On Finding Better Friends in Social Networks

Philipp Brandes
 Roger Wattenhofer

- Not this kind of friends, but actual friends
- Limited, constant number of friends
- Want to maximize global welfare

Overview

- Motivation
- Model
- Global vs Local
- Local vs Local
- Conclusion/Outlook

Model

- Given graph with n nodes
- Node v can have k_{v} friends
- Given symmetric edge qualities $q(u, v) \in[0,1]$
- Welfare of a node $u: \sum_{v \in N(u)} q(u, v)$
- Global welfare: $\sum_{u \in V} \sum_{v \in N(u)} q(u, v)$
- Local, distributed algorithms to find friends
- Local view ℓ

Model

- Node u suggests friendship to v
- Node v can accept
- Only better friends (will reach stable state)
- Round robin activation model

Local vs Global

- Welfare achievable by any local algorithm: $O(\varepsilon n)$
- Welfare achievable by optimal, global algorithm: $\Theta(n)$
- Arbitrarily worse than optimum

Local vs Local

- Is there a best local algorithm?

- $\quad e$ needs to be created if track is supposed to be explored
- Successful track if when explored yields welfare of $\Omega(n)$

- $q\left(u_{i}, v_{i}\right)>q\left(u_{i}, x_{i}\right)$
- Any algorithm has to decide whether to explore the track

- Track T_{1} is blocked by track T_{2}
- Combine tracks
- Arbitrarily worse than another local algorithm

Local vs Local

- Execute several algorithms in parallel
- Only constant number of algorithms can be executed

- Concatenate constant number of subgraphs
- Arbitrarily worse than another local algorithm

Local vs Local

- Every node tries to select best friends greedily in the end
- Friendship gets established if both nodes agree
- Can achieve factor 2 approximation compared to best executed algorithm

- Bound is tight

Friends of Friends

- Include friends of friends in quality function
- $Q(u, v):=q(u, v)+c \sum_{x \in N(v) \backslash u)} q(u, x)$
- Leads to asymmetric valuations

$$
Q(a, b)>Q(a, c) \quad Q(b, c)>Q(b, a) \quad Q(c, a)>Q(c, b)
$$

- Stable roommate problem
- No stable state

Conclusion/Outlook

- Choosing friends is difficult
- Local algorithms perform arbitrarily worse
- How to generalize these results?
- Which are the conditions under which all local algorithms perform badly?
- Questions?

