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Representation Learning for Reinforcement Learn-
ing (RL4RL)

Reinforcement Learning has achieved significant success in various domains. However,
agents often struggle with understanding the complex pixel-based inputs and a noticeable
performance gap persists between state-based algorithms and their pixel-based counterparts.

Auxiliary representation learning tasks, such as the reconstruction objective used in SAC-
AE [5], have been shown to increase the sample efficiency of RL agents. Similarly, the use
of disentangled representations has been beneficial, not only in reinforcement learning but
also in various downstream applications [2, 4]. To further explore this area, Dunion et
al. recently introduced temporal disentanglement (TED) in their work [!]. TED, a self-
supervised auxiliary task, focuses on promoting disentangled representations in the encoder,
utilizing the sequential nature of RL observations. Dunion et al. argue that this method
enhances adaptability to environmental changes and generalization across task-irrelevant
variables [1].

In the field of disentanglement,
Klindt et al. developed Slow-
VAE, a novel VAE loss, achiev-
ing state-of-the-art (SOTA) perfor-
mance in disentanglement on tempo-
rally sparse-coded data [3]. My pre-
vious projects, conducted under my
supervision, have demonstrated that
incorporating this auxiliary loss can
enhance the performance of RL agents, although its effectiveness is limited by the VAE’s
capabilities.
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This thesis aims to develop novel auxiliary tasks for reinforcement learning, possibly
inspired by previous work in disentanglement learning. The objective is to improve both the
sample efficiency and generalization capabilities of RL agents.
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