and 
energy metrics of a path or an algorithm are
equivalent up to a constant factor.
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Face Routing

geometric routing algorithm for planar
graphs

Compass Routing on Geometric Networks
[Kranakis, Singh, Urrutia; 1999]
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Face Routing
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Face Routing (Faces)
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Face Routing (Analysis)

Lemma:

Face Routing always finds a path to the
destination. The total cost of Face Routing 
is O(n).
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Face Routing (Analysis)

Proof Sketch:
• each face is explored at most once

each edge is traversed at 
most four times

⇒

• there are at most 3n-6 edges (Euler formula)
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Problem of Face Routing

• Face Routing always reaches destination

• However, even if source and destination 
are close to each other, Face Routing 
can take O(n) steps.

• We would like to have an algorithm, 
whose cost is a function of the cost of an 
optimal path.
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AFR on the Unit Disk Graph

• AFR needs a planar graph, UDG is not 
planar

• need a planar subgraph of UDG:
– simple distributed construction

– spanner for link distance, Euclidean, and 
energy metric
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Two nodes u and v are 
connected by an edge 
iff the circle with uv as 
diameter contains no 
other node.

Gabriel Graph

Definition:

u

v

uv
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Properties of GG ∩ UDG

• For each pair of nodes, the GG (∩ UDG) 
contains an energy optimal path (on UDG).
⇒ spanner for link, Eucl. dist., energy (Ω(1)-model)

• planar

• no additional communication

⇒ meets all our requirements
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AFR Complexity

Theorem 1:

Let c* be the cost (link, Euclidean, or
energy) of an optimal path between two
nodes on the UDG. Applying AFR on 
GG∩UDG then terminates with cost O(c*

2).
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AFR Complexity, Proof I

Lemma:
For each used ellipse E, the cost is linear in 
the number of nodes in E.

Collorary:
In the Ω(1)-model, for each used ellipse E, 
the cost is linear in area covered by E.
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AFR Complexity, Proof II

Lemma:
The cost, AFR needs to route a packet, is
linear in the area covered by the last used
ellipse.

Ellipses grow exponentially

⇓
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AFR Complexity, Proof III

Lemma:
Using an ellipse E, AFR finds a path from s
to t iff there is such a path inside E.

Lemma:
All paths of (Euclidean) length smaller or
equal to c are inside an ellipse whose area
is in O(c2).
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AFR Complexity, Proof IV

All the lemmas together now prove 
Theorem 1.
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Lower Bound

Theorem 2:

Let c* be the cost (link, Euclidean, or
energy) of an optimal path between two
nodes on a UDG G. For each geometric
routing algorithm, there is a graph for which
the cost is Ω(c*

2).
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Lower Bound, Proof
w

ts

Cost of optimal path:

Exp. cost for an 
algorithm A:
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Main Theorem

Theorem 3:

On the Unit Disk Graph in the Ω(1)-model, 
AFR is asymptotically optimal.

(follows directly from Theorems 1 and 2)
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Conclusion I

• works fine for link and Euclidean distance 
(still Θ(c*

2))
• For energy, it can be shown that the cost 

of a geometric routing alg. cannot be 
bounded by a function of c* alone.

Ω(1) restriction can be dropped by clustering:
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Conclusion II

• The lower bound holds for all routing 
algorithms which have only local 
knowledge at the beginning.

• if coordinates of dest. are not known, 
but if each node can store some bits:
Then there is a simple flooding variant 
which achieves O(c*

2).


