
Trading Bit, Message, and Time Complexity of
Distributed Algorithms

Johannes Schneider, Roger Wattenhofer

Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich,
Switzerland

Abstract

We present tradeoffs between time complexity t, bit complexity b, and message
complexity m. Two communication parties can exchange Θ(m log(tb/m2) + b)
bits of information for m <

√
bt and Θ(b) for m ≥

√
bt. This allows to derive

lower bounds on the time complexity for distributed algorithms as we demon-
strate for the MIS and the coloring problems. We reduce the bit-complexity
of the state-of-the art O(∆) coloring algorithm without changing its time and
message complexity. We also give techniques for several problems that require
a time increase of tc (for an arbitrary constant c) to cut both bit and message
complexity by Ω(log t). This improves on the traditional time-coding technique
which does not allow to cut message complexity.

1 Introduction

The efficiency of a distributed algorithm is assessed with at least one out of three
classic distributed complexity measures: time complexity (number of rounds for
synchronous algorithms), communication or bit complexity (total number of bits
transmitted), and message complexity (total number of messages transmitted).
Depending on the application, one or another measure might be more relevant.
Generally speaking, time complexity has received most attention; but commu-
nication complexity (bandwidth constraints) or message complexity (accounting
for message overhead) play a vital role as well. One cannot just ignore one of the
measures, as there are tradeoffs: One may for instance sometimes cut down on
time by exchanging larger messages. Alternatively, one may save messages and
bits by communicating “silently”. Two parties may for instance communicate for
free by telephone by simply never picking up the phone, and instead letting the
phone ring for a long time when transmitting a binary 1, and just a short time
for a binary 0. A more sophisticated example for silent communication employs
time-coding to communicate information through time. As illustration consider
pulse-position modulation, as used in wireless and optical communication. A k-
bit message can be dispersed over time by encoding the message with a single
pulse in one of 2k possible slots. Employing a single pulse within time t allows to
communicate at most log t bits.1 Reducing message complexity is harder in gen-

1 The amount of information that can be communicated follows directly from our
bound.

eral, and in some cases impossible as there are dependencies between messages.
In this paper, we identify mechanisms for symmetry breaking that cut both
message and bit complexity by a factor of log t, even though multiple messages
cannot be combined into a single message through time-coding.

Although it is well-known that these dependencies exist, to the best of our
knowledge the tradeoffs are not completely understood. A considerable amount
of work deals with both message size and time complexity. These two measures
give a (rough) bound on the bit complexity, e.g. time multiplied by message
size as an upper bound. However, we show that for a given fixed bit complexity
allowing many arbitrary small messages (i.e. consisting of 1 bit) compared to
allowing only one large message might cause a drastic (up to exponential) gain
in time. For some examples both the time and overall message complexity, i.e.
the messages transmitted by all nodes, have been optimized, but the tradeoffs
between all three have not been investigated to the best of our knowledge.

In the first part of the paper we answer questions like “If we can prolong an
algorithm by a factor t in time and can increase the number of messages by a fac-
tor m, what is the effect on the bit complexity b?” We give a tight bound on the
amount of information exchangeable between two nodes of Θ(m log(tb/m2) + b)
bits for m <

√
bt and Θ(b) for larger m. A bound on the (communicable) infor-

mation together with a bound on the minimum required information that has
to be exchanged to solve a problem yields bounds on the time-complexity. We
derive such bounds for typical symmetry breaking problems, such as coloring
and maximal independent sets. We show that for t ∈ [2, n] any MIS and O(∆)
coloring algorithms using up to c0 log n/ log t bits and messages for a constant c0
require time t. In light of the state of the art upper bounds for unrestricted com-
munication of O(log n) using O(log n) bits for the MIS problem, and O(log∗ n)
for the O(∆) coloring problem, our lower bound indicates that even a logarith-
mic factor of log t in the amount of transmittable bits can make more than an
exponential difference in time.

In the second part, we identify two coding schemes, i.e. transformations, to
gain a factor log t in bit as well as message complexity by a time increase of tc

that cannot be achieved with traditional time coding. We employ them to de-
terministic and randomized coloring and maximal independent set algorithms.
Our techniques are applicable beyond these problems, e.g. for certain divide-
and-conquer algorithms. We also improve the bit complexity for the fastest ran-
domized O(∆+log1+1/ log∗ n n) coloring for ∆ being at least polylogarithmic, i.e.
from O(log∆ log n) to O(log n log log n), while maintaining its time complexity.

2 Related Work

In [7] the notion of “bit rounds” was introduced in the context of a coloring
algorithm, where a node must transmit either 0 or 1 in one bit round. This
bit round complexity is an interesting hybrid between time and bit complexity,
particularly useful in systems where sending a single bit does not incorporate a
significant protocol overhead. The paper [7] also states a lower bound of Ω(log n)

bit rounds to compute a coloring on a ring. In contrast, our bit-time complexity
model is motivated by the fact that in practice time is frequently divided into
slots, i.e. rounds, and nodes might not transmit at all in a slot or they might
transmit more than a single bit. In some sense, the bit-time complexity model
unifies algorithm complexity focusing on running time and communication com-
plexity. For a survey on communication complexity see [11]. In a common set-up
two (or more) parties A,B want to compute a function f that depends on values
held by A and B and the goal is to derive bounds on the needed information.
For example, [16] shows that for some network topologies (involving more than
two nodes) reducing the number of allowed message exchanges by 1 can expo-
nentially increase the time complexity. The amount of exchangeable information
between two parties given a certain number of messages and time can be found
in e.g. [17]. To the best of our knowledge, we are the first to extend the tradeoff
to allow for a variable number of bits per message.

In [3] the communication complexity of breaking symmetry in rings and
chains is investigated. In [4] the running time of MIS algorithms is investigated
depending on the amount of advice (measured in bits) that nodes are given be-

fore the start of the algorithm. For a ring graph it is shown that Ω(n/ log(k) n)
bits of information are needed for any constant k to break the lower bound of
Ω(log∗ n) [12]. At first, asking a global instance, knowing the exact topology
of the graph, for advice seems to contradict the distributed approach. But the
question regarding the amount of needed information to solve a task is interest-
ing and valuable for enhancing the understanding of distributed algorithms. In
particular, since some (aggregate) knowledge of the graph is often necessary for
an efficient computation, e.g. the type of the graph.

There is a myriad of papers for different problems that consider two com-
plexity measures. However, whereas many papers concentrate on time complexity
and merely mention message size [14, 13, 8, 1, 2], others derive explicit tradeoffs
[5, 15, 6].

In a paper by Métivier et al. [15] an algorithm for the MIS problem was stated
running in time O(log n) with bit complexity O(log n) for general graphs. It im-
proves on the bit complexity of the fastest algorithm [14]. Essentially, each node
draws a random number in [0, n] and is joined the MIS, if its number is the small-
est. Our MIS algorithm trading time for bit/message complexity improves on [14]
through a different technique. For the MIS problem arbitrary large messages do
not allow for an arbitrary fast algorithm, i.e. in general graphs every algorithm re-
quires at leastΩ(

√
log n/ log log n) orΩ(log∆/ log log∆) communication rounds

for computing a MIS [9]. Interestingly, the opposite is true: An arbitrarily slow
algorithm allows for constant message and bit complexity. The lower bound is
achieved with a pseudo-symmetric graph, such that a node needs to get to know
its neighborhood up to distance Ω(

√
log n/ log log n) or Ω(log∆/ log log∆). For

the coloring problem, [18] presented a technique, where nodes select multiple
colors and keep any of them, if it is not also selected by a neighbor. The bit
complexity for ∆ + 1 as well as O(∆) algorithms is O(log∆ log n). The latter

runs in time O(log∗ n) for graphs with ∆ ∈ Ω(log1+1/ log∗ n n). Recently, [19]

used [18] to derive a (1 − 1/O(χ))(∆ + 1) coloring, where χ denotes the chro-
matic number of the graph. Deterministic ∆ + 1 coloring algorithms [1, 8] are
faster for graphs of sublogarithmic degrees, i.e. need O(∆ + log∗ n) time and
might require a message exchange of size O(log n) in a communication round.

Apart from applications that rely only on pure time-coding, in [20] a data
gathering protocol is implemented saving on energy and bandwidth by coding
messages partly through time.

3 Model and Definitions

The communication network is modeled with a graph G = (V,E). For each
node, there exists a distinct communication channel (edge) to each neighbor.
Initially, a node v only knows the number of neighbors |N(v)| and has no other
information about them. We use the message passing model, i.e. each node can
exchange one distinct message with each of its neighbors in one synchronous
communication round. Communication is error free. All nodes start executing
the algorithm concurrently. The time complexity denotes the number of rounds
until the last node terminates.

In a (vertex) coloring any two neighboring nodes u, v have a different color. A
set T ⊆ V is said to be independent in G if no two nodes u, v ∈ T are neighbors.
A set S ⊆ V is a maximal independent set (MIS), if S is independent and there
exists no independent superset T ⊃ S. In our algorithm a node remains active
as long as it might still join the MIS, i.e. as long as it has no neighbor in the MIS
and it is not in the MIS itself. Inactive nodes are removed from the graph G. For
a node v its neighborhood Nr(v) represents all active nodes within r hops of v
(not including v itself). We use N(v) for N1(v). The r hop neighborhood Nr(v)
including v is denoted by Nr

+(v). The term “with high probability” abbreviated
by w.h.p. denotes the number 1−1/nc for an arbitrary constant c. The maximum
degree is denoted by ∆ and ∆N+(v) denotes the maximum degree of a node in
N+(v), i.e. ∆N+(v) := maxu∈N+(v) d(u).

The bit complexity denotes the maximum sum of the number of bits trans-
mitted over any edge during the execution of the algorithm, i.e. if an algorithm
has time complexity t then the bit complexity is maxe∈E

∑t−1
r=0 be(r), where be(r)

denotes the number of bits transmitted over edge e in round r. Analogously, the
message complexity denotes the maximum number of messages transmitted over
any edge.

The time complexity of a distributed algorithm is traditionally defined as the
number of communication rounds until the last node completes the algorithm.
Somewhat inconsistently, message respectively bit complexity often measure the
total of all exchanged messages respectively bits (of all nodes) or the expectation
of message and bits exchanges of a single node during the execution. In this
paper, analogous to the definition of time complexity, we consider the worst
node only; in other words, the message respectively bit complexity is given by
the number of messages or bits exchanged by the most loaded node. Both views
have their validity, are commonly used and sometimes even coincide. The focus

on a more local “maximum” measure is motivated by the observation that for
distributed systems, an individual node might often form a bottleneck, and delay
an algorithm, although overall the constraints on bandwidth, energy etc. are
fulfilled. For example, if a single node in a battery powered sensor network must
transmit much more often than other nodes, it will become non-operational much
more quickly. This might have devastating effects on the network topology, e.g.
disconnecting it and thereby preventing further data aggregation.

4 Tight Bounds on the Transmittable Information

In all (reasonable) distributed algorithms nodes must exchange a certain mini-
mum of information with their neighbors. The amount of exchanged information
is not only given by the total amount of bits contained in the messages, but also
by the times, when the messages were sent and the size of the messages. In other
words, the number of different (observable) behaviors of a node v by a neighbor
u, i.e. the number of different ways v can communicate with u, determines the
total amount of exchanged information between two nodes. We first bound the
number of exchangeable information between two communication parties. By us-
ing a lower bound for the minimum needed amount of exchanged information for
any kind of problem one therefore gets a lower bound on the time complexity of
any algorithm depending on the bits and messages exchanged. We illustrate this
general technique by deriving lower bounds for the MIS and coloring problem.

Theorem 1 If a node executes t rounds using up to m ≤ t messages (at most
one message per round) with a total of b ≥ m bits within messages (i.e. at least
one bit per message), it can communicate in total Θ(m log(tb/m2) + b) bits for
m <

√
bt and Θ(b) bits for m ≥

√
bt.

Proof. A node can decide not to transmit at all or it can transmit in nr ∈ [1,m]
rounds {r1, r2, ..., rnr

} with ri ∈ [0, t − 1] for 1 ≤ i ≤ nr. In each chosen round
ri the node transmits at least one bit. The total number of choices of rounds
is given by

(
t
nr

)
. Say a node wants to transmit nri bits in round ri then the

sum of all bits transmitted nt in all rounds must be at least nr and at most
b, i.e. nr ≤ nt :=

∑nr

i=‘ nri ≤ b. Thus the number of all possible sequences
(nr1 , nr2 , ..., nrnr

) with nri ∈ [1, b−nr +1] is given by the composition of nt into
exactly nr parts, i.e. the number of ways we can write nt as a sum of nr terms,
i.e.

(
nt−1
nr−1

)
≤
(
nt

nr

)
. Each of the at most nt transmitted bits can either be 0 or

1, yielding 2nt combinations. Multiplying, these three terms and adding one for
the case that a node does not transmit, i.e.

(
t
nr

)
·
(
nt−1
nr−1

)
· 2nt + 1, gives a bound

on the different behaviors of a node for a fixed nr. Thus, overall the number of
behaviors is upper bounded by:

1 +

m∑
nr=1

b∑
nt=nr

(
t

nr

)
·
(
nt
nr

)
· 2nt ≤ 1 +mb · max

1≤nr≤m,0≤nt≤b

(
t

nr

)
·
(
nt
nr

)
· 2nt

≤ 1 +mb · max
1≤nr≤m

(
t

nr

)
·
(
b

nr

)
· 2b

The last inequality follows due to nr ≤ nt ≤ b. We have
(
n
k

)
≤ (ne/k)k, thus(

b
nr

)
≤ (eb/nr)

nr . Continuing the derivation we get:

≤ 1 +mb · max
1≤nr≤m

(et/nr)
nr · (eb/nr)nr · 2b ≤ 1 +mb · 2b max

1≤nr≤m
(e2bt/n2r)

nr

Next we compute the maximum:

d

dnr
(e2bt/n2r)

nr = (e2bt/n2r)
nr · (ln(e2bt/n2r)− 2) = 0

⇔ ln(e2bt/n2r)− 2 = 0⇔ e2bt/n2r = e2 ⇔ nr =
√
bt

For m ≥
√
bt we get: 1 +mb · 2b max1≤nr≤m(e2bt/n2r)

nr ≤ (m+ 1) · 2b · (e2)
√
bt

For m <
√
bt: 1 +mb ·2b max1≤nr≤m(e2bt/n2r)

nr ≤ (m+ 1)(b+ 1) ·2b(e2bt/m2)m

Taking the logarithm yields the amount of transmittable information being
asymptotically equal to O(m log(tb/m2) + b) for m <

√
bt, since t ≥ m and

b ≥ m and O(b+
√
bt) = O(b) for b ≥ m ≥

√
bt.

With the same reasoning as before a lower bound can be computed. We use(
n
k

)
≥ (n/k)k we have

(
b−1
nr−1

)
≥ ((b− 1)/(nr − 1))nr−1.

1 +

m∑
nr=1

b∑
nt=nr

(
t

nr

)
·
(
nt − 1

nr − 1

)
· 2nt ≥ max

1≤nr≤m,0≤nt≤b

(
t

nr

)
·
(
nt − 1

nr − 1

)
· 2nt

≥ max
1≤nr≤m

(
t

nr

)
·
(
b− 1

nr − 1

)
· 2b ≥ 2b max

1≤nr≤m
(t/nr)

nr · ((b− 1)/(nr − 1))nr−1

≥ 2b max
1≤nr≤m

((b− 1)t/((nr − 1)nr))
nr−1 ≥ 2b max

1≤nr≤m
((b− 1)t/n2r)

nr−1

Next we compute the maximum:

d

dnr
((b− 1)t/n2r)

nr−1 = ((b− 1)t/n2r)
nr−1 · (ln(((b− 1)t/n2r))− 2 + 1/nr) = 0

⇔ ln((b−1)t/n2r)−2+1/nr = 0⇔ (b−1)t/n2r = e2−1/nr ⇔ nr =
√

(b− 1)t/e1+1/(2nr)

For m ≥
√

(b− 1)t/e1+1/(2nr) we have: 2b max1≤nr≤m((b − 1)t/n2r)
nr−1 ≥

2b(e2)
√

(b−1)t/e2−1

For m <
√

(b− 1)t/e1+1/(2nr): 2b max1≤nr≤m((b − 1)t/n2r)
nr−1 ≥ 2b(e2(b −

1)t/m2)m−1

This, yields Ω(m log(tb/m2) + b) for m <
√

(b− 1)t/e1+1/(2nr), since t ≥ m

and b ≥ m and Ω(b+
√
bt) ≥ Ω(b) for m ≥

√
(b− 1)t/e1+1/(2nr).

Overall, the bounds become Θ(m log(tb/m2) + b) for m <
√
bt and Θ(b)

otherwise.

Corollary 2 The amount of information that k parties can exchange within
t rounds, where each party can communicate with each other party directly and
uses up to m ≤ t messages (at most one message per round) with a total of b ≥ m
bits (i.e. at least one bit per message) is Θ(km log(tb/m2) + b) for m <

√
bt and

Θ(kb) bits for m ≥
√
bt.

Proof. Compared to Theorem 1, where one node A only transmits data to an-
other node B, the number of observable behaviors if k nodes are allowed to
transmit is raised to the power of k, i.e. if one node can communicate in x dif-
ferent ways then the total number of observable behaviors becomes xk. Taking
the logarithm gives the amount of exchangeable information for k parties, i.e.
log(xk) = k log x, where log x is the amount of information a single node can
transmit as stated in Theorem 1.

4.1 Lower Bound on the Time Complexity Depending on the Bit
(and Message) Complexity

We first bound the amount of information that must be exchanged to solve the
MIS and coloring problem. Then we give a lower bound on the time complexity
depending on the bit complexity for any MIS and coloring algorithm where a
message consists of at least one bit.

Theorem 3 Any algorithm computing a MIS (in a randomized manner) in a
constant degree graph, where each node can communicate less than c0 log n bits
for some constant c0 fails (w.h.p.).

The intuition of the so called “fooling set” argument proof is as follows: If a
node cannot figure out what its neighbors are doing, i.e. it is unaware of the IDs
of its neighbors, its chances to make a wrong choice are high.

Proof. Let us look at a graph being a disjoint union of cliques of size 2, i.e. every
node has only one neighbor. A node can communicate in up to 2c0 logn = nc0

distinct ways. In the deterministic case, let Bu ∈ [0, nc0 − 1] be the behavior
that a node u decides on given that it sent and received the same information
throughout the execution of the algorithm. Clearly, before the first transmission
no information exchange has occurred and each node u fixes some value Bu.
Since there are only nc0 distinct values for n nodes, there exists a behavior
B ∈ [0, nc0 − 1], which is chosen by at least n1−2c0 nodes given that they sent
and received the same information.

Consider four arbitrary nodes U = {u, v, w, x} that receive and trans-
mit the same information. Consider the graph with G′ = (U, {(u, v), (w, x)})
where u, v and also w, x are incident, G′′ = (U, {(v, w), (u, x)}) and G′′′ =
(U, {(u,w), (v, x)}). Note that u, v, w, x have no knowledge about the identity
of their neighbors (They only know that their degrees are 1). Assume a deter-
ministic algorithm correctly computes a MIS for G′ and v is joined the MIS,
then u is not joined the MIS in G′ but also not in G′′′, since it cannot distin-
guish G′ from G′′′. Thus w must join the MIS to correctly compute a MIS for

G′′′. Therefore, both v, w are joined the MIS S in G′′ and thus S violates the
independence condition of a MIS.

For the randomized case the argument is similar. Before the first transmission
all nodes have received the same information. Since there are only nc0 distinct
behavior for n nodes at least a set S of nodes of cardinality |S| ≥ n1−c0 will decide
to transmit the same value B with probability at least 1/n2c0 (given a node sent
and received the same information). Now, assume we create a graph by iteratively
removing two randomly chosen nodes u, v ∈ S and adding an edge (u, v) between
them until S is empty. For each node v ∈ S must specify some probability to
be joined the MIS. Assume the algorithm sets at least |S|/2 nodes to join with
probability at least 1/2. Given that at most |S|/4 nodes have been chosen from
S to form pairs, the probability that two nodes u, v out of the remaining nodes
joining the MIS with probability 1/2, i.e. ≥ |S|/2 − |S|/4 = |S|/4 nodes, are
paired up is at least 1/16 independently of which nodes have been paired up
before. The probability that for a pair u, v behaving identically both nodes u, v
join (and thus the computation of the MIS fails) is at least 1/4. Since we have
|S|/2 = n1−2c0/2 pairs, we expect a set S′ ⊂ S of at least n1−6c0/2 · 1/16 · 1/4
pairs to behave identically and join the MIS. Using a Chernoff bound for any
constant c0 < 1/6 at least |S′| ≥ n1−6c0/1024 nodes behave identically with
probability at least 1− 1/nc for an arbitrary constant c.

An analogous argument holds if less |S|/2 nodes are joined with probability
more than 1/2. In this case for some pairs u, v w.h.p. no node will join the MIS.

Theorem 4 Any algorithm computing a MIS or coloring deterministically (or
in a randomized manner) transmitting only b ≤ c1

logn
log(t/ logn) bits per edge with

t ∈ [2 log n, nc2] for constants c1, c2 requires at least t time (w.h.p.). For t <
2 log n and b ≤ c1 log n bits no algorithm can compute a MIS (w.h.p.).2

Proof. If m ≥
√
tb using the bound of Θ(b) of Theorem 1, a node can communi-

cate at most cthmc1 log n bits for a constant cthm. We have cthmc1 log n ≤ c0 log n
for a suitable constant c1. Due to Theorem 3 at least c0 log n bits are needed.
For t < 2 log n and b ≤ c1 log n, we have

√
tb ≤ 2c1 log n. If m <

√
tb, then

the amount of transmittable information becomes (neglecting cthm for now)
(m log(tb/m2) + b) ≤

√
tb log 2 + c1 log n ≤ 3c1 log n ≤ c0 log n for a suitable

constant c1.

For t ≥ 2 log n and m ≤ b ≤
√
tb the amount of transmittable in-

formation becomes O(m log(tb/m2) + b). We have maxm≤bm log(tb/m2) ≤
b log(t/b). The maximum is attained for m = b. Using the assumption b ≤
c1

logn
log(t/ logn) , we get further: b log(t/b) ≤ c1 logn

log(t/ logn) ·log(t log(t/ log n)/ log n) =

c1
logn

log(t/ logn) ·(log(t/ log n) + log(log(t/ log n))) = c1 log n
(

1 + log(log(t/ logn))
log(t/ logn)

)
≤

2c1 log n(since t ≤ n). Thus, we have m log(tb/m2)+b ≤ 2c1 log n+b ≤ 3c1 log n.

2 Note that the theorem does not follow directly from Theorem 3, since the number
of bits that can be communicated using time-coding is generally larger than b, i.e.
see Theorem 1.

Due to Theorem 3 at least c0 log n bits required, thus for 3c1cthm < c0 at
least time t is required. The lower bound for the MIS also implies a lower bound
for O(∆) coloring, since a MIS for constant degree graphs can be computed from
a coloring in constant time, i.e. in round i nodes with color i are joined the MIS,
if no neighbor is already in the MIS.

In a later section, we give an algorithm running in time O(t log n) using
O(log n/ log t) messages and bits. Thus, there exists an algorithm running in
O(log n) time transmitting only log n/c messages containing one bit for any con-
stant c. On the other hand, due to our lower bound any algorithm that transmits
only one message containing log n/c bits for a sufficiently large constant c re-
quires time n1/c1 for some constant c1 and is thus exponentially slower.

5 Algorithms Trading among Bit, Message, and Time
Complexity

We look at various deterministic and randomized algorithms for the coloring
and the maximal independent set problem as case studies. Before showing the
tradeoffs we reduce the bit complexity of the algorithms without altering the
time complexity. Then we show two mechanisms how prolonging an algorithm
can be used to reduce the bit and – at the same time – the message complexity.

The first mechanism is straight forward and useful for randomized algorithms
for symmetry breaking tasks, e.g. for MAC protocols where nodes try to acquire
a certain resource. Assume a node tries to be distinct from its neighbors or
unique among them. For example, for the coloring problem, it tries to choose
a distinct color from its neighbors. For the MIS problem it tries to mark itself,
and joins the MIS, if no neighbor is marked as well. Thus, if two neighbors get
marked or pick the same color, we can call this a collision. We can reduce the
probability of collisions by reducing the probability of a node to pick a color or
get marked in a round. Thus, if a node only transmits if it has chosen a color or
got marked, this causes less bits to be transmitted.

The second mechanism is beneficial for certain distributed algorithms that
solve problems by iteratively solving subproblems and combining the solutions.
Often the size (or number) of subproblems determines the number of iterations
required, e.g. for divide and conquer algorithms. Assume that a distributed al-
gorithm requires the same amount of communication to solve a subproblem
independent of the size of the subproblem. In this case, by enlarging the size
of the subproblem, the total number of iterations and thus the total amount of
information to be transmitted can be reduced.

Apart from that there are also general mechanisms that work for any algo-
rithm. Encoding information using the traditional time coding approach for k
rounds works as follows: To transmit a value x we transmit x div k in round
x mod k.3 Thus, in case k ≥ 2x − 1 a single message of one bit is sufficient.

3 The division operation x div k returns an integer value that states how often number
k is contained in x.

Otherwise log x − log k bits are needed. Our lower bound (Theorem 1) shows
that a value of log x bits can be communicated by transmitting less than log x
bits using more than one message and more than one communication round.

5.1 Coloring Algorithm

In the randomized coloring algorithms using the Multi-Trials technique [18] a
node v picks a random number in [0, ∆] for each color not taken by one of its
neighbors. Thus, given that a node can choose among C(v) unused colors, the
size of a message is log∆ · |C(v)|. In [18] this is improved by letting a node pick
one color out of every maxu∈N(v) 2d(u) colors. This results in bit complexity of
O(log∆ log n) for O(∆) and ∆+ 1 coloring. We use the improved algorithms as
subroutines.

To lower the bit complexity while maintaining the same time complexity we
let nodes get a color in two steps. First, a node picks an interval of colors. Second,
it attempts to obtain an actual color from the chosen interval.

5.2 Randomized O(∆+ log1+1/ log∗ n n) Coloring

We assume that initially each node v has |C(v)| = (1 + 1/2log
∗ n−2)(∆N+(v) +

log1+1/ log∗ n n) colors available. Each node v considers disjoint intervals
([0, l − 1], [l, 2l − 1], ...) of colors, where each interval contains l := (1 +

1/2log
∗ n−1) log1+1/ log∗ n n colors and the total number of intervals is given by

|C(v)|/l. A node v first picks one of these intervals I(v) ∈ {0, 1, ..., |C(v)|/l} of
colors uniformly at random. From then on, it only considers a subgraph GI(v) of
G, i.e. only neighbors u ∈ N(v) that have picked the same interval I(u) = I(v).
All other neighbors operate on different intervals and have no influence on node
v. Then, a coloring is computed in parallel for all subgraphs. That is to say, node
v executes Algorithm ConstDeltaColoring [18] on GI(v) and tries to get a color
or better said an index indI(v) from {0, 1, ..., l− 1} in the interval I(v). Its final
color is given by the indI(v) plus the color offset I(v) · l of the chosen interval
I(v).

Lemma 1. Each node v has at most log1+1/ log∗ n n neighbors u ∈ N(v) with
I(u) = I(v) w.h.p.

Proof. Initially, each node picks independently uniformly at random one in-
terval out of (1 + 1/2log

∗ n−2)∆N+(v)/((1 + 1/2log
∗ n−1) log1+1/ log∗ n n) = c1 ·

∆N+(v)/ log1+1/ log∗ n n many with c1 = (2log
∗ n−1 + 2)/(2log

∗ n−1 + 1). Thus, a

node v expects E ≤
∆N+(v)

c1·∆N+(v)/ log
1+1/ log∗ n n

= log1+1/ log∗ n n/c1 neighbors to

have chosen the same interval. Using a Chernoff bound the probability that
there are more than a factor 1 + c1/2 nodes beyond the expectation for a single

interval is bounded by 1− 2−c
2
1/8·E = 1− 2−c1/8 log1+1/ log∗ n n/c1 ≥ 1− 1/nc0 for

an arbitrary constant c0. Thus, w.h.p. the number of nodes in an interval is at
most (1 + c1/2) · log1+1/ log∗ n n/c1 ≤ log1+1/ log∗ n n. The probability that this

holds for all intervals can be bounded to be 1− 1/nc0−3 using Theorem 2 from
[18].

Theorem 5 The algorithm computes an O(∆+log1+1/ log∗ n n) coloring with bit
complexity O(log n log log n) in time O(log∗ n) w.h.p. (for sufficiently large n)

Proof. The initial transmission of the interval requires at most log n bits, i.e.
log∆− log log n. Afterwards, when all nodes are split into subgraphs, the same
analysis applies as for the ConstDeltaColoring Algorithm from [18] with ∆ ≤
log1+1/ log∗ n n, since each node only competes with at most log1+1/ log∗ n n − 1
other nodes due to Lemma 1 and we have (1 + 1/2log

∗ n−1) log1+1/ log∗ n n avail-
able colors. The colors are picked such that the chance of getting a chosen color
is constant, i.e. a node u picks one color for every sequence of 2∆N+(v) available
colors, where ∆N+(v) denotes the maximum size of an uncolored neighborhood
of an uncolored node v ∈ N(u) before the current communication round. Thus,
each node v that picks a color has probability 1/2 to actually get a color inde-
pendent of the choices of its neighbors, since the number of chosen colors of all
neighbors together is at most ∆N+(v), i.e. half the colors of all available colors
2∆N+(v) and node v makes its choice independent of the concurrent choices of its
neighbors. Thus, after a node has picked and transmitted O(log n) colors with
probability 1 − 1/2O(logn) = 1 − 1/nc for an arbitrary constant c, a node has
obtained a color. Since each color requires log log n bits the total bit complexity
is O(log n log log n). We can apply Corollary 14 [18] that gives a running time of
O(log∗ n) w.h.p.

5.3 Rand. O(∆) Coloring in Time tc using O(logn/ log t) Bits

One could use the previously described algorithm and traditional time coding
to save on the bit complexity maintaining the same number of transmitted mes-
sages. For readability and to illustrate both concepts quantitatively we focus
on the case tc ≥ log2+ε n (for an arbitrary small constant ε), where one can
save on both: the message complexity by a factor of log t and the bit complex-
ity by a factor of log log n log t.4 A node initially chooses an interval consisting
of (1 + 1/2log

∗ n−2) log1+1/ log∗ n n colors. Then the node iteratively transmits a
single bit in a random round out of every tp = tc/(c1 log n1+1/ log∗ n) rounds. If
it is the only one transmitting, it chooses a color, informs its neighbors about
the obtained color and ends the algorithm.

Theorem 6 The algorithm computes an O(∆ + log1+1/ log∗ n n) coloring with
bit complexity O(log n/ log t) in time tc + O(log∗ n) for any parameter c and t
such that tc ≥ log2+ε n and t ≤ n for an arbitrary constant ε > 0 w.h.p.

Proof. The initial transmission of the interval requires less than log n bits,
i.e. log∆ − log log n. We can use Theorem 1 with b = m = O(log n/ log t)

4 For small t ≤ 2 logn it is not possible to achieve bit complexity c1 logn/ log t for a
fixed constant c1 due to the lower bound given in Theorem 4.

Algorithm FewBitsDeltaColoring, i.e. (1 + ε)∆ for ε > 1/2log∗ n−2 and parameter
t > log2+ε n

1: s(v) := none; indI(v) := none; C(v) := {0, 1, ..., (1 + ε) log1+1/ log∗ n n− 1}
2: I(v) := random integer r ∈ [0, (1 + ε)∆N+(v)/ log1+1/ log∗ n n+ 1]
3: Transmit I(v) to all neighbors u ∈ N(v) using time tc/2 and logn/ log t bits and

messages
4: NI(v)(v) := {u ∈ N(v)|I(v) = I(u)} {Only consider nodes in the same interval}
5: i := 0; tp := tc/(c1 log1+1/ log∗ n n) {with constant c1}
6: repeat
7: if i mod tp = 0 then ts(v) := Random odd number in [0, tp] end if
8: if ts(v) = i then
9: Transmit 1

10: if nothing received then
11: indI(v) := arbitrary available color
12: Transmit indI(v)
13: end if
14: end if
15: N(v) := {u|u ∈ NI(v)(v) ∧ colorI(u) = none}
16: C(v) := C(v) \ {indI(u)|u ∈ N(v)}
17: i := i+ 1
18: until indI(v) 6= none

19: color(v) := indI(v) + I(v) · (1 + ε) log1+1/ log∗ n n

messages m and bits b and at least tc/2 ≥ (log2+ε n)/2 rounds. Since√
bt > m the amount of information that can be communicated is

Θ(m log(tb/m2) + b) = O(log n/ log t log(t/(log n/ log t)) + log n/ log t) ≥
O(log n/ log t log(t log t/ log n)) ≥ O(log n/ log t(log t + log(log t/ log n))) =
O(log n + log n(log log t/ log t − log logn/ log t) = O(log n) bits, since
log log n/ log tc < 1/2 because tc ≥ log2+ε n .

Due to Lemma 1 each node v has at most ∆0 := log1+1/ log∗ n n neighbors
competing for the (1+1/2log

∗ n−2) log1+1/ log∗ n n colors of v’s chosen interval. A
node v transmits one bit for each interval of length tp. Since nodes make their
choices independently, the probability that node v is the only node transmit-
ting is at least 1 − ∆0/tp, corresponding to the worst case that all neighbors

transmit in different rounds. We have ∆0/tp = ∆0/(t
c/(c2 log1+1/ log∗ n n) =

∆0 · c2 log1+1/ log∗ n n/tc ≤ c2 log2+2/ log∗ n n/tc(due to Lemma 1) ≤ 1/tc·1/c3

for some constant c3 since tc ≥ log2+ε n.Thus the chance O(log n/ log t) =
c4 log n/ log t trials fail is (1/tc/c3)c4 logn/ log t = 1/nc1 for an arbitrary constant
c1 and a suitable constant c4.

5.4 Deterministic ∆+ 1 Coloring

We adapt an algorithm [10] to turn a ∆k coloring for any constant k into a ∆+1
coloring in time O(tc∆ log∆) using O(log∆/ log t) messages of size O(log∆) and
for an arbitrary parameter t and arbitrary constant c. The algorithm reduces the

number of used colors in an iterative manner by splitting up the whole range
of colors into sequences of colors of size at least 2tc(∆ + 1). Consider all nodes
SI that have a color in some sequence I consisting of 2tc(∆ + 1) colors, e.g.
I = {0, 1, ..., 2tc(∆+ 1)− 1}. To compress the range of used colors to [0, ∆], we
can sequentially go through all 2tc(∆ + 1) colors and let node v ∈ SI choose
the smallest available color, i.e. in round i a node having the ith color in the
interval I can pick a new color from I not taken by any of its neighbors. After
going through all colors, we combine 2tc intervals {I0, I1, ..., I2tc−1} to get a new
interval I ′ of the same size, i.e. 2tc(∆ + 1) − 1. A node v with color i from Ij
with i ∈ [0, ∆] gets color c(v) = j · (∆+ 1) + i in I ′. Then we (recursively) apply
the procedure again on all intervals I ′.

Theorem 7 The deterministic ∆+ 1 coloring terminates in time O(tc∆ log∆)
having bit complexity O(log2∆/ log t) and message complexity O(log∆/ log t) for
any parameter 1 < t ≤ ∆ and any constant c.

Proof. We start from a correct ∆k coloring for some constant k. A node gets to
pick a color out of a sequence (c1, c1 + 1, ..., c1 + 2tc(∆+ 1)− 1) of 2tc(∆ + 1)
colors for c1 := c02tc(∆ + 1) and an arbitrary integer c0. Thus it can always
pick a color being at most c1 +∆ since it has at most ∆ neighbors. After every
combination of intervals requiring time 2tc(∆+1), the number of colors is reduced
by a factor of 2tc. We require at most x = k log∆/ log(2tc) combinations since
(2tc)x = ∆k. Therefore, the overall time complexity is O(tc∆ log∆). In each
iteration a node has to transmit one color out of 2tc(∆+ 1) many, i.e. a message
of log(2tc(∆ + 1)) = O(log∆) bits (since tc ≤ ∆) giving O(log2∆/ log t) bit
complexity.

5.5 MIS Algorithm

Our randomized Algorithm LowBitAndFast is a variant of algorithm [14]. It
proceeds in an iterative manner. A node v marks itself with probability 1/d(v).
In case two or more neighboring nodes are marked, the choice which of them
is joined the MIS is based on their degrees, i.e. nodes with higher degree get
higher priority. Since degrees change over time due to nodes becoming adjacent
to nodes in the MIS, the degree has to be retransmitted whenever there is a
conflict. Our algorithm improves Luby’s algorithm by using the fact that the
degree d(u) of a neighboring node is not needed precisely, but an approximation
d̃(u) is sufficient. Originally, each node maintains a power of two approximation
of the degrees of its neighbors, i.e. the approximation is simply the index of the
highest order bit equal to 1. For example, for d(v) having binary value 10110, it
is 4. The initial approximate degree consists of log log n bits. It is transmitted
using (well known) time coding for x = log n rounds, i.e. to transmit a value k
we transmit k div x in round k mod x. When increasing the time complexity by
a factor of tc0 for an arbitrary constant c0, a node marks itself with probability
1/(tc0 d̃(v)) for tc0 rounds, where the approximation is only updated after the tc0

rounds. Afterwards, a node only informs its neighbors if the degree changed by

Algorithm LowBitAndFast for arbitrary value tc0 ≥ 16

For each node v ∈ V :
1: d̃(v) := index of highest order bit of 2|N(v)| {2 approximation of d(v)}
2: Transmit d̃(v) to all neighbors u ∈ N(v) using time coding for logn rounds
3: loop
4: for i = 1..tc0 do
5: Choose a random bit b(v), such that b(v) = 1 with probability 1

4tc0 ·d̃(v)
6: Transmit b(v) to all nodes u ∈ N(v)

if b(v) = 1 ∧ @u ∈ N(v), b(u) = 1 ∧ d̃(u) ≥ d̃(v) then Join MIS end if
7: end for
8: k(v) := max{dlog ie|integer i, d̃(v)

i
≥ d(v)}

9: if k(v) > c0/2 log t then
10: Transmit k(v) using time message coding for tc0 rounds using c2 messages of

size 1 bit
11: d̃(v) := d̃(v) div 2k(v) + d̃(v) mod 2k(v)

12: end if
13: for all received messages k(u) do
14: d̃(u) := d̃(u) div 2k(u) + d̃(u) mod 2k(u)

15: end for
16: end loop

a factor of at least two. For updating the approximation we use time message
coding for tc0 rounds and a constant number of messages and bits. Whenever a
node is joined the MIS or has a neighbor that is joined, it ends the algorithm
and informs its neighbors.

Theorem 8 Algorithm LowBitAndFast terminates in time O(tc0 log n)
w.h.p. having bit and message complexity O(log n/ log t).

The analysis is analogous to [14] and differs only in the constants. The proof
can be found in [21].

References

1. L. Barenboim and M. Elkin. Distributed (δ + 1)-coloring in linear (in δ) time. In
Symposium on Theory of Computing(STOC), 2009.

2. L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylog-
arithmic time. In Symp. on Principles of distributed computing(PODC), 2010.

3. Y. Dinitz, S. Moran, and S. Rajsbaum. Bit complexity of breaking and achieving
symmetry in chains and rings. J. ACM, 2008.

4. P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc. Distributed computing with
advice: information sensitivity of graph coloring. Distributed Computing, 2009.

5. P. Fraigniaud and G. Giakkoupis. On the bit communication complexity of ran-
domized rumor spreading. In SPAA, 2010.

6. G. N. Frederickson and N. A. Lynch. Electing a leader in a synchronous ring. J.
ACM, 34(1), 1987.

7. K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed color-
ing in O(

√
logn) bit rounds. In International Parallel & Distributed Processing

Symposium (IPDPS), 2006.
8. F. Kuhn. Weak Graph Coloring: Distributed Algorithms and Applications. In

Parallelism in Algorithms and Architectures (SPAA), 2009.
9. F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally!

In Symposium on Principles of Distributed Computing (PODC), 2005.
10. F. Kuhn and R. Wattenhofer. On the Complexity of Distributed Graph Coloring.

In Symp. on Principles of Distributed Computing (PODC), 2006.
11. E. Kushilevitz and N. Nisan. Communication complexity. In Cambridge University

Press, 1997.
12. N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,

21(1):193–201, 1992.
13. Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate match-

ing. In SPAA, 2008.
14. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem.

SIAM Journal on Computing, 15:1036–1053, 1986.
15. Y. Métivier, J. M. Robson, S.-D. Nasser, and A. Zemmar. An optimal bit complex-

ity randomised distributed mis algorithm. In Colloquium on Structural Information
and Communication Complexity (SIROCCO), 2009.

16. N. Nisan and A. Wigderson. Rounds in communication complexity revisited. SIAM
J. Comput., 22(1), 1993.

17. N. Santoro. Design and Analysis of Distributed Algorithms. Wiley-Interscience,
2006.

18. J. Schneider and R. Wattenhofer. A New Technique For Distributed Symmetry
Breaking. In Symp. on Principles of Distributed Computing(PODC), 2010.

19. J. Schneider and R. Wattenhofer. Distributed Coloring Depending on the Chro-
matic Number or the Neighborhood Growth. In In Colloquium on Structural In-
formation and Communication Complexity (SIROCCO), 2011.

20. J. Schneider and R. Wattenhofer. Poster Abstract: Message Position Modula-
tion for Power Saving and Increased Bandwidth in Sensor Networks. In 10th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works (IPSN), 2011.

21. J. Schneider and R. Wattenhofer. Trading Bit, Message, and Time
Complexity of Distributed Algorithms. In TIK Technical Report 339,
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK- Report-339.pdf, 2011.

