What Is The Use Of Collision Detection (In Wireless Networks)?

Johannes Schneider Roger Wattenhofer

Motivation

- Communication models
 - Local model
 - No interference
 - A node can transmit one distinct message to each neighbor
 - Radio network model
 - Interference
 - cannot distinguish many transmitters from none
- Reality?
 - Interference is an issue
 - But: carrier sensing allows at least to distinguish between 0, ≥1 transmitter(s)
- \Rightarrow Collision Detection Model
 - Interference
 - A node can distinguish: $0, \geq 1$ transmitter(s)
 - adds complexity to devices

\Rightarrow Is it worth it?

Graph based connectivity model

- General graph
 - Too pessimistic

- Unit Disk Graphs(UDG)
 - Geometrical graph

- Problems in UDG easier than in general graph?
 - We show: lower bounds for general graphs hold for UDG

Contribution and related work

- Collision detection has been studied before
 - E.g. leader election, broadcasting

Investigate time complexity of 3 fundamental problems

Upper and Lower Bounds			
Problem	With Collision Detection	Without	
MIS	$O(\log n)$ det. [This paper]	$O(\log^2 n)$ ra. [9]	
	$\Omega(\log n)$ [This paper]	$\Omega(\log^2 n / \log \log n)$ [5]	
$\Delta + 1$ Col.	$O(\Delta + \log^2 n)$ ra. [11]	$O(\Delta + \log^2 n)$ ra. [11]	
	$\Omega(\Delta + \log n)$ [This paper]	$\Omega(\Delta + \log n)$ [This paper]	
Broadcast	$O(D \log n)$ det. [This paper]	$O(n \log n)$ [6] det.	
	$\Omega(D + \log n)$ [This paper]	$\Omega(n \log D)$ det. [2][This paper]	

Maximal Indenpendent Set (MIS)

- Model: First, synchronous start of all nodes
- Algorithm: Adaption of [PODC'08] for local model
- Communicate in parallel despite interference?
 - Yes, if transmit bit by bit ...

MIS Algorithm

- Each node v has a number n(v) that it uses for fighting
- Each node v updates n(v) after a fight to get a new number n(v)
 - If n(v) maximum among neighbors node wins

- Fight = Transmit number n(v) bit by bit
 - Transmit in round k if kth position = 1, otherwise listen
 - \Rightarrow Can detect if a neighbor has bit 1, if detect collision

MIS Algorithm continued

Every node fights against all its neighbors using some number

- Number is updated after every fight
- First number = ID

If have (strictly) smallest number of all neighbors, join MIS

Else compute a new number and continue fighting

Johannes Schneider @ DISC 2010

How to deal with asynchrony?

- Nodes can wake up at an arbitrary point in time ٠
- A newly woken up node should not disturb an ongoing computation ٠
- \Rightarrow Iterate a few slots periodically to synchronize
 - Use 1 slot to execute synchronous MIS Algorithm ٠
 - Other slots to inform nodes about the current state ٠

Upon wake-up:

Listen until no transmission detected for 7 consecutive rounds if ever detected transmission for 2 consecutive rounds then $s_v := N_{MIS}$ else $s_v := executing;$ SixRoundSchedule() end if

SixRoundSchedule():

loop forever

- 1: if $s_v = executing$ Synchronous MIS then Transmit else Sleep end if
- 2: Sleep

3: if $s_v = executing$ Synchronous MIS then Execute 1 step in Algorithm Synchronous MIS

else Sleep end if

- 4: Sleep
- 56: if $s_v = MIS$ then Transmit twice else Sleep two rounds end if

Johannes Schneider @ DISC 2010

Broadcast

- Candidate to transmit := node having message and neighbor lacking it
- Algorithm: Repeat:
 1) Compute MIS for candidates
 2) Nodes in MIS transmit
- But...
 - A node might have several neighbors in the MIS
 - This can be arbitrarily slow

y slow Johannes Schneider @ DISC 2010

Broadcast

- Low priority candidate :=
 - node having msg and a neighbor lacking it
- High priority candidate :=
 - node having msg and a neighbor lacking it AND just received msg
- Nodes in MIS transmit concurrently 0—0—0
 ⇒Use strongly selective families F = {F₀, F₁,...,F_{log n}}
 F_i = predetermined set of nodes
 Node v transmits in round i if v in F_i

Lower bound coloring

Proof uses:

– Clique:

- Information theory
- Make algorithm only gain little information per round
- Thm: Ω(log n) time for O(1) coloring
 Graph of pairs:
- Thm: $\Omega(\Delta)$ time for Δ +1 coloring

Lower bounds for broadcasting without collision detection

- So far: For general graphs using layers
- Difficulty for algorithm
 - Determine number of nodes in a layer

Do they hold for UDGs?

Layer 1 Layer 2 Layer 3

- Yes, can turn them into clique and add additional layers

Conclusions

Model: theory vs. practice

Theory is when you think you know something but it doesn't work.

Practice is when something works but you don't know why.

Usually we combine theory and practice: nothing works and we don't know why.

- UDG vs. general graphs

- Is collision detection useful?
 - Generally good for fast deterministic algorithms
- How useful?
 - Depends on the problem..
 - Some cases not worth it...
 - ... for others large speed up

Upper and L	Upper and Lower Bounds		
Problem	With Collision Detection	Without	
MIS	$O(\log n)$ det. [This paper]	$O(\log^2 n)$ ra. [9]	
	$\Omega(\log n)$ [This paper]	$\Omega(\log^2 n / \log \log n)$ [5]	
$\Delta + 1$ Col.	$O(\Delta + \log^2 n)$ ra. [11]	$O(\Delta + \log^2 n)$ ra. [11]	
	$\Omega(\Delta + \log n)$ [This paper]	$\Omega(\Delta + \log n)$ [This paper]	
Broadcast	$O(D \log n)$ det. [This paper]	$O(n \log n)$ [6] det.	
	$\Omega(D + \log n)$ [This paper]	$\Omega(n \log D)$ det. [2][This paper]	