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This work compares large language models (LLMs) and neuro-symbolic approaches in solving Raven’s progressive
matrices (RPM), a visual abstract reasoning test that involves the understanding of mathematical rules such as pro-
gression or arithmetic addition. Providing the visual attributes directly as textual prompts, which assumes an oracle
visual perception module, allows us to measure the model’s abstract reasoning capability in isolation. Despite providing
such compositionally structured representations from the oracle visual perception and advanced prompting techniques,
both GPT-4 and Llama-3 70B cannot achieve perfect accuracy on the center constellation of the I-RAVEN dataset.
Our analysis reveals that the root cause lies in the LLM’s weakness in understanding and executing arithmetic rules.
As a potential remedy, we analyze the Abductive Rule Learner with Context-awareness (ARLC), a neuro-symbolic ap-
proach that learns to reason with vector-symbolic architectures (VSAs). Here, concepts are represented with distributed
vectors s.t. dot products between encoded vectors define a similarity kernel, and simple element-wise operations on
the vectors perform addition/subtraction on the encoded values. We find that ARLC achieves almost perfect accu-
racy on the center constellation of I-RAVEN, demonstrating a high fidelity in arithmetic rules. To stress the length
generalization capabilities of the models, we extend the RPM tests to larger matrices (3×10 instead of typical 3×3)
and larger dynamic ranges of the attribute values (from 10 up to 1000). We find that the LLM’s accuracy of solving
arithmetic rules drops to sub-10%, especially as the dynamic range expands, while ARLC can maintain a high accu-
racy due to emulating symbolic computations on top of properly distributed representations. Our code is available at
https://github.com/IBM/raven-large-language-models.

I. INTRODUCTION

Abstract reasoning is often regarded as a core feature of human intelligence. This cognitive process involves abstracting rules
from observed patterns in a source domain, and applying them in an unseen target domain. With the ultimate aim to achieve
human-level intelligence, abstract reasoning tasks have sparked the interest of many in machine learning research. Thanks to
the availability of large datasets1–3, various learning-based methods, ranging from pure connectionist4,5 to neuro-symbolic6–9

approaches, achieved promising results in this domain.
More recently, the zero- and few-shot capabilities of large language models (LLMs) and their multi-modal variants have been

tested on various abstract reasoning tasks such as verbal10–13 or visual10,13–22 analogies. One natural approach towards zero-shot
visual abstract reasoning is to leverage multi-modal LLM’s vision capabilities to solve the task end-to-end. However, these
multi-modal models perform significantly worse than their text-only version16, which might stem from a missing fine-grained
compositional feature comprehension14. As an additional help, LLMs have been provided with text-only inputs by giving them
access to an oracle perception, i.e., providing perfectly disentangled representations10,15. While this generally improves their
reasoning abilities, LLMs still fail to achieve perfect accuracy on many simple tasks. One example is represented by Raven’s
progressive matrices (RPMs)23, a benchmark that tests visual abstract reasoning capabilities by measuring the fluid intelligence
of humans. Here, the state-of-the-art (SOTA) LLM-based approach15 achieves only 86.4% accuracy in the center constellation
of I-RAVEN3, which we observe to be a gate-keeper for this task (see Section II A).

In contrast, recent neuro-symbolic approaches showed not only almost perfect accuracy on the center constellation of I-
RAVEN, but also demonstrated high fidelity in out-of-distribution (OOD) settings. For instance, the Abductive Rule Learner
with Context-awareness (ARLC) represents attribute values with high-dimensional, distributed representations based on vector-
symbolic architectures (VSAs)24–27. Learning the RPM rules boils down to a differentiable assignment problem of high-
dimensional panel representations in a series of binding and unbinding operations, which can be solved with unconstrained
optimization algorithms such as stochastic gradient descent (SGD). ARLC outperformed the SOTA LLM-based approach15 both
on in-distribution and OOD, thanks to relying on structured and similarity-preserving representations based on fractional power
encoding (FPE)25.

This paper extends on the initial work on ARLC9, by comparing its abstract reasoning capability with two prominent LLMs
(GPT-428 and Llama-3 70B29) (see Fig. 1). Circumventing the perception by providing ground-truth attribute labels to the
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FIG. 1. This work compares the abstract reasoning capabilities of LLMs and neuro-symbolic ARLC on Raven’s progressive matrices (RPM)
tests. a) An RPM example taken from the center constellation of I-RAVEN. The task is to find the empty panel at the bottom-right of the
context matrix by selecting one of the answer candidates. b) Solving RPMs through LLM prompting. Visual attribute values are extracted
from the I-RAVEN dataset and assembled to individual per-attribute text-only prompts. LLMs are prompted to predict the attribute of the
empty panel. Finally, the attribute predictions are compared with the answer candidates, whereby the best-matching answer is selected as the
final answer. c) Solving RPMs with neuro-symbolic ARLC that relies on distributed similarity-preserving representations and manipulates
them via dimensionality-preserving operations; it learns rule-formulations as a differentiable assignment problem.

models allows us to measure their analogical and mathematical reasoning capabilities in isolation when such compositionally
structured (i.e., disentangled) representations are provided. Our comprehensive prompting efforts lead to very high accuracy
for Llama-3 70B (85.0%) and GPT-4 (93.2%), where the latter notably outperforms previous reports with GPT-315 (86.4%)
and GPT-4 o1-preview22 (18.00%). This LLM’s imperfect accuracy on the isolated task motivated us to further analyze their
capability of detecting and executing different rules. In both GPT-4 and Llama-3 70B, we find a notable weakness in performing
arithmetic rules that require row-wise additions or subtractions (e.g., see the last prompt in Fig. 2). To gain more insight about
this behavior, we set up a new RPM dataset (I-RAVEN-X) that increases the grid size from 3×3 to 3×10, additionally allowing
for a configurable dynamic range for the arithmetic computations. Also here, we observe a notable weakness in the arithmetic
rule that gets even amplified by an increasing dynamic range. On the other hand, ARLC demonstrates high accuracy on larger
grid sizes and allows to increase the dynamic range without further retraining, thanks to the the capability of adjusting the
underlying structured FPE representations.

II. DATASETS

A. I-RAVEN

We test the models on the center constellation of I-RAVEN3 (see Fig. 1). The test consists of a 3×3 context matrix and eight
answer candidate panels. Each panel contains an object, characterized by different attributes (shape, size, and color). The relation
between each attribute’s value in different panels is governed by a well-defined set of rules: constant, progression,
arithmetic, and distribute three. The task is to infer the rule governing each attribute in the context matrix and use
it to determine the content of the missing (bottom-right) panel, selecting it within the eight candidate answers. Compared to
other RPM benchmarks that have been used to evaluate LLMs10, I-RAVEN tests a more complex range of logical and arithmetic
skills. While I-RAVEN provides tests in various constellations with more objects that may intuitively appear more arduous to
solve, LLMs are more challenged with the seemingly simple constellations. For instance, GPT-3 achieved a higher accuracy on
the 2x2 and 3x3 constellations (78.0% and 86.4%) than on center (77.2%)15. Moreover, high accuracy can be maintained
on the 2x2 and 3x3 constellations while only looking at the last row of the context matrix15, effectively showing that no
analogical reasoning is required to solve the test in these constellations. Hence, we opted to focus our evaluation on the center
constellation only, using 500 samples from I-RAVEN’s test set. Inspired by recent works10,15, we simplify RPM from a visual
abstract reasoning test to a purely abstract reasoning test. Assuming a perfect perception, we extract the attribute values from
I-RAVEN and use them to create the prompts for the model.
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System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 5, 5, 5; 
             row 2: 3, 3, 3; 
             row 3: 6, 6, 
Output:  6

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 6, 6, 6; 
             row 2: 4, 4, 4; 
             row 3: 2, 2, 
Output: 2

Attribute: shape
Rule: constant
Correct answer: 6

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 8, 2, 6; 
             row 2: 1, 0, 1; 
             row 3: 8, 7, 
Output:  6

Attribute: size
Rule: constant
Correct answer: 2

Attribute: color
Rule: arithmetic -
Correct answer: 1

a) LLM prompts for I-RAVEN

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
      

Output:  242

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!

Output: 695

Attribute: shape
Rule: progression
Correct answer: 242

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             

Output:  352

Attribute: size
Rule: constant
Correct answer: 695

Attribute: color
Rule: arithmetic -
Correct answer: 58

b) LLM prompts for our new I-RAVEN-X
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FIG. 2. a) Individual per-attribute text-only prompts to solve RPM tasks from I-RAVEN. b) Example prompts with of our novel configurable
I-RAVEN-X dataset of size 3×10 with a value range of m = 1000. In both the I-RAVEN and I-RAVEN-X examples, the LLM (GPT-4) errs in
the arithmetic rules.

B. New I-RAVEN-X

To further evaluate the mathematical reasoning capabilities at scale, we introduce an extension of the I-RAVEN’s center
constellation, called I-RAVEN-X. Our new benchmark maintains I-RAVEN’s rules and attributes but allows for a parameterizable
number of columns (g) and a dynamic range of attribute values (m). When generating a new RPM example, we uniformly
sample from one of the available rules (constant, progression, arithmetic, and distribute three). Note that
the attribute shape does not incur the arithmetic rule. We use I-RAVEN’s attribute bisection tree3 to generate unbiased
candidate answers.

In the following, we describe the context matrix generation for the individual rules. The overall goal is that the values stay in
the range [0,m−1].

• constant: This rule keeps the attribute value constant per row. For each row, we uniformly sample an integer from the
set {0,1, ...,m−1}, and duplicate along the row.

• progression: The attribute value monotonically increases or decreases in a row by a value of 1 or 2. First, we uniformly
sample the progressive increment/decrement (δ ) from the set {−2,−1,+1,+2}. In case of a positive increment, we first
define the values of the right-most columns, by uniformly sampling from the set {(g−1) ·δ , ...,m−1} for each row. Then,
the rest of the matrix is completed by applying the progression rule. The sampling for a negative δ is done specularly
from the first column.

• arithmetic: The attribute values of the first g − 1 panels are either added (arithmetic plus) or subtracted
(arithmetic minus), yielding the attribute value of the last panel in the row. In arithmetic plus, we sequen-
tially sample the values from the first g−1 panels in the row. For each panel, we set the sampling range to {0, ...,m− s},
where s is the sum of the already sampled panels in the row. Afterward, the first g− 1 panels are shuffled. Finally, the
values of the last panels are the sum of the first g−1 ones, applied row-wise. For arithmetic minus, we apply the
same sampling strategy but leave the first column empty. The value of the first column is then defined as the sum of the
other columns.

• distribute-n: We uniformly sample distinct values for the first row from {0, ...,m−1}. The content of the remaining
rows is defined by applying a circular shift per row (either right or left).

Fig. 2b shows example prompts generated from samples of our new dataset.

III. LLM-BASED RPM SOLVING

A. Models

We focused our evaluations on text-only LLMs. There exist attempts14,16,18–20 that leverage vision support of some multi-
modal LLMs (e.g., GPT-4V) directly feeding the models with visual RPM data; however, they achieve consistently lower rea-
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soning performance than with text-only prompting. The SOTA LLM-based abstract reasoning approach15 relied on reading out
GPT-3’s (text-davinci-002) token probabilities. However, this model is no longer accessible to users and its successive
iterations do not allow the retrieval of prediction logits. Hence, we considered discrete classification approaches that are based
on output strings rather than distribution over tokens. In particular, we investigated two SOTA LLMs: the proprietary GPT-
428(gpt-4-0613)1 and the open-source Llama-32 70B29. More recent iterations of these models were not considered in our
analysis for different reasons. Meta’s attribution requirement in their updated terms regarding naming conventions prevented us
from testing Llama-3.1 During initial tests, GPT-4o yielded worse results than GPT-4, hence we focused on GPT-4. Moreover,
GPT-4 o1’s poor abstract reasoning results on RPM22 (18% on 2x2 RAVEN) and its limited availability (only preview version
available) prevented us from performing statistically significant tests on this chain-of-thought model.

B. Prompting and classification

a. Entangled and disentangled prompts Following15, we evaluated two different prompting strategies, entangled and dis-
entangled prompting. The entangled prompting provides all the attributes’ values in a single prompt (see Appendix A 1). The
disentangled prompting, on the other hand, is a compositionally structured approach that queries the LLM for individual attribute
prediction. Disentangled prompting simplifies the task, but increases the number of queries by 3×.

b. Discriminative and predictive classification Similarly to12, we consider two approaches to solve RPM tests with LLMs.
In the discriminative approach, we provide the attribute descriptions of both the context matrix and the answer candidates.
The LLM is then asked to return the panel number of the predicted answer. Appendix A 2 provides an example prompt of the
discriminative approach. In the predictive approach, we prompt the LLM only with the context matrix without the candidate
answers. The LLM has to predict the value of the empty panel (see Fig. 2). For selecting the final answer, we compare the
predicted values with the answer panels and pick the one with the highest number of overlapping values. While the predictive
approach may appear more difficult, it implicitly biases the LLM to approach the task as humans usually do, i.e., first applying
a generative process to abduce rules and execute them to synthesize a possible solution, and then discriminatively selecting the
most similar answer from choices30. Moreover, the final answer selection is done without the intervention of the LLM, rendering
phenomena like hallucinations less likely. Thus, the predictive classification can be seen as a more guided approach that helps
LLM to solve the task.

c. Self-consistency As an optional extension, we employ self-consistency31,32 by querying the model multiple times (n = 7
times), sampling the next token from the distribution with a non-zero soft-max temperature. We find the optimal soft-max
temperature for GPT-4 (T = 0.5) and Llama-3 70 B (T = 0.4) via a grid search on a subset of 50 I-RAVEN problems. We did
not explore the effect of other parameters, such as top-k or top-p, and set them to the default values. The final prediction is
determined by a majority vote over the sampled outputs. The selection of an odd number of samples (i.e., n = 7) helps to prevent
potential ties.

d. In-context learning For a better understanding of the RPM task, we optionally prefix 16 in-context examples to the
prompt33. In the predictive classification approach (where no answer candidates are provided), we simply provide complete
example RPM matrices. The in-context samples are randomly selected from I-RAVEN’s training set. Examples that had the
same context matrix as the actual task are discarded and re-sampled to prevent shortcut solutions.

IV. ARLC: LEARNING ABDUCTIVE REASONING USING VSA DISTRIBUTED REPRESENTATIONS

This section presents the Abductive Rule Learner with Context-awareness (ARLC), which performs neuro-symbolic reasoning
with distributed VSA representations (see Fig. 3). ARLC projects each panel’s attribute value (or distributions of values) into
a high-dimensional VSA space. The resulting VSA vectors preserve the semantic similarity between attribute values: the
dot products between corresponding VSA encoded vectors define a similarity kernel25,34. Moreover, simple component-wise
operations on these vectors, binding and unbinding, perform addition and subtraction respectively on the encoded values. For
rule learning, ARLC introduces a generic rule template with several terms forming a series of binding and unbinding operations
between vectors. The problem of learning the rules from data is reduced to a differentiable assignment problem between the
terms of the general rule template and the VSA vectors encoding the contents of the panels, which can be learned with standard
SGD. ARLC was initially presented in9; this work mainly compares it to the reasoning capabilities of LLMs on I-RAVEN, and
demonstrates its extension to larger grid sizes and dynamic ranges on our novel I-RAVEN-X.

1 GPT-4 was accessed between 07/03/2024–10/30/2024.
2 The model weights were downloaded and evaluated locally.
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Projection to the 
VSA space

Rule computation

FIG. 3. ARLC architecture. ARLC maps attribute values, or distributions of values, to distributed VSA representations, where the semantic
similarity between values is preserved via a notion of kernel. Learnable rules (r1, ...,rR) predict the VSA representation of the empty panel
(v̂(3,3)a,r ) together with a confidence value (sr). The closest answer to the predicted soft-selected prediction (v̂(3,3)a ) is chosen as the final answer.

FIG. 4. Similarity kernel in VSA. Mapping two values (v1 and v2) to a VSA space (i.e., GSBC in ARLC) that uses fractional power encoding
(FPE) and computing their similarity in the VSA space yields the shown similarity kernel K(v1 − v2).

A. From visual attributes to distributed VSA representations

ARLC’s key concept is to represent attribute values with high-dimensional, distributed VSA vectors that preserve the semantic
similarity between the attribute values thanks to an introduced kernel notion. We start by defining a VSA that equips the space
with dimensionality-preserving vector operations (binding ⊗, unbinding ⊘, and bundling ⊕) as well as a similarity function
(cos(·, ·)). For example, ARLC uses binary generalized sparse block codes (GSBCs)35 as a particular VSA instance. In binary
GSBCs, the D-dimensional vectors are divided into B blocks of equal length, L = D/B, where only one (randomly selected)
element per block is set to 1 (D = 1024 and B = 4). The algebraic operations of binary GSBCs are defined in Table I. See
Appendix B for a detailed background on VSA.

Next, we define a mapping z : Z+ → RD that enables the projection of input RPM attributes into a corresponding high-
dimensional, semantically-rich feature space. Note that this work focuses on mapping integer values as the attribute values
in I-RAVEN are integer-valued too. However, generalizing this approach to real-valued domain mappings is possible using
frequency holographic reduced representations (FHRR)24. Leveraging fractional power encoding (FPE)25, a value v ∈ Z+ is
encoded as

z(v) = zv =
v⊗

n=1

z,

where z ∈ RD is a randomly drawn binary GSBC vector. This mapping yields a similarity kernel between neighboring vector
representations34, as shown in Fig. 4.

Let us assume two variables with values v1 and v2, which are represented with two VSA vectors (z(v1) = zv1 and z(v1) = zv2 ).
Binding the two vectors yields z(v1)⊗z(v2) = zv1 ⊗zv2 = zv1+v2 . Hence, binding in the VSA space is equivalent to the addition
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TABLE I. Supported VSA operations and their equivalent in R.

Operation Binary GSBCs with FPE Equivalent in R

Binding (⊗) Block-wise circular convolution Addition +
Unbinding (⊘) Block-wise circular correlation Subtraction −
Bundling (⊕) Sum & normalization —
Similarity (⊙) Cosine similarity (cos(·, ·)) —

in R. In other words, the FPE initialization allows to establish a semantic equivalence between high-dimensional vectors and real
numbers. This property is consistently exploited in ARLC’s framework, as it allows to solve the analogies in the RPM puzzles
as simple algebraic operations in the domain of real numbers. For example, by computing the similarity between the bound
representation and a third projected variable (sim(zv1+v2 ,zv3)), we can evaluate if v1 + v2

?
= v3 representing the arithmetic

plus rule in RPM.
One advantage of performing reasoning with distributed VSA representations is its capability to represent perceptual un-

certainty in the variable values. Connecting to the previous example, let us assume that the first variable takes value v1 with
probability p and value v′1 with probability p′ = 1− p. The distribution can be encoded as the weighted superposition of the two
corresponding codewords: p · zv1 + p′ · zv′1 . The similarity computation between the bound representation and a third variable
would then yield

sim((p · zv1 + p′ · zv′1)⊗ zv2 ,zv3) = sim(p · zv1 ⊗ zv2 + p′ · zv′1 ⊗ zv2 ,zv3)

= p · sim(zv1 ⊗ zv2 ,zv3)+ p′ · sim(zv′1 ⊗ zv2 ,zv3),

where the first equality uses the linearity of the binding operation, and the second one the linearity of the similarity metric.
Overall, this formulation allows the validation of multiple solutions (in this case two) using only a single binding and similarity
computation.

In the RPM application, each panel’s label is translated to a probability mass function (PMF) p(i, j)
a , where a is the attribute, i

is the row index and j is the column index of the panel. The panel’s PMF is then projected into the VSA space as

v(i, j)a =
m

∑
k=1

p(i, j)
a [k] · zk,

where m is the number of possible values that the attribute a can assume. Overall, this yields eight VSA vectors for each attribute
a (one for each panel of the input RPM matrix), represented by

Va :=
(

v(1,1)a ,v(1,2)a , . . . ,v(3,2)a

)
. (1)

Note that the basis vectors are pre-computed and stored in a dictionary C= {zk}r
i=1 containing m elements.

B. Learning RPM rules as an assignment problem

As we have seen in the previous example, RPM rules can be represented using VSA operations. Generalizing the application
beyond the arithmetic plus rule, we find that the rules used in RPM can be framed as a series of binding and unbinding
operations:

r = (c1 ⊗ c2 ⊗ c3 ⊗ c4 ⊗ c5 ⊗ c6)⊘ (c7 ⊗ c8 ⊗ c9 ⊗ c10 ⊗ c11 ⊗ c12) , (2)

where ci represents a context panel v(i, j)a or the identity e. In this setting, learning the rules of RPM can hence be interpreted as
an assignment problem between VSA vectors and terms of Equation (2).

Motivated by works in cognitive sciences and psychology that argue for the importance of context in the solution of analogies
for humans 36,37, ARLC uses a general formulation of the soft-assignment problem which relies on the notion of context:

ck =
I

∑
i=1

wi
k ·xi +

J

∑
j=1

u j
k ·o j + vk · e, (3)

where w,u,v are the learned parameters and they are subject to the following constraints:
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(a) X = {R1},O = {R2,R3} (b) X = {R2},O = {R1,R3} (c) X = {R3},O = {R1,R2}

FIG. 5. Visualization of current samples (X = {x1,x2}, in yellow) and context (O = {o1, . . . ,o5}, in green) panels when predicting the third
panel for different rows, namely the first row (left), second row (center) and third row (right). Black objects represent panels that are not used
for the computation, while the question mark represents the unknown test panel, which is unavailable during inference.

I

∑
i=0

wi
k +

J

∑
j=0

w j
k + vk = 1, 0 ≤ wi

k ≤ 1∀i, 0 ≤ u j
k ≤ 1∀ j, 0 ≤ vk ≤ 1, ∀k.

Here, X = {x1, . . . ,xI} is the set of attributes that define the current sample, that is, the description of the problem for which
we infer a solution. O = {o1, . . . ,oJ} is the set of attributes that define the context for that sample, that could be interpreted as a
working memory from which additional information to infer the answer can be retrieved. For predicting the empty panel in the
last row, the context (O) corresponds to the first two rows and the current samples (X) to the last row (see Fig. 5c). We augment
this standard prediction with two more permutations, which aim to predict the last panel of the first and second row (see Fig. 5a
and Fig. 5b). The knowledge of the right-most panels in the first two rows allows us to compute a rule confidence by comparing
the rule’s prediction with the actual panel representation via the cosine similarity.

C. Executing and selecting the learned rules

Inference with the learned rule set is a two-step process: an execution step (where all the rules are applied in parallel to the
input) and a selection step (where a prediction for the missing panel is generated). The application of each rule r to an RPM
example generates a tuple of three VSA vectors (v̂(i,3)a,r )3

i=1, which corresponds to the result of the rule execution on the three
rows of the RPM matrix, together with a rule confidence value sr. The confidence value is computed as the sum of the cosine
similarities between the predicted VSA vectors and their respective ground-truth vector,

sr =
3

∑
i=1

cos
(

v(i,3)a , v̂(i,3)a,r

)
. (4)

During inference, the last term of the sum (i = 3) is omitted, as the ground truth for the third row is unknown.
The answer is finally produced by taking a linear combination of the VSA vectors generated by executing all the rules,

weighted by their respective confidence scores (normalized to a valid probability distribution using a softmax function). More
formally, if we define s = [s1, . . . ,sR] to be the concatenation of all rules’ confidence score and V̂(3,3)

a = [v̂(3,3)a,1 , . . . , v̂(3,3)a,R ] to be
the concatenation of all rules’ predictions for the missing panel, the final VSA vector predicted by the model for the attribute a
becomes

v̂(3,3)a = softmax(s) · V̂(3,3)
a . (5)

The use of the weighted combination can be understood as a soft-selection mechanism between rules and was found to be more
effective compared to the hard-selection mechanism provided by sampling8.

D. Training Loss and other Implementation Aspects

We follow the training recipe provided by Learn-VRF8. The model is trained using stochastic gradient descent (SGD) with
a learning rate lr = 0.01 for 25 epochs. The training loss is defined as the inverse cosine similarity between the three predicted



8

TABLE II. Task accuracy (%) on the center constellation of I-RAVEN. Among the baselines, we replicate Learn-VRF8; the other results
are taken from7. The standard deviations are reported over 10 random seeds. Llama-3 and GPT-4 are queried with the corresponding best
prompting technique (see Table III). Number of parameters for GPT-4 is not publicly available. The reasoning backend of PrAE, NVSA, and
our ARLCp 7→l do not have trainable parameters.

Method Parameters Accuracy

MLP8 300 k 97.6
SCL5 961 k 99.9±0.0

PrAE6 n.a. 83.8±3.4

NVSA7 n.a. 99.8±0.2

Learn-VRF8 20 k 97.7±4.1

GPT-315 175 b 86.4

Llama-3 70 b 85.0
GPT-4 unk. 93.2
ARLCprogr n.a. 97.2±0.0

ARLCp7→l 480 97.6±0.0

ARLClearn 480 98.4±1.5

panels and their corresponding ground truth

L = 1−
3

∑
i=1

cos
(

v(i,3)a , v̂(i,3)a

)
. (6)

As in Learn-VRF, we set the number of rules to R = 5. A single set of rules is instantiated and shared between all RPM
attributes.

E. Applying ARLC on I-RAVEN-X

While ARLC was initially designed for I-RAVEN, it can be seamlessly extended to our I-RAVEN-X with minor modifications.
First, the number of binding/unbinding terms in Equation (2) is increased, e.g., from 12 to 22 to support the larger grid size of
g = 10. Moreover, we increase the number of entries in the dictionary (C) to support the larger dynamic range (m). Notably,
only varying the dynamic range at constant grid size does not require retraining: we can simply replace the dictionary in order
to support OOD generalization. Indeed, we could demonstrate that ARLC trained on a dynamic range of m = 45 can favorably
generalize to a dynamic range of m = 1000.

V. RESULTS

A. Main results on I-RAVEN

Table II compares our LLM results with ARLC on the center constellation of I-RAVEN, considering also a range of neuro-
symbolic and connectionist baselines. For the LLMs, we show the results with the corresponding best prompting techniques
(see the ablation in Section V B). Moreover, we present results for three different versions of ARLC: ARLCprogr, where the
model’s weights are manually programmed with RPM rules (R = 4, since constant can be considered as a special case of
progression), ARLCp7→l, where the model is initialized with the programmed rules and then trained with gradient descent,
and ARLClearn, where the rules are learned from scratch from data.

Among the LLM approaches, our GPT-4-based approach achieved the highest accuracy (93.2%) notably outperforming pre-
vious SOTA LLM-based abstract reasoning approaches on this benchmark (86.4%)15. Yet, all LLM approaches fall behind the
tailored connectionist and neuro-symbolic solutions. Notably, with only 480 learnable parameters, ARLC achieves a high ac-
curacy of 98.4%. Moreover, we show that post-programming training allows to extend the knowledge of the model, rather than
completely erasing it as shown in other settings38, resulting in a monotonic increase in downstream accuracy.
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TABLE III. Ablation study considering various LLM prompting techniques. We report the task accuracy (%) on the center constellation of
I-RAVEN.

Predictive/
discriminative

Disentangled queries
per attribute (3×queries)

Self-consistency
(n=7)

In-context learning
(s=16) GPT-4 Llama-3 70B

Discriminative 56.0 22.8
Discriminative ✓ 60.0 22.4
Predictive 74.8 79.0
Predictive ✓ 91.4 83.2
Predictive ✓ ✓ 93.2 84.8
Predictive ✓ ✓ 85.4 84.8
Predictive ✓ ✓ ✓ 86.4 85.0

TABLE IV. Accuracy (%) of predicting the correct attribute value. Self-consistency (n=7) is used. Results are averaged across all attributes.

Model Disentangled queries
per attribute (3×queries) Constant Progression Distribute three Arithmetic

GPT-4 No 100 98.0 91.6 27.1
Yes 100 100 99.5 73.6

Llama-3 70B No 100 97.2 99.3 31.0
Yes 100 100 96.6 45.0

B. Ablation of LLM prompting techniques

Table III shows the task accuracy on I-RAVEN using GPT-4 and Llama-3 70B in various prompting configurations. Overall,
both models benefit from the additional guidance provided by our prompting techniques. Concretely, using a predictive approach
and querying for individual disentangled attributes yielded already high accuracies (91.4% and 83.2% for GPT-4 and Llama-3
70B, respectively). Introducing self-consistency further improves the accuracy for both models. Llama-3 70B’s performance
can be further pushed (to 85.0%) by using self-consistency and in-context learning. On the contrary, GPT-4 cannot make use of
the additional in-context samples, yielding a lower accuracy instead.

C. LLMs show weakness in arithmetic rule

Even though both LLMs achieve a reasonable overall task accuracy, they fail in some instances. We shed more light on the
reasoning capability of the two models by analyzing the accuracy of predicting the correct value for a given rule. As shown in
Table IV, both models perform well on constant, progression, and distribute three rules, whereas the accuracy
notably drops for the arithmetic rule. One explanation for the accuracy drop could be the LLM’s tendency for (short-
sighted) relational reasoning, instead of performing relational mapping that requires the understanding of the first two rows
before applying a rule on the last row11. We analyze this hypothesis in Appendix C, where we attempt to explain the LLM’s
wrong predictions by rules that may have been inferred from the last row. For GPT-4, 32 out of 68 errors can be explained by
rules that might have been inferred from a partial context matrix, e.g., a constant or progression rule based on the last
row.

D. Results on our novel I-RAVEN-X

Finally, we conduct experiments on our novel I-RAVEN-X test, which allows us to configure the matrix size and the dynamic
range of the attribute values. We fix the grid size to 3×10 and vary the dynamic range between 50, 100, and 1000. As shown
in Table V, the LLM’s drops not only due to the larger grid size but also generally degrades with an increasing dynamic range.
At the same time, our ARLC maintains a high accuracy across the board, while only being trained at dynamic range of 50 and
reconfigured for the higher ranges. Investigating the performance on the arithmetic rule in Table VI explains the overall
accuracy degradation: the arithmetic accuracy drops below 10% for both LLMs at the highest dynamic range (1000).
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TABLE V. Task accuracy (%) on I-RAVEN and our novel I-RAVEN-X. The LLMs use self-consistency (n=7).

I-RAVEN I-RAVEN-X
3×3 3×10

Dynamic range (m) 5–10 50 100 1000

Llama-3 70B 85.0 76.8 73.0 74.2
GPT-4 93.2 82.2 79.6 76.6
ARLCprogr 97.2 100.0 100.0 99.7
ARLClearn 98.4 95.0 95.0 90.6

TABLE VI. Arithmetic accuracy (%) on I-RAVEN and our novel I-RAVEN-X. The LLMs use self-consistency (n=7).

I-RAVEN I-RAVEN-X
3×3 3×10

Dynamic range (m) 5–10 50 100 1000

Llama-3 70B 45.0 1.5 2.6 0.4
GPT-4 73.6 30.4 25.1 8.4
ARLCprogr 100.0 99.8 100.0 99.5
ARLClearn 99.9 81.6 78.8 61.6

VI. CONCLUSION

This work revealed LLM’s limitations in recognizing and executing arithmetic rules in abstract reasoning tasks, despite being
provided disentangled prompts with ground-truth visual attributes and using advanced prompting techniques. We further showed
the serious limitation on a larger (3×10) RPM test. As a viable alternative, we presented a neuro-symbolic approach (ARLC)
that achieves a high accuracy both on I-RAVEN and our I-RAVEN-X, thanks to learning to reason with distributed VSA repre-
sentations and operators. We hope that our findings will lead to the development of architectures that aim to improve reasoning
capabilities, e.g., by integrating symbolic solvers such as our ARLC into LLMs.
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Appendix A: Prompting details

This appendix provides more details on our prompting strategy. While the prompt design was mainly inspired by15, we
extended it with predictive and discriminative classification and fine-tuned it for the different models. For example, we found
that adding a prefix (“Only return the missing number”) helped to slightly improve GPT4’s accuracy, whereas it reduced Llama-3
70B’s performance. Thus, we used individual prompts for the different models.

1. Joint attribute querying

As an alternative to individually querying the LLM for predicting the separate attributes, we also devised a joint attribute
prompting scheme, shown in Fig. A.6. The attributes of each panel are represented in brackets: (shape, size, color). In
this setting, the LLM is required to predict all three attributes of the missing panel at once. For better distinguishing between the
different attributes, they are scaled with individual factors (1×, 0.1×, 10×).

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: (3,0.5,50), (6,0.5,50), (4,0.5,50); 
             row 2: (4,0.3,10), (3,0.3,10), (6,0.3,10); 
             row 3: (6,0.1,70), (4,0.1,70), (
Out:       3,0.1,70)

FIG. A.6. Example prompt for joint prediction of all three attributes.

2. Discriminative classification approach

Fig. A.7 shows an example prompt for performing discriminative classification. As shown, the answers only contain two
distinct values (“6” and “7”); finding the correct answer requires the consideration of all attributes. For choosing the final
answer, we extract all attribute values that correspond to the predicted answer (e.g., value “7” for shape) and select the best
matching answer candidate, i.e., the answer with the highest number of overlaps with the predicted attributes.

System: Complete the Raven's progressive matrix:
User:     row 1: 4, 4, 4; 
             row 2: 6, 6, 6; 
             row 3: 7, 7, 

             Select the correct Answer from the following list
             Answer #0: 7
             Answer #1: 6
             Answer #2: 7
             Answer #3: 7
             Answer #4: 6
             Answer #5: 6
             Answer #6: 7
             Answer #7: 6
             
             Solution: The correct answer is Answer #
Output:  0: 7

FIG. A.7. Example prompt for discriminative classification approach, where the answer candidates are provided. The underlying attribute is
shape and the rule is constant.
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Appendix B: Vector-symbolic architectures

Vector-symbolic architectures (VSAs)24–27 are a family of computational models that rely on the mathematical properties
of high-dimensional vector spaces. VSAs make use of high-dimensional distributed representations for structured (symbolic)
representation of data while maintaining the advantages of connectionist distributed vector representations (see39 for a survey).
Here is a formal definition of VSAs:

Definition 1 (VSA) A vector-symbolic architecture (VSA) consists of a 4-tuple V = (C,⊕,⊗,⊙), where C is a set of high-
dimensional distributed vectors equipped with two main operations, ⊕ (bundling) and ⊗ (binding), and on which it is possible
to define a similarity measure ⊙.

Bundling is a similarity-preserving operation that creates a superposition of the operands, that is, the resulting vector will have a
high similarity with the two operands. Binding, on the other hand, is an operation that allows to bind a vector (value) to another
vector (key) and does not preserve similarities; it usually allows an inverse operation, called unbinding. The specific realization
of the bundling, binding, and vector space constitute the main difference between members of the VSA family.

Appendix C: Analysis of arithmetic errors

This appendix aims to find explanations for LLM’s errors by analyzing the structure behind the predicted answers. A recent
study11 showed that LLMs tend to solve verbal analogy problems in an associative way instead of performing proper relational
mapping. The associative reasoning can be explained as ignoring the source domain and solving the task directly at the target
domain (e.g., only looking at the possible solutions without reading the questions). Interestingly, children tend to perform
associative reasoning, whereas adults opt for relational mapping.

In RPMs, the source domain can be defined as the first two rows (with values x1,1,x1,2,x1,3 and x2,1,x2,2,x2,3), whereby the
target domain is the last row (x3,1,x3,2). Therefore, an associative reasoner would only look at the last row to solve the task. In
the following, we aim to find potential incorrect rules that the LLMs may have been inferred from the last row(s):

• constant: The values of the last row are identical (x3,1 = x3,2), and the model predicts x̂3,3 = x3,2 = x3,1

• progression: The values of the last row differ by δ = x3,2 − x3,1, and the model predicts x̂3,3 = x3,2 +δ

• short constant: The model just copies the penultimate value: x̂3,3 = x3,2.

• short distribute three: Assuming a distribute three over the last two rows: x3,1 ∈ {x2,1,x2,2,x2,3}, x3,2 ∈
{x2,1,x2,2,x2,3}, and hence x̂3,3 ∈ {x2,1,x2,2,x2,3}.

Fig. C.8 shows the resulting confusion matrix summarizing all the attributes. The arithmetic rule has fewer occurrences
as this rule is not integrated in the attribute shape. As already stated in the main text, the majority of wrong predictions are
related to the arithmetic rule. For GPT-4, our new rule interpretations can explain 32 out of the 68 errors, while 36 errors
remain unknown. Llama-3 70B showed many more errors in the arithmetic rule; here, we can explain 57 out of 142 errors
with relational reasoning. In summary, some (40.1–47.1%) of the LLM’s errors can be rooted in relational reasoning. Further
understanding the behavior of the unknown rules is scope for future work.
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FIG. C.8. Rule confusion matrix of GPT-4 (left) and Llama-3 70B (right).


	Towards Learning to Reason: Comparing LLMs with Neuro-Symbolic on Arithmetic Relations in Abstract Reasoning
	Abstract
	Introduction
	Datasets
	I-RAVEN
	New I-RAVEN-X

	LLM-based RPM solving
	Models
	Prompting and classification

	ARLC: learning abductive reasoning using VSA distributed representations
	From visual attributes to distributed VSA representations
	Learning RPM rules as an assignment problem
	Executing and selecting the learned rules
	Training Loss and other Implementation Aspects
	Applying ARLC on I-RAVEN-X

	Results
	Main results on I-RAVEN
	Ablation of LLM prompting techniques
	LLMs show weakness in arithmetic rule
	Results on our novel I-RAVEN-X

	Conclusion
	References
	Prompting details
	Joint attribute querying
	Discriminative classification approach

	Vector-symbolic architectures
	Analysis of arithmetic errors


