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Abstract

The sample efficiency of deep reinforcement learning (DRL) algorithms is limited
by the weak scalar training signal. We propose to use state aligned vector rewards to
capitalize on the spatiotemporal nature of reaching problems and show that a state
change distribution can be learned given an action distribution. Our agent, trained
with a new DRL method inspired by quantile regression, is able to learn multiple
times faster in high dimensional state spaces than a classical DRL algorithm.

1 Introduction

While neural networks are powerful function approximators, they require large amounts of training
data to converge. In reinforcement learning (RL) this means many costly interactions with the
environment. The problem is aggravated by the weak training signal of RL – a scalar reward – which
was originally inspired by the general “rewarding” role of dopamine activity in mammal brains.
However, Pinto and Lammel [18] point out that the diversity of dopamine circuits in the mid brain is
better modeled by viral vector strategies. Gershman et al. [7] also show that human RL incorporates
effector specific value estimations to cope with the high dimensional action space. Inspired by these
new biological insights, we improve the sample efficiency of a deep RL algorithm by capitalizing
on the spatiotemporal nature of reaching problems. A vector reward can in metric spaces easily be
defined in dimensionwise alignment with the state space. We say that two vector spaces are aligned
if their dimensions correlate and show that if state and action space are not aligned, a mapping from
action distribution to state change distribution can be learned to allow vector reward training.

As a motivating example, consider the agent in Figure 1(a) trying to reach the goal (marked by the
blue dot). If we take s as the position state vector of the agent relative to the goal, a sensible reward
to guide the agent to the goal is r = ||s|| − ||s+ a|| where || · || can be any norm in the vector space
of the environment. We will focus on the L1 norm in this paper. During training the agent might try
action a which moves it closer to the goal in x direction, but a bit further away from the goal in y
direction. The scalar reward conveys the information that the action was rather positive (since the
agent got closer to the goal) but misses out on the distinction that the action was good in x-direction
but bad in y-direction. To give this distinction, a more informative reward would keep the dimensions
separate and therefore be a vector itself: r = |s| − |s + a| where | · | denotes the element-wise
absolute value here. Note that this reward is dimensionwise aligned with the position s, the state, of
the agent. (Since we focus on reaching problems in this work, we will use the terms “position” and
“state” interchangeably.) The problem with a state aligned vector reward is that the action space is
in most cases not state aligned. To see this, consider the schematic robot arm in Figure 1(b): The
action dimensions a1 and a2 correspond to the torques and do not directly translate to a shift in x
and y dimension, respectively. To address this issue we use quantile function networks [5, 4] to
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Figure 1: (a) An agent freely moving in a 2D world might try to reach a goal at position (0, 0) by
taking action a. A sensible reward in this environment is the change in absolute distance to the goal.
With a scalar reward this would be summarized as r = rx − ry , whereas a vector reward would keep
the two reward dimensions distinguishable. (b) In most cases action and state space are however not
aligned, therefore a mapping from action to state change must be learned.
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Figure 2: An overview of the architecture setup. The agent and the position change prediction network
(PCPN) are instantiated with neural networks and trained through quantile regression reinforcement
learning and quantile regression, respectively.

estimate the position change given the current observation and quantile target. Additionally, we give
a parameterization of the action probability distribution as input to this position change prediction
network (short PCPN). We then train the agent, parameterized by another neural network which maps
from observations to action probability distributions, through a new RL method we call quantile
regression reinforcement learning (short QRRL). A schematic overview can be seen in Figure 2.

2 Quantile Regression and Implicit Quantile Networks

Quantile regression [11] discusses approximation techniques for the inverse cumulative distribution
function F−1Z , i.e., the quantile function GZ := F−1Z , of some probability distribution Z. We refer
to the quantile function as GZ to avoid confusion with the in this work unrelated Q-function of
Q-learning [14, 5, 4]. Recent work [4, 16] shows that a neural network can learn to approximate the
quantile function by mapping a uniformly sampled quantile target τ ∼ U([0, 1]) to its corresponding
quantile function value GZ(τ) ∈ R. Thereby the trained neural network implicitly models the full
probability distribution Z. More formally, Ostrovski et al. [16] show that the expected quantile loss

Eτ∼U([0,1])
[
Ez∼Z

[
ρτ (z −GZ̃θ (τ))

]]
with ρτ (δ) = (τ − 1δ<0) · δ (1)

of a parameterized quantile function GZ̃θ aproximating the quantile function GZ of some distribution
Z is equal to the quantile divergence q(Z, Z̃θ) (see [16]) plus some constant not depending on the
parameters θ. Here, Z̃θ is the distribution implicitly defined by GZ̃θ . Therefore, training a neural
network GZ̃θ (τ) to minimize ρτ (z−GZ̃θ (τ)) with z sampled from the target probability distribution
Z effectively models an approximate distribution Z̃θ of Z implicitly in the network parameters θ of
the neural network GZ̃θ (τ). In our setup, we train the PCPN with the quantile regression loss (1) to
approximate a position change quantile function per position dimension. Aside from a target quantile
τ ∼ U([0, 1]) per position dimension, the network input consists of an observation o of the agent and
an action probability distribution parameterized by the output of the agent network.
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3 Quantile Regression Reinforcement Learning and SAVER

Our new RL technique described in the beginning of this section is generally applicable to RL
problems. We therefore use the terms “action” and “policy” in the common RL meaning here, which
is distinct from the meaning of “action” and “policy” in the rest of the paper. In the end of this section
we then link the position change estimation of the PCPN to this new meaning of “action”.

The idea of QRRL is to model the policy implicitly in the network parameters, therefore allowing
for complex stochastic policies. For this we model for each action dimension the quantile function
GZ̃θ (τ,o) = F−1

Z̃θ
(τ,o) of the implicitly defined action distribution Z̃θ(o) by a neural network

with an observation o and a target quantile τ ∈ [0, 1] as input. An action aτ ∈ A ≡ Rd, d being
the number of action dimensions, can then be sampled by sampling τ ∼ U([0, 1]d) and taking the
network outputs as action. To train the networks quantile regression comes in handy. Informally
put, quantile regression is linked to the Wasserstein metric [5] which is also sometimes referred to
as earth movers distance. Imagine a pile of earth representing probability mass. In RL we want to
move probability mass towards actions that were good and away from actions that were bad, where
“good” and “bad” are measured by accumulative reward achieved. Quantile regression can achieve
this neatly by shaping the pile of earth according to an advantage estimation and the constraint of
monotonicity (a core property of quantile functions)1. This leads us to the QRRL actor objective

min
θ

Eaτ [Eτ ′ [ρτ ′(aτ −GZ̃θ (τ
′,ot)) · (Rt,n−Vψ(ot)]] s.t. GZ̃θ is monotonically increasing with τ ′

where (Rt,n − Vψ(ot)) is an advantage estimation [15] with Rt,n = γnVψ(ot+n) +
∑t+n
t′=t γ

t′−trt′
being the n-step estimate of the discounted future reward and Vψ(·) being the output of a critic
network with parameters ψ, which is trained to approximate Rt,n. Note that QRRL is a constraint
optimization. We found it however sufficient to add this constraint as an additional loss term

Lmon(τ, τ ′, θ) = LHuber(GZ̃θ (τ)−GZ̃θ (τ
′)) · 1τ<τ ′ &GZ̃θ

(τ)>GZ̃θ
(τ ′) or τ>τ ′ &GZ̃θ

(τ)<GZ̃θ
(τ ′)

where we use the Huber loss LHuber [9] for better convergence. We weight this additional loss term
with a constant Lagrange multiplier λmon in the full loss term

LQRRL(aτ ,ot, τ, τ ′, θ, ψ) = La(aτ ,ot, τ ′, θ) + λcLc(ot, ψ) + λmonLmon(τ, τ ′, θ) (2)

with La(aτ ,ot, τ ′, θ) = ρτ ′(aτ −GZ̃θ (τ
′,o)) · (Rt,n−Vψ(ot)) and Lc(ot, ψ) = (Rt,n−Vψ(ot))2.

λc is another constant Lagrange multiplier to weight the critic loss Lc against the actor loss La.

In our State Aligned VEctor Reward (SAVER) agent, we use QRRL to train the agent network ANη
through the PCPN. For this we feed the action probability distribution output A of the agent network
to a pretrained PCPN and train on the QRRL loss (2) with respect to the agent network parameters
η, where we take the actual position change ∆p introduced by a sampled action a ∼ A as QRRL
action target aτ = ∆p and compare it to K sampled position change estimations ∆p̂(τ (i)), τ (i) ∼
U([0, 1]d) for i ∈ {1, ...,K}. Note that we pretrain the PCPN in our setup with random observations
and action probability distributions and freeze the PCPN weights during agent training. Since the
output of the PCPN can be seen as state aligned action, training on vector rewards is straight forward.
Instead of having a scalar critic estimating the value function V (·) ∈ R we estimate a value per
action dimension, i.e., V (·) ∈ Rd. Similarly, the vector rewards can be summed to a vector n-step
discounted reward estimation Rt,n = γnV (ot+n) +

∑t+n
t′=t γ

t′−trt′ , which leads us to a vector
advantage Rt,n − V (ot) at timestep t. Therefore we can apply loss (2) to each position change
estimation dimension individually.

4 Experiments and Results

To test our ideas, we implement a hypercube environment to model high dimensional metric spaces.
For proof of concept, we compare our SAVER agent against an A2C agent, the synchronous variant
of A3C [15]. We implement a simple feed forward neural architecture architecture and fix all
hyperparameters except the initial learning rate to values that work well for SAVER and A2C. The

1We can provide you with a more formal derivation, implementation details, more experiments and a link to
our code on request.
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Figure 3: Average number of steps needed to reach the goal over the course of training of an agent that
can select the dimension it wants to move in and the amount by how much it wants to move. Results
are shown for a 3, 4, 5 and 6 dimensional environment, corresponding plots are ordered from left to
right. The x-axis shows the number of training steps in millions while the y-axis shows the average
episode length over the last 100 episodes. Training length was fixed to 12,800,000 steps. Plotted is
the average of 3 training runs with the shaded area indicating the standard deviation between runs.

agent’s action executed in the environment consists of two parts: a softmax distribution from which the
dimension to be manipulated is chosen (discrete action part) and a scalar Gaussian distribution defined
by network outputs µ and σ from which the step size is sampled (continuous action part). The agent’s
start position is random and the goal of the agent is to reach the origin of the d-dimensional space.
We pretrain the PCPN with 10,000 batches of 128 transitions each by sampling softmax logits and µ
uniformly at random from U([−1, 1]) and σ from U([0, 1]). We search for an appropriate learning rate
in the 4 dimensional hypercube and settle for 0.01 for SAVER (chosen from {0.01, 0.003, 0.001})
and 0.0001 for A2C (chosen from {0.001, 0.0003, 0.0001}). The mean episode length – 100 episode
mean averaged across 3 training runs – over the course of agent training is plotted in Figure 3. Note
that the higher dimensional the hypercube is, the more advantageous it is to train with vector rewards.

5 Related Work

Klinkhammer [10] discusses multiple problem aligned rewards for better learning, while Brys et al.
[3] discuss the effect of correlated rewards on learning performance. Brys et al. [3] also suggest
multiple reward shapings of the same reward function for faster learning. Van Seijen et al. [20]
decompose the reward function into multiple rewards and train an architecture similar to ours with
deep Q learning, assigning a Q-value output to each reward. While all three approaches come to
the same conclusion as we do, i.e., increased training performance, they do require hand engineered
reward functions, reward shapings and/or reward decompositions. In contrast, our approach is based
on the fact that many state spaces are metric spaces and therefore allow for a straightforward vector
reward interpretation. This makes our approach easier to apply to a larger set of tasks. While state
proximity was already used by McCallum [13] for faster backpropagation of rewards in tabular RL,
we are unaware of any deep learning algorithm capitalizing on state aligned vector rewards as we do.

Many recent approaches to deep RL learn the environment dynamics to have a richer training signal
[6], imagine action consequences [19], improve exploration [17] or dream up solutions [8]. An
interesting line of research [21, 1, 12, 2] in this direction uses successor features to share knowledge
between tasks in the same environment. In contrast to most of these works, which often only predict
one possible next state or successor feature, our PCPN incorporates the full probability distribution
of possible state changes. While Ha and Schmidhuber [8] also predict the full probability distribution
of their next state representation by a Gaussian mixture model, our approach is more general in that it
is also able to approximate non-Gaussian probability distributions.

6 Conclusion

In this work we present the idea of state aligned vector rewards for faster reinforcement learning.
Additionally, we also present a new RL technique we call quantile regression reinforcement learning
(QRRL). QRRL allows for complex stochastic policies in continuous action spaces, not limiting
agents to Gaussian actions. Combining both, we show that our SAVER agent can be trained through
a quantile network pretrained in the environment. Our SAVER agent is capable of training orders of
magnitudes faster in high dimensional metric spaces.
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