
DISS. ETH NO. 18959

Ultra-Low Power Sensor Networks:
Development Tools, Design, and Implementation

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

NICOLAS BURRI

MSc ETH, ETH Zürich

born 02.05.1978

citizen of

Basel (BS)

accepted on the recommendation of

Prof. Roger Wattenhofer, examiner
Prof. Jochen Schiller, co-examiner

2010

Abstract

Wireless Sensor Networks (WSN) are a powerful tool for the surveillance
of environmental conditions, natural habitats, or industrial machinery. All
these applications require a long, independent operation of the network with-
out human intervention. The lifetime of a network is limited by the restricted
energy resources of the individual deployed sensor nodes. To maximize net-
work lifetime it is therefore essential to minimize the power consumption of
all nodes. To achieve energy-efficiency sensor nodes have to be kept in a sleep
state in which they are neither able to execute computational tasks nor to
communicate among themselves.

In this thesis we consider the design and implementation of energy-efficient
communication protocols and applications for sensor networks. The thesis is
organized in two orthogonal parts. The first part is dedicated to the Dozer
project. Dozer is a communication system designed and optimized for ap-
plications in the domain of environmental monitoring. At a sample rate of
one reading per two minutes, sensor nodes achieve a lifetime of up to ten
years. This makes Dozer the most energy efficient system for applications
with continuous, low data rates.

The second part of this thesis discusses development tools for sensor net-
works. With an application providing control and monitoring functional-
ity and an integrated development environment on Eclipse-basis we provide
TinyOS developers with tools to design, implement, and test their protocols
more efficiently.

Zusammenfassung

Drahtlose Sensornetzwerke sind ein mächtiges Werkzeug zur Überwachung
von Umweltbedingungen, Lebensräumen und industriellen Anlagen. Bei all
diesen Anwendungsszenarien ist ein langer, selbständiger Betrieb des Netzes
ohne menschliche Unterstützung erforderlich. Die Lebensdauer eines Sensor-
netzes wird durch die begrenzten Energieressourcen der einzelnen Sensorkno-
ten bestimmt. Um die Lebensdauer zu maximieren, ist es daher essentiell,
den Energieverbrauch der Knoten zu minimieren. Um Energie zu sparen,
müssen die Sensorknoten den Grossteil der Zeit in einem Schlafmodus gehal-
ten werden, in dem sie weder Berechnungen durchführen noch kommunizieren
können.

In dieser Arbeit beschäftigen wir uns mit der Entwicklung energieeffi-
zienter Kommunikationsprotokolle und Anwendungen für Sensornetze. Die
Arbeit ist in zwei zu einander orthogonale Teile gegliedert. Der erste Teil
ist dem Dozer Projekt gewidmet. Dozer ist ein Kommunikationssystem für
Sensornetze, das für Anwendungen im Bereich der Umweltüberwachung opti-
miert wurde. Bei einer Datenerfassungsrate von einer Messung alle zwei Mi-
nuten, erreichen Sensorknoten mit Dozer eine Laufzeit von bis zu 10 Jahren.
Damit ist Dozer das zurzeit energieeffizienteste System für Anwendungen mit
kontinuierlicher, niedriger Datenrate.

Der zweite Teil der Arbeit behandelt Entwicklungswerkzeuge für Sen-
sornetze. Mit einer Applikation zur Überwachung und Steuerung von Sen-
sornetzen sowie einer integrierten Entwicklungsumgebung auf Eclipse-Basis,
bieten wir TinyOS Entwicklern eine Möglichkeit ihre Protokolle effizienter zu
implementieren und zu testen.

Acknowledgements

A dissertation is never the work of one person and therefore I would like
to thank all the people who have helped and supported me during my time
as a PhD student. First of all, I would like to thank my advisor Roger
Wattenhofer. I am very grateful for the opportunity you gave me to work
with you and for your constant efforts to unite the theoretical and systems
aspects of distributed computing. I would also like to thank my co-examiner
Jochen Schiller for serving on my committee board despite his very tight
schedule.

Furthermore, my thanks go to my colleagues at DISCO (nee DCG). I
would especially like to thank Pascal von Rickenbach, my longtime office
mate and second parent of Dozer. The many night shifts we spent in the
office would not have been as easy without you and your special sense of
humor. Also I would like to thank Remo Meier and Pascal for showing me
a way in the post-DCG life by founding the startup StreamForge together
with me. In this context I would also like to thank Benjamin Sigg for joining
us and for his patience with me when I kill the database with bad entries.

My thanks also go to Raphael Eidenbenz for being a loyal co-coffee
drinker, Roland Flury for trying to make TinyOS a better system, Olga
Goussevskaia for bearing with us when we spoke Swiss German, Michael
Kuhn for not finishing his PhD before I did, Christoph Lenzen for provid-
ing a mathematicians point of view to many problems, Thomas Locher for
appreciating Matt Groening, Johannes Schneider for organizing the poker
nights, Philipp Sommer for taking over the sensor network development at
DISCO, Yvonne Anne Pignolet for not being resentful, Stefan Schmid for
proving that the world is not such a dangerous place, and Thomas Mosci-
broda for being almost as sarcastic as Pascal. I would also like to thank the
next generation of PhDs, Stephan Holzer, Barbara Keller, Tobias Langner,
Jasmin Smula, and Samuel Welten for maintaining the traditional addiction
of the group to the Toeggelikasten and for providing the exceptions to this
rule (for the sake of privacy I will not reveal who belongs to which group).
Last but not least I would like to thank the “first generation”, Keno Albrecht,
Fabian Kuhn, Regina O’Dell, and Aaron Zollinger for getting me started at
DCG and for being da cool gang. My special thanks go to Keno, my first
office mate, for sharing his extracurricular knowledge with me and for being
a worthy opponent in any competition with the staple gun.

I would also like to thank the sensor network guys at TEC, especially
Jan Beutel, Roman Lim, and Mustafa Yuecel for the many interesting dis-
cussions and their support whenever a hardware related matter went beyond
my understanding.

I also had the pleasure to work with many talented students while super-
vising their diploma and master theses and I would like to thank all of them
for this experience. My special thanks go to Roland Schuler and Benjamin
Sigg for their exceptional work on the Yeti project and to Otmar Caduff for
his excellent work on the sensor network monitoring tool.

Finally, my greatest thanks go to my family for their constant support
during all the ups and downs of the last years. I will forever be indebted and
grateful to my parents Marlene and Roland for their love and encouragement
I received during all my years at ETH. I would also like to thank my brother
Alain, his wife Sabrina, and their baby boys Manuel and Adrian for sharing
with me what it means to get kids.

Contents

Introduction 7

I The Dozer Project 11

1 Introduction 13
1.1 Origin . 13
1.2 Data Gathering . 15
1.3 Design Philosophy . 16

2 Dozer System 19
2.1 Dozer Overview . 19
2.2 Dozer Implementation . 21

2.2.1 Tree Maintenance . 21
2.2.2 Scheduler . 23
2.2.3 Data Administration 25
2.2.4 Command Management 27

3 Evaluation 29
3.1 Hardware and Operation System 29
3.2 Small Scale Experiments . 31
3.3 Office Floor Experiment . 33

3.3.1 Setting and Protocol Parameters 33
3.3.2 Tree Topology . 36
3.3.3 Energy Consumption 37

4 Lessons Learned 41
4.1 Testing Cannot be Outsourced and Requires Adequate Testbeds 41
4.2 Meaningful Tests Take Time 42
4.3 Know Your OS and Hardware 42

4.4 Debug Information . 43
4.5 Offline Phase . 44
4.6 Self-Repair . 45
4.7 Software Updates . 46

5 Dozer Revisited 49
5.1 Time Synchronization . 49

5.1.1 Fundamentals . 50
5.1.2 Clock Synchronization 50
5.1.3 Time Synchronization 51

5.2 Clock Drift Compensation in Dozer 52
5.3 Experimental Evaluation . 55

5.3.1 Office Floor Experiment 55
5.3.2 Multiple Sinks . 58
5.3.3 Outdoor Experiments 59

6 Dozer in the Wild 65
6.1 About PermaSense . 65
6.2 Dozer to PermaDozer . 66
6.3 Performance . 69
6.4 Conclusions . 71

7 Related Work 73
7.1 Comparison . 75

7.1.1 LPL and Twinkle . 75
7.1.2 KOALA . 77
7.1.3 TSMP . 79
7.1.4 IP is Dead, Long Live IP for Wireless Sensor Networks 80

7.2 More Related Work . 82

8 Conclusions and Outlook 85

II Developement Support for Wireless Networks 87

9 Introduction 89

10 Simulation of Ad Hoc Networks 91
10.1 SANS . 92

10.1.1 Design Goals . 93
10.1.2 Overview . 93
10.1.3 Simulation of Physical and Data Link Layers 95
10.1.4 Internal Network Simulation 97

10.1.5 Related Work . 98
10.1.6 Concluding Remarks 99

11 Monitoring Sensor Networks 101
11.1 Overview . 102

11.1.1 Workstation Application 102
11.1.2 Sensor Network . 103

11.2 Remote Procedure Calls . 104
11.3 Logging . 104

11.3.1 Design Goals . 105
11.3.2 Logger . 105
11.3.3 Remote Log Reader 106

11.4 Topology Control . 107
11.4.1 Physical Neighborhood 107
11.4.2 Virtual Overlay . 107

11.5 Concluding Remarks and Outlook 108

12 YETI 111
12.1 Introduction . 111
12.2 Development Requirements 112
12.3 Features . 113

12.3.1 System Plug-in . 113
12.3.2 TinyOS Environment Wrapper 116

12.4 Code Analysis . 118
12.4.1 Scanner and Parser . 119
12.4.2 Extending the Parser 120

12.5 Related Work . 121

13 Conclusion 123

Introduction

Sensors have become an indispensable part of many industrial processes as
well as our everyday lives. Whether in a power plant or a greenhouse, wher-
ever we go we find sensors monitoring the proper operation of machinery or
tracking specific environmental conditions. But also in our homes more and
more sensors are employed to simplify our lives.

A limitation of today’s sensing technologies is their wiring. If sensors
are not directly embedded in the devices that have to respond to the sensor
readings, an often cost intensive deployment of cables and wires becomes
necessary. This wiring can quickly become the dominant cost factor for a
deployment using multiple sensing stations. Therefore, it is often the case
that a compromise between the quality of the acquired sensor data and the
available financial budget has to be made.

As a practical example consider a vineyard using soil moisture sensors
to optimize irrigation of the vines. As vineyards are usually situated on
a slope a single sensing station does not suffice to measure soil moisture.
Thus, multiple sensing locations within a possibly square kilometers large
area have to be set up. Covering an entire vineyard with wires would be
extremely expensive and error prone as cables may easily be damaged by
agricultural machinery.

With wireless sensor network technology we can overcome both of these
problems. Wireless sensor networks employ matchbox-sized micro computers
offering very limited computation power and only a few kilobytes of RAM at
each sensing station. These micro computers are commonly known as “sensor
nodes” or “motes”. The application specific sensors, in our example case soil
moisture sensors, are attached to a sensor node at each sensing location.
To enable data collection from the deployed sensor nodes, the devices also
contain a short-ranged radio module. These radios are tuned for minimal
power consumption and thus only offer a transmission range of a couple of
meters to a few hundred meters under ideal conditions. In most practical
deployments this results in the problem that not all sensing stations are

within direct communication range of a central base station collecting the
readings. In order to circumvent this limitation, sensor networks use multi-
hop communication. That is, sensing nodes closer to the base station act as
a communication relay for nodes unable to reach the base station directly.
Using multi-hop communication the physical dimension of a sensor network
is no longer limited by the transmission range of the employed radio and also
very large areas such as a vineyard can be equipped with this technology.

As its name implies, wireless sensor network technology, expects sensor
nodes to be untethered. Consequently the power supply of the sensor nodes
must be contained within the nodes themselves. Commonly, batteries are
used as a power source. In some deployments also additional energy harvest-
ing mechanisms such as solar panels are used to provide additional power to
a rechargeable battery. Using additional energy harvesting is increasing the
costs of a deployment and in general the available power a node may spend
is still limited. Energy-efficiency is therefore one of the main design goals
for all sensor network deployments. The communication subsystem is one
of the main energy consumers of a sensor node. From an energy point of
view it does not matter whether a node is receiving or sending, the power
consumption is approximately the same in both cases. It is therefore vital to
turn off the radio whenever possible to prolong the life-time of a sensor node.
In case of multi-hop communication this raises the challenge of ensuring that
both communication partners have their radios turned on at the same time
to enable communication.

We have investigated the design and development of energy-efficient ap-
plications for sensor networks. We thereby worked on two orthogonal axes
which are represented as two parts of this thesis. The first part is dedicated
to the Dozer project. Dozer is a communication system designed for long-
term data aggregation at low data rates. Applications in this domain include
most environmental monitoring tasks such as our vine yard example. With
Dozer, sensor nodes can operate in a multi-hop network for up to ten years on
one set of non-rechargeable batteries and without any human intervention.

As wireless sensor networks are still a young field of research and so far
only a small number of commercial players are working with this technology,
there are also only a limited number of development tools available. Generic
text editors for code development and command line based compilation tools
are still the standard with which most developers in this area have to work.
This lack of development support further complicates the design and imple-
mentation of new protocols and application for sensor networks. It results
in a high barrier to entry for new interested developers and slows down the
actual development process. The second part of this thesis therefore presents
development tools we have built helping to mitigate the problems faced when
building industrial strength sensor network applications.

Part I

The Dozer Project

Chapter 1

Introduction

The first part of this thesis is dedicated to the Dozer project. Dozer is a
network stack optimized for ultra low-power data gathering applications in
sensor networks. As the title indicates we will give a comprehensive report on
this project. Thereby the in-depth analysis of the developed algorithm is in
the focus. We benchmark Dozer’s performance on a set of different wireless
sensor network testbeds. This includes small scale tests to highlight specific
details but also extensive tests on medium to large scale networks are shown.
Beside this analysis we also discuss the background of the project, how it
came into existence, why this class of applications is of such importance for
sensor networks, and also pitfalls and lessons learned which go beyond the
protocol and its implementation.

1.1 The Origin of the Dozer Project

Before we come to the actual Dozer system we take a look at how the project
started and what initial goals were set. The kick-off was a discussion between
Shockfish SA [51] and us, the Distributed Computing Group (DCG) at ETH
Zurich. Shockfish had plans for an application using wireless sensor networks
and was developing a custom hardware for this application based on their
TinyNode 854 platform (also see Section 3.1). They required a new com-
munication stack and were wondering if it was possible to develop a system
fulfilling the following three requirements

• Reliable data aggregation at one or possibly several data sinks.

• Up to 10 years of network life-time on two AA batteries (limiting the
possible radio duty cycle to approximately one per mill).

14 CHAPTER 1. INTRODUCTION

• Less than 2 minutes of delay before a reading reaches the data sink in
a multi-hop network.

At the time when Shockfish introduced us to their application idea there
was already an ongoing discussion at DCG about an algorithm combining
scheduled communication and randomization. This idea seemed a promis-
ing approach for a system solving Shockfish’s specific task. Hence, further
meetings with Shockfish were held to define the concrete requirements. Un-
fortunately, due to a NDA with Shockfish we are not at liberty to name the
application they had in mind. However, for this thesis the actual application
is of minor importance. The nature of the logged data has no influence on the
communication system as long as we know the characteristics of the network,
traffic pattern, and probability distribution of the logged events.

• Each node in the network produces periodic readings which need to be
forwarded to a base station.

• One or more custom sensors on each node are used to detect the change
of a physical phenomenon.

• The event to detect happens comparatively seldom and non-periodic.

• Event detection is independent at each node. That is, event detection
at one node has no influence on the readings of neighboring devices.

• Multi-hop communication is required.

• Communication must be reliable. Individual messages may be lost but
no “burst losses” dropping several consecutive messages are allowed.

• Topology changes in the network may happen at any time, especially
when the event to detect occurs.

• Battery changes are out of the question and energy harvesting is no
option either.

These requirements boil down to a periodic data gathering application
with comparatively low data rates but long life time demands. Delay must
not be completely ignored but is not of primary concern. Thus, Shockfish’s
application idea falls in the category of environmental monitoring which is
also one of today’s main application areas for wireless sensor networks. After
the initial discussion phase DCG and Shockfish started a joint venture in the
form of a CTI project [6] with the goal of developing a new communication
stack suited for Shockfish’s application scenario. Shockfish’s role was to
provide the hardware and hardware support (including drivers) as well as
a back-end solution. Furthermore, according to the initial plan Shockfish

1.2. DATA GATHERING 15

was also expected to run experiments and tests on a testbed consisting of
multiple TinyNodes to validate the fitness of the developed solution. In turn
the actual design and implementation of the sensor network software was to
be done by DCG.

1.2 Data Gathering in Wireless Sensor Networks

Observation and interpretation of natural phenomena has always been of fun-
damental importance to numerous research areas and industrial applications.
Sensor networks represent a new tool providing the possibility to sample and
gather data at scales and resolutions which were difficult to obtain before.
By spreading large numbers of cheap untethered sensor nodes in an area
of interest it becomes possible to monitor dense temporal and spatial data
over an extended period of time. With this data the analysis of complex
interactions becomes possible.

Wireless sensing devices exhibit a large variety of favorable attributes.
They facilitate the deployment and are far less intrusive than tethered solu-
tions. Furthermore, they permit temporary measurements or surveillance of
secluded areas. In addition sensor networks should not need any human in-
teraction while fulfilling their intended tasks. Due to the limited capacity of
common power supplies for sensor networks, such as batteries or solar cells,
energy efficiency is a fundamental requisite for prolonged network lifetime.
All sensor nodes are equipped with a short-ranged radio allowing them to
convey their data to an information sink for further processing. This com-
munication subsystem is one of the primary power consumers of a sensor
node. The energy wastage of the radio, even in idle listening, is three orders
of magnitude higher than a node’s power drain in sleep mode. As a con-
sequence, the radio should only be turned on if a data transfer is pending.
This requirement is hard to fulfill since multi-hop routing techniques must
be applied to transmit data from all nodes in a possibly large area to the
data sink. Energy-efficient data exchange is a nontrivial task in single-hop
networks but becomes even more challenging if routing over multiple hops
is required. Sensor nodes are no longer able to schedule their transmissions
strictly according to their individual demands but they also have to activate
their radio in order to receive and relay messages from other nodes in the
network. This raises the problems of idle listening and overhearing which
waste precious energy.

16 CHAPTER 1. INTRODUCTION

1.3 Design Philosophy

Dozer is designed to provide an optimal communication system for applica-
tions in the field of environmental monitoring. We focus on applications pro-
ducing continuous data. Examples thereof include precision agriculture [3],
glacier displacement measurements [32], natural habitat monitoring [31, 37],
or microclimatic observations [56]. All of these applications generate periodic
data samples at low rates resulting in light traffic load and thus low band-
width requirements. Dozer incorporates a full communication stack including
a MAC layer, topology control, and a routing protocol. We refrained from
integrating existing low-power solutions for any of these subsystems since it
is our strong belief that only a perfectly orchestrated network stack is able to
achieve minimum power consumption and therefore maximize network life-
time. The primary goal of Dozer is to reduce idle listening and overhearing.
In theory, a TDMA-based MAC protocol constructing a global schedule to
determine exact send and receive times for each node would solve the prob-
lem of overhearing and idle listening. However, in a real-world setting clock
drifts and frequently changing external conditions render plain TDMA costly
since maintaining an accurate schedule is a complex and energy consuming
task. Dozer takes these aspects into account. It builds a data gathering tree
on top of the underlying network topology and provides nodes with precise
wakeup schedules for all communication only relying on local synchroniza-
tion. Furthermore, it addresses the problem of temporary network partition
and energy efficient tree adaptation in case of local link failures.

Incorporating the functionality of link layer, network layer, and transport
layer in one piece of software, Dozer violates the design concept of layering.
Layering is a proven, successful approach to build a communication system.
Separating different tasks in self-contained layers simplifies development and
debugging and also enables replacing individual layers. Nonetheless we have
decided to abandon this concept in Dozer. The reason for this decision lies in
the overhead incurred by the separation of a task in multiple layers. For our
specific application we had to consider the challenge that certain real-world
problems could not be handled on one individual layer without the whole
communication stack being aware of the changes. An example hereof is the
selection of communication partners. Due to the constantly changing qual-
ity of the wireless channel all sophisticated sensor network applications have
a functionality monitoring the reliability of a connection between two com-
munication partners. As the available memory on the devices is scarce and
link monitoring potentially costly in terms of energy it is usually not feasible
to monitor the links to all possible neighbors of a node. We therefore face
the question who should select the appropriate connections and according to
which information? Traditionally, this task is solved by a “topology control

1.3. DESIGN PHILOSOPHY 17

layer” placed between the network and transport layers. For a wireless sensor
network the selection of the proper links is thereby influenced by multiple
aspects including the reliability of a specific link, the amount of traffic to be
routed over the connection, and if the connection has to be established to
prevent an undesired separation of the network into multiple not mutually
connected clusters. The input for the topology control component there-
fore stems from all layers in the communication stack and requires a lot of
inter-layer communication. Here Dozer benefits from its holistically designed
communication stack. For example, the link layer is aware of the existence of
a topology control mechanism and thus reports connection problems directly
to this component.

At this point it is important to point out that the lack of layering must
not be confused with a lack of modularization. It is vital for a system to
have components with individual well-defined subtasks but it is helpful if
the design of the system allows components to be aware of each other. By
having a component do some extra work which may not be essential for
its main task it may become possible to solve challenges in other modules
much more efficiently. The components are no longer strictly self-contained
and may not be hierarchically placed on a stack but they still have their
individual tasks. Dozer is built according to this principle as all modules
are designed to optimize the performance of the entire system and not one
component.

Chapter 2

Dozer System

2.1 Dozer Overview

The Dozer system is indented to meet common demands of environmental
monitoring applications. It enables reliable data transfer, has self-stabilizing
properties—and is thus robust against changes in the environment—, and it
is optimized for long system lifetime. Network latency and flexibility towards
dynamic bandwidth demands are considered to be of less importance.

In order to forward data to the base station Dozer establishes a tree struc-
ture on top of the physical network. This guarantees that information from
any node is conveyed on a loop-free path to the data sink which constitutes
the root of the tree. Each node fills two independent roles in tree mainte-
nance. On the one hand, it acts as a parent for directly connected nodes
one level deeper down the tree. On the other hand, it is a child of exactly
one node one level higher in the tree. Data is transferred to the sink using a
TDMA protocol. However, Dozer does not construct one global schedule for
the whole network but splits it up at each node. Consequently, each node
has two independent schedules; one in its role as a parent and one for its
child role. As a parent a node decides when each of its children is allowed to
upload data. Vice versa, in its role as a child it receives an update slot from
its own parent. Thus, Dozer only constructs single-hop schedules and does
not rely on any global synchronization. Each round of a parent’s TDMA
schedule is initiated by the transmission of a beacon message. Simplified,
beacons are the heart beat of the Dozer system. In its child role, a node
synchronizes on the received parent beacon. However, it does not adjust its
internal clock but calculates the offset of its upload slot in relation to the
last beacon reception time.

20 CHAPTER 2. DOZER SYSTEM

RadioRadio TimerTimer

SchedulerScheduler

Tr
ee

Tr
ee

D
at

a
M

an
ag

er
D

at
a

M
an

ag
er

C
m

d
C

m
d

ApplicationApplication

Parent

Child

Figure 2.1: Architecture of the Dozer system represented by the light gray
boxes. Arrows indicate the command flow between the different modules.

Dozer does not make use of a traditional MAC protocol. In fact, the sys-
tem does not try to prevent nodes from sending at the same time; collisions
are explicitly accepted (c.f. in Section 2.2.2). Using randomization Dozer en-
sures that two schedules drift apart quickly in case of a collision. This scheme
is advantageous as a message receiver exactly knows when the correspond-
ing sender is going to start its transmission. This greatly prolongs network
lifetime as nodes are able to maximize their time in energy-efficient sleep
mode. Facing collisions data transmissions in Dozer are always explicitly
acknowledged.

As network conditions change over time so does the network topology.
Consequently, the data gathering tree cannot be stable in the long run. To
reduce increased message delay in case of link failures, each node maintains
a list of additional potential parents. Choosing a candidate from this list a
new connection can be established with little overhead.

2.2. DOZER IMPLEMENTATION 21

2.2 Dozer Implementation

As the high-level overview in the last section has outlined Dozer handles
several interwoven tasks in parallel. More precisely, the system can be sub-
divided into four logical components. Figure 2.1 depicts the individual com-
ponents and shows how they interact with each other. In the following the
function of each component is discussed in more detail.

2.2.1 Tree Maintenance

The Tree module coordinates a node’s integration in the data gathering tree
of Dozer and guarantees constant connectivity. Furthermore, in case of a
network failure it sets the node in an energy efficient suspend mode until a
reintegration in the tree becomes possible.

Connection Setup

It is essential for every node to be part of Dozer’s data gathering tree. Nodes
without connectivity are unable to provide data to the base station and are
thus of no use. Upon wakeup, in the bootstrap phase, a node tries to join
the tree as quickly as possible. Since it does not yet have any conception
of its neighborhood, it starts listening for beacon messages of nearby nodes.
Beacon messages are periodically sent by already connected nodes at the be-
ginning of their TDMA schedule to enable the integration of disconnected
nodes. After scanning for the full length of a TDMA round each received bea-
con message is analyzed and the corresponding node is ranked according to
a rating function. The function’s current implementation considers a node’s
distance to the sink as well as its load—the number of direct children—in this
computation. Both of these values are part of the beacon message and are
thus readily available. To minimize tree depth, distance has a higher weight
than load in the computation. The node now tries to connect to the high-
est rated neighbor and the gathered information about all other overheard
potential parents is stored.

The actual connection setup is initiated after the transmission of the next
beacon of the selected neighbor (see Figure 2.2). After sending its beacon the
potential parent stays in receive mode for a short amount of time. Within
this contention window it accepts incoming connection requests. The child
uses a simple random back-off mechanism to determine when to send its
connection request message. This contention phase is needed since multiple
nodes may want to establish a connection with this parent at the same time.
On receiving a connection request message the parent assigns the new child
a slot in its TDMA schedule and returns this information by means of a

22 CHAPTER 2. DOZER SYSTEM

time

parent

child

B H

C

Figure 2.2: Connection setup – The parent node sends a beacon (B). Upon
beacon reception the child sends a busy tone to activate the contention win-
dow. The child then transmits its connection request (C). A handshake (H)
serves as an acknowledgment. Shaded areas denote the times a node is actu-
ally listening.

handshake message. Currently, a node only accepts one new child per beacon
interval. This restriction serves as a simple form of load balancing. A node
failing to connect to a specific neighbor may first try to join the tree at
another node with similar rating before retrying the same parent.

Since listening for the whole length of the contention window after each
beacon transmission is expensive, in Dozer an activation mechanism precedes
the actual connection setup. As depicted in Figure 2.2 the child transmits an
activation frame immediately after receiving the potential parent’s beacon
message. On the other side, the parent switches to receive mode and polls
the channel right after sending its beacon. Only if the received radio signal
strength (RSSI) indicates channel activity the contention phase is activated.
If multiple nodes want to connect to the parent in the same round their
activation frames collide. This is no problem since the parent does not try to
detect a specific pattern and the sensed RSSI still clearly indicates activity
on the medium.

Connection Recovery

Wireless links are fragile to changes in the environment and must be expected
to break at any time. Unstable weather conditions or temporary obstacles
in the area of interest can have a negative impact on the network stability.
Dozer incorporates a mechanism to confront this problem.

A connection to the current parent breaks if multiple consecutive data
transfers fail and the parent is declared unreachable. To replace it with little
overhead, the orphaned node queries its stored list of potential parent for

2.2. DOZER IMPLEMENTATION 23

a well suited substitute and tries to establish a new connection. In case of
success this procedure costs a reasonably small amount of energy. However,
if no replacement can be found in this list the node falls back to bootstrap
mode (see Section 2.2.1) and has to conduct a costly scan in order to detect
new potential parents. To guarantee the availability of reasonably up-to-date
information about its stored potential parents, a node periodically listens for
their beacons. This refresh is cheap since future beacon transmission times of
a node can be predetermined accurately based on the point in time of its last
overheard beacon. This calculation is performed by the Scheduler component
described in Section 2.2.2. Additionally, to learn about the existence of
new, potentially well suited parents, a random listen mechanism is applied.
Unrelated to their two schedules nodes periodically overhear the channel for
beacons of yet unknown nodes. To keep the incurred overhead low, these
scans must only be executed infrequently.

Suspend Mode

If a node is not connected to a parent and also cannot hear any beacons—
even when listening for a full beacon interval—it assumes the network to be
down or out of reach. Constant channel surveillance in this situation would
result in high power consumption and a node’s lifetime would decrease to a
couple of days. To circumvent such energy wastage Dozer features a special
suspend mode. Along the line of low power listening [42] the node periodically
samples the channel for activity and remains in sleep mode for the remainder
of the time. However, unlike low power listening this mode does not ensure
reception of all messages. Energy efficiency and quick reactivation in case of
channel usage can be balanced depending on the demands of the application
running on top of Dozer. Frequent channel polling results in higher power
drain but also more rapid connection establishment on network availability.
On the other hand, longer intervals between scans lead to improved energy
efficiency but possibly delayed reintegration of suspended nodes.

2.2.2 Scheduler

The energy efficiency of the Dozer system mostly stems from the Scheduler
module. By providing the Tree Maintenance and Data Manager modules
with precise timings it enables efficient radio usage.

Communication between a parent and its children is coordinated by a
TDMA protocol. That is, all transmissions happen at exactly predetermined
moments in time. For the exchange of a message neither sender nor receiver
have to spend energy beyond what is required to transmit or receive the ac-
tual data. In particular nodes do not have to waste energy on overhearing

24 CHAPTER 2. DOZER SYSTEM

the channel for pending transmissions. However, a global TDMA scheme is
expensive since it demands the existence of a network-wide time synchro-
nization mechanism. To circumvent this burden Dozer only aligns one hop
neighbors in the data gathering tree. As all nodes are simultaneously parent
and child they all have to maintain two schedules; one provided by their par-
ent and one self-determined as a reference for their children. In this setting
it is complex to synchronize the internal clocks of a parent and its children.
Only by means of global time synchronization it would be possible for each
node to service both schedules with only one clock.

While in theory wakeup times can be calculated perfectly at both par-
ent and children, clock drift has to be considered in real-world applications.
The current generation of sensor nodes is usually equipped with an electronic
oscillator exhibiting a skew of 50 parts per million (ppm) at room temper-
ature. Thermal differences between sender and receiver lead to significant,
additional skew. In Dozer, the receiver of a transmission is responsible for
clock drift compensation and worst-case guard times are used to guarantee
a prior wake up of the receiver before the sender starts its transmission.

The self-determined TDMA schedule of a node, in the following also de-
noted as parent schedule, is of fixed length and divided into equal time slots.
Upon connection of a new child the Tree Maintenance module requests a free
slot from the Scheduler. This slot is henceforth marked as occupied and re-
served for the new child. The assignment outlasts the end of the schedule and
is only released if the corresponding child disconnects. That is, each child
owns the same time slot in every iteration of the schedule. As a consequence,
the total number of slots of the TDMA schedule defines the maximum num-
ber of children a node is able to manage.

After connection establishment between parent and child, the personal
slot number of the child in its parent’s schedule is known at both nodes.
They can thus compute the start of this slot relative to the beginning of the
schedule. For each slot of its schedule the parent checks if it is occupied and
listens for incoming data if necessary. Analogously, at the child the Scheduler
triggers the Data Manager component at the start of its upload slot to permit
a timely transfer of potentially queued data messages.

As mentioned above the protocol does not provide any direct clock syn-
chronization. Instead, at the outset of a new round of the schedule the Tree
Maintenance module is triggered to send a beacon message. This beacon
is received by all children and timestamped according to their local clocks.
Since both parent and children share the knowledge about the time of the bea-
con transmission this moment in time serves as an anchor point for implicit
clock synchronization. No adjustments of system clocks are required but only
this timestamp needs to be stored for further timing calculations. For the
remainder of this round of the TDMA schedule all events are computed in

2.2. DOZER IMPLEMENTATION 25

relation to this timestamp. The transmission time of the next beacon is also
determined according to this value. As a positive side effect, clock drift ac-
cumulation over multiple rounds of the schedule is prevented. Furthermore,
the complexity of handling both independent schedules diminishes since only
two values used as offsets for the internal clock need to be stored.

Without a global schedule, collisions between the transmissions of neigh-
boring nodes that are not part of the same schedule can no longer be ex-
cluded. Other systems facing the same problem (e.g. [19]) apply secondary
MAC protocols such as CSMA/CA to resolve it. However, since bandwidth
demands in the considered scenario are low, collisions happen infrequently.
Dozer thus refrains from handling them actively. In the long run the costs for
retransmissions are cheaper than the costs that would arise to prevent them.
But regarding collisions there exists an additional problem which needs to be
tackled. Collisions may indicate the undesired alignment of two independent
schedules. If this is the case, without intervention, collisions would recur in
subsequent rounds of the schedule. To counter this threat, Dozer extends
the length of a TDMA round by a randomly chosen time span—also referred
to as jitter. The parent draws a new random number for each round of the
schedule which is then added to the round’s length. There is a linear relation
between the maximum transmission time per slot and a reasonable upper
bound for this random offset. Dozer uses a bound of seven times the time
needed to flush the local message buffer (c.f. in Section 2.2.3). With this
value, in case of a collision between two unsynchronized transmissions, the
chance for a second consecutive collision is less than 50% in expectation. For
any realistic scenario this implies that a maximum jitter of less than one
second suffices.

This random prolongation of the TDMA rounds introduces the challenge
of how to predict the exact time of the next parent beacon. Thus, the seed
value of the random number generator used for calculating the next random
offset is included in every beacon. With this value each child is able to
execute the same computation as the parent and to predict when the next
beacon message is due. At the parent, the current random number is used
as seed value to generate the next random number. Consequently, even if a
child misses one or more consecutive beacon messages of its parent it is still
able to determine the next beacon arrival time: Based on the information of
the last beacon it has received, it recursively draws random numbers until it
has compensated for the number of missed beacons.

2.2.3 Data Administration

At the end of the day, Dozer’s main task is to transport sensor readings from
all nodes to the data sink. While a node’s data upload times are strictly

26 CHAPTER 2. DOZER SYSTEM

parent

child 1

B

D

time

child 2

D

D

BA A A

Figure 2.3: Message reception of a parent with two children. Upload slots
are determined by parent beacon (B). All data messages (D) are explicitly
acknowledged (A).

defined by the Scheduler module, data injection by the application is always
possible. Hence, the Data Manager module features a message queue buffer-
ing injected data pending for transmission. Since data upload to the parent
and data reception from the children is unsynchronized, incoming messages
from the children are also appended to this queue.

As soon as the Scheduler module signals the beginning of the parent
upload slot the Data Manager tries to transmit all queued messages. Each
message is explicitly acknowledged and only removed from the queue of the
sender if the receiver confirms its correct reception (see Figure 2.3). With the
acknowledgment the parent not only takes over responsibility for the packet
but also notifies the child about how many additional messages it is willing
to accept. Consequently, at most one unnecessary message transmission is
possible if the parent is unable or unwilling to handle more messages. The link
acknowledgments guarantee that no messages are lost on their path towards
the sink despite possible collisions on the wireless links. If a message transfer
fails to be acknowledged the child immediately stops its data upload for this
round of the schedule since a temporal interruption on the medium may be
encountered. In case of consecutive transmission failures over multiple upload
slots the Data Manager instructs the Tree Maintenance module to switch to
another parent. Due to the limited amount of memory available on current
sensor node platforms the queue size is limited. Different buffering strategies

2.2. DOZER IMPLEMENTATION 27

may be employed depending on the application requirements. Dozer’s default
strategy only allows buffering of one data message from each distinct node;
if more than one message from the same origin meet on a node the newer
one is buffered and forwarded whereas the older one is discarded.

2.2.4 Command Management

While data flow in Dozer is strictly unidirectional towards the sink it is
often desirable to be able to send information to one or several nodes in
the network. Dozer establishes a lightweight back channel by making use of
the beacon messages. Commands injected at the data sink are piggy-backed
on its next beacon message. Every node receiving a beacon containing a
command temporarily stores the command and includes it in its own next
beacon. By repeating this procedure at each level of the tree the command
is disseminated through the whole network. Besides addressing a command
to all nodes in the network the injection of commands for individual nodes
is also supported. Nodes not directly addressed by a command still relay it
to enable propagation to nodes deeper down the tree.

Upon reception of a beacon message from the parent the Tree Manage-
ment component hands the command to the Command Manager module
for further processing. The module checks if this node belongs to the set
of intended recipients of the command. If this is the case the command is
dispatched to the application running on top of the Dozer system. Thus, ap-
plications are able to define their own custom commands and corresponding
command handlers.

Chapter 3

Evaluation and Testing

In this section we evaluate Dozer’s performance under different conditions
in real-world testbeds. First, a set of preliminary measurements on a small-
scale network are conducted to estimate the scalability of the system. In a
second step we present results of a deployed indoor network consisting of 40
sensor nodes.

3.1 Hardware and Operation System

For all experiments we used the TinyNode 584 sensor platform [17] produced
by Shockfish SA. It features a MSP430 mirocontroller with 10 kB of RAM
and 48 kB of program memory. Furthermore 512 kB of external flash memory
are available. However, due to the high energy costs for flash access Dozer
does not make use of it. The platform includes a Semtech XE1205 radio
transceiver. This radio is known for its good transmission ranges and high

Current Draw Power Consum.

uC sleep , radio off 6.0 uA 0.015 mW

uC active, radio idle
listening

12.17 mA 30.43 mW

uC active, radio RX 12.63 mA 31.58 mW

uC active, radio TX 16.10 mA 40.25 mW

Table 3.1: Measured current consumptions of the TinyNode platform in dif-
ferent states at 2.5 volt.

30 CHAPTER 3. EVALUATION

Figure 3.1: TinyNode 584 with extension board

data rates of up to 153 kbit/s. For our measurements the nodes were operated
at 868 MHz using 0 dBm transmission power and a bandwidth of 75 kbit/s1.
As a power source two customary 1.2 volt rechargeable batteries were in-
stalled with a capacity of 1900 mAh each. The measured current draws for
sleep mode, idle listening, receiving, and sending under these conditions are
shown in Table 3.1. As can be extracted from the table, on the TinyNode
platform idle listening is nearly as expensive as the actual reception of a mes-
sage. Thus it benefits greatly from Dozer’s scarce use of unscheduled random
channel overhearing. Furthermore, the cost for transmission and reception
of a message are in the same order of magnitude.

Dozer is implemented on top of the TinyOS-1.x operating system. No
changes were made to the operating system excepts the replacement of a
timer module whose genuine version contained a bug. Under certain con-
ditions timer events are triggered too late. In normal operation common
TinyOS-applications do not encounter this undesired behavior frequently.
However, due to Dozer’s intense use of the timer module, this malfunction
regularly occurs in our system with disastrous consequences. A once deferred
schedule becomes useless since all relative timings are out of sync. Conse-
quently, a node affected by this problem inevitably looses connectivity and

1As described in [17], at the same transmission power, the XE1205 radio attains

higher communication ranges than other state-of-the-art platforms. Hence, we are able

to transmit at lower power while still achieving good ranges.

3.2. SMALL SCALE EXPERIMENTS 31

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0 1 2 3

#Children

R
ad

io
 d

ut
y

cy
cl

e

Figure 3.2: Radio duty cycle of a node depending on its number of children.
Measurements were performed with beacon intervals of 15 s (square), 30 s
(circle), 1 min (triangle), and 2 min (star), respectively.

falls back to bootstrap mode. Thus the replacement of the timer module was
mission critical.

The memory footprint of Dozer is 20 kB in program memory and 1.7 kB
RAM. The message queue of size 20 in the Data Manager module used as a
temporary buffer for messages which need to be relayed thereby contributes
39% of the RAM usage.

3.2 Small Scale Experiments

Measuring the energy drain of a node is a non-trivial task. On the one
hand, the measuring interval is too long for high-resolution measurements
with an oscilloscope. On the other hand, a voltmeter is too inaccurate to
capture short changes in current draw. Hence, we decided to measure energy
consumption indirectly. For this purpose, all nodes log their radio duty
cycles. This is achieved by summing up the differences between radio startup
and shutdown times. Since spotting the exact switching times from send to
receive mode and vice versa is difficult, only the total uptime is recorded
ignoring the specific state of the radio. This information is propagated to
the base station using Dozer’s own data gathering mechanism. The collected

32 CHAPTER 3. EVALUATION

information can be converted to power consumption values using Table 3.1.
As nodes only provide the overall radio uptime, a worst-case approximation
is made. That is, it is assumed that they are always in transmit mode if
their radio is active. As a consequence, all further results related to energy
consumption can be considered as an upper bound for the actual power
consumption.

To investigate the relation between a node’s power drain, its number of
children, and the beacon interval time we conducted a series of experiments
on a small network with predefined topology. In each run the node of interest
was directly connected to the sink. Over time, up to three children were
included in the network and forced to connect to the monitored node. This
sequence was repeated with beacon intervals in the range of 15 seconds to
two minutes. The data sample interval was set to four times the length of a
beacon interval. The results of these experiments are depicted in Figure 3.2.

Originally, the goal of this experiment was to come up with lower bounds
for the achievable duty cycles at different positions in the data gathering
tree. However, test results exhibited unexpected fluctuations when run with
different sensor nodes. After closer examination, it became clear that the
inherent clock drift within a single beacon interval is a significant factor
influencing the total duty cycle. Thus the following results do not represent
precise lower bounds. Nevertheless, they provide an accurate approximation
of the radio uptimes in real networks.

Figure 3.2 shows that the duty cycle decreases as the beacon interval
grows larger. This elementary observation is based on the fact that the num-
ber of messages to be transmitted within one beacon interval is constant
independent of its length. Hence, longer intervals lead to prolonged sleeping
periods without significantly increasing the radio uptime. Using a similar
line of argument, the variable additional costs for a newly connected child at
different beacon intervals can be understood. The reduction of the incurred
overhead for the fourth child in the 15 second beacon interval experiment

Beacon interval 30 s

Max. jitter 650 ms

Data sampling interval 120 s

Potential parents update interval 15 min

Overhearing 1 s/4 h

Compensated clock drift 100 ppm

Max. stored potential parents 5

Message queue size 20

Table 3.2: Configuration of the Dozer system for the office floor testbed.

3.3. OFFICE FLOOR EXPERIMENT 33

illustrates another phenomenon worth mentioning. Costs for additional chil-
dren do not necessarily have to grow linearly. Simplified, a parent’s costs
for a child are twofold. On the one hand, it has to receive the child’s data
messages. These costs cannot be prevented. On the other hand, the parent
has to forward the received messages. Thus, in its next upload slot it has to
power up the radio and send the pending messages. Since the radio start-up
and shutdown consumes a similar amount of time (∼ 2 ms), and thus energy,
as the transmission of an actual data message (∼ 5 ms) its overhead is not
negligible. Consequently, if the parent is able to upload data from two or
more children in one upload slot it saves the additional overhead of turning
on the radio for each of these children individually—that is, costs per child
decrease.

3.3 Office Floor Experiment

To put Dozer’s fitness for real-world deployments to the test, a generic indoor
network was run for several weeks. The topology was no longer predefined
for this setting but automatically constructed by the Dozer system.

3.3.1 Setting and Protocol Parameters

The considered testbed consisted of 40 TinyNode sensor nodes which were
deployed on one floor of our office building (see Figures 3.4 and 3.3). The
dimensions of the building are approximately 70 x 37 meters resulting in an
testbed area of more than 2500 square meters. During the whole operation
of the network, the floor was populated by more than 80 people during office
hours. Thus the nodes where exposed to frequently changing environmen-
tal conditions. Furthermore, during the deployment phase special attention
was paid to construct a network with heterogeneous density. While nodes
were concentrated in the upper-right part of the building to achieve a dense
region, the southern part was only sparsely populated. This allowed the per-
formance evaluation of Dozer in networks featuring different characteristics.
In addition to 38 sensing nodes, a base station (Node 0) was placed in the
upper-right corner of the map. This location was chosen to get a deep data
gathering tree and to enforce multi-hop communication. One further extra
node was positioned in the vicinity of the sink for debugging purposes. This
node acted as a network sniffer which overheard and logged all network traffic
at the base station.

In total Dozer was tested for more than one month on this network. De-
tailed logging information forming the basis of the evaluation in this section
were gathered during one week of operation. Each node thereby sent ap-

34 CHAPTER 3. EVALUATION

Figure 3.3: Left: During the benchmarking of the Dozer system our office
building was under heavy construction work leading to additional interfer-
ence. Right: To increase the communication range of the base station it was
mounted on a cable rack about 2 meters above the floor.

3.3. OFFICE FLOOR EXPERIMENT 35

Figure 3.4: Indoor deployment of 40 sensor nodes including a snapshot of
Dozer’s data gathering tree. Node 0 (upper-right corner) acts as data sink.

36 CHAPTER 3. EVALUATION

0

50

100

150

200

250

300

0
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
11

0
11

1
11

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
12

0
12

1
12

2
12

3
12

4
12

5
12

6
12

7
12

8
12

9
13

0
13

1
13

2
13

3
13

4
13

5
13

6
13

7

Node id

C
on

ne
ct

io
n

at
te

m
pt

s

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Pa
ck

et
 lo

ss

Figure 3.5: Number of successful (black) and failed (grey) connection at-
tempts per node. Per node packet loss on the second y-axis.

proximately 5000 data messages to the sink. As described in Section 2.2 the
Dozer system can be tweaked to suite the requirements of a specific applica-
tion. Table 3.2 shows the important parameters and their assigned values for
the office floor testbed. Although the anticipated clock drift in our scenario
is less than 50 ppm, Dozer was configured to allow for 100 ppm. Conse-
quently, more energy than strictly necessary was consumed. In return, with
these settings, the system is also expected to operate properly in outdoor
environments facing moderate temperature changes. All other values were
chosen to represent a possible demand of a real application in the domain of
environmental monitoring.

3.3.2 Tree Topology

Figure 3.4 shows a snapshot of the data gathering tree as it was witnessed
during the experiment. Each node features one outgoing arrow pointing to its
parent. It can be seen that the base station (Node 0) has numerous children.
This has two different reasons. On the one hand, the parent rating function
described in Section 2.2.1 promotes connections to the sink since the latter
has zero tree depth. As a consequence, each node receiving a sink beacon
first tries to connect to the base station before inquiring any other nodes. On
the other hand, the base station was flashed with a slightly modified version
of Dozer. Since the sink usually runs on external power—as it is also the
case in our setting—it is less compelled to economize on its energy resources.
Thus, the contention window was extended and the sink was configured to

3.3. OFFICE FLOOR EXPERIMENT 37

accept more than one child per connection phase.
Another observed phenomenon is the fact that hardly any connections

passed the central core of the building. We assume that multiple sources of
interference led to this barrier. For one, the corridors are lined with solid
metal lockers perturbing most radio communication. On the other hand, this
zone also comprises the ventilation system, sanitary facilities, and multiple
elevators producing additional interference.

We examine the stability of the data gathering tree by investigating topol-
ogy changes and message loss. Topology changes are indicated by a node
changing its parent. Both of these values are depicted in Figure 3.5. As
hoped for, message loss was low, on average 1.2% and at maximum 3.15%.
However, Node 128 is excluded from this analysis. Due to its peripheral po-
sition in the network it was only able to connect to one single other node
(Node 112). In case of a temporary interruption in the connection to its
parent the node went to suspend mode. In addition, the low network density
in its vicinity resulted in a low probability for a quick recovery. Thus, the
node suffered from message loss of approximately 30%.

The measured high message yield at the base station is evidence of the
correct operation of Dozer’s Tree Maintenance module. As emerges from
Figure 3.5, a significant number of topology changes were necessary to cope
with momentary, local channel irregularities.

3.3.3 Energy Consumption

As in the small testbed described in Section 3.2, energy consumption of the
deployed nodes were measured indirectly via their duty cycles. Figure 3.6
depicts the average radio activity of each node in the network. The upward
error bar shows the root mean square (RMS) error of all measurements ex-
ceeding the average duty cycle; the downward error bar is defined accordingly.
The overall average duty cycle of all sensing nodes is 0.167% with a standard
deviation of 0.0004. Applying the values from Table 3.1, results in a mean
energy consumption of 0.082 mW.

Looking at individual nodes, the sink had by far the highest radio uptime
of almost 1%. This is not surprising since it had to process the data of
the whole network. Additionally, the extended contention window directly
affects its duty cycle and explains the considerable difference in comparison
to the sensing nodes.

Node 124 exhibits a radio uptime of 0.28%. Figure 3.7 shows a snapshot
of 2000 consecutive data messages of this node. As can be seen for most
of the time the node ran at a duty cycle of 0.07%. Comparing this value
to the results from Section 3.2 leads to the conclusion that the node is a
leaf in the data gathering tree. However, three different energy intensive

38 CHAPTER 3. EVALUATION

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

Node id

R
ad

io
 d

ut
y

cy
cl

e

Figure 3.6: Average radio duty cycle of each node including RMS errors.

effects can be observed. First, the most dominant peaks exceeding 20% are
scans for a full beacon interval. This means that the node was forced to
establish a new connection but did not find an appropriate potential parent
in its cache. Second, the overhearing phase once every four hours results in
a temporary duty cycle of around 1%. Finally, the potential parents updates
lead to the fringes of up to 0.1%. These insights and the fact that Node 124
was located in a small storage room allows the conclusion that it only had
a small neighborhood. Consequently, in times of normal operation it was
able to run at nearly optimal duty cycle. However, in case of connection
interruptions the interference affected all its possible connections resulting in
a fallback to bootstrap mode. Unlike Node 128, it only suffered from brief
network disconnections. Thus, it quickly managed to reintegrate in the data
gathering tree.

Node 114 features a similar average duty cycle as Node 124, namely 0.32%.
But its power consumption is caused by other reasons as the different RMS
error values indicate. Figure 3.8 depicts the radio duty cycle of Node 114 over
a period of 2000 successive data messages. Parents updates and overhearing
which are always part of a node’s normal operation can also be spotted in
this chart. However, there is no evidence for a bootstrap phase. In fact,
Node 114 acts as a relay for several children and thus cannot reach minimal
duty cycles as low as Node 124.

3.3. OFFICE FLOOR EXPERIMENT 39

0.0%

0.1%

1.0%

10.0%

100.0%

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Messages

R
ad

io
 d

ut
y

cy
cl

e

Figure 3.7: Radio duty cycle of Node 124 over a period of three days.

0.0%

0.1%

1.0%

10.0%

100.0%

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Messages

R
ad

io
 d

ut
y

cy
cl

e

Figure 3.8: Radio duty cycle of Node 114 over a period of three days.

Chapter 4

Lessons Learned

4.1 Testing Cannot be Outsourced and Requires

Adequate Testbeds

Initially it was planned to share the development process of Dozer between
DCG and Shockfish. The idea was to have DCG design and implement the
necessary protocols. In turn Shockfish agreed to run tests on a realistic
testbed deployment. We soon learned that this plan was unfeasible. The
problem turned out to be a very slow debugging cycle resulting from the
outsourced testing.

We developed the code and tested it on small, mostly tabletop setups
consisting of a couple of nodes. Once the system seemed OK we sent the code
to Shockfish who flashed their testbed with the new release. As expected bugs
lead to unforeseen behavior of the system which Shockfish then reported back
to us. And here the problem of a remote testing site 200 kilometers apart
from the office of the developers hit us. While both Shockfish and DCG tried
to cooperate as efficiently as possible it quickly became clear that we as the
software developers had to exactly specify what and also how experiments
had to be monitored in order to get all necessary information. Unfortunately,
this only helped partially as without detailed knowledge of the testing site it
was very difficult to make assumptions on the reasons for certain behaviors
of the system.

In order to speed-up development, Shockfish and DCG agreed to migrate
more of the testing to our offices in Zurich. For this we set up multiple
testbeds ranging from 10 to 40 sensor nodes spread over multiple rooms, or
the entire floor of our office building in case of the 40 node setup. Having a

42 CHAPTER 4. LESSONS LEARNED

proper testing site tremendously helped in the development process as it now
became possible to react much faster to misbehaviors of the system. It also
made it easier to run tests under specific environmental conditions including,
for example, different room temperatures or controlled external interference.

4.2 Meaningful Tests Take Time

The development time of a first “working” release of Dozer was only a few
weeks. Compared to applications written for personal computers, programs
for sensor networks are compact and even complex systems such as Dozer
seldomly exceed 5000 lines of code. The first rounds of code debugging were
therefore fast, as the obvious errors were easily found and even logic bugs in
the protocol were quickly discovered. However, the way from the first release
free of obvious bugs to a stable, optimized release was long and tedious.
Many problems occurred sporadically and were often hard to reproduce. Such
problems could not be detected by short experiments but required a testbed
to run for weeks. During this time of operation any strange behavior of
the system had to be tracked and inspected. It is a natural tendency to
ignore minor problems, especially if the system manages to handle them
and automatically reverts to normal operation. Nonetheless it is essential to
follow all traces of misbehavior in the system or there is a significant risk that
the cause of this minor problem may also lead to major problems in another
execution. An example of such a problem we faced included nodes stopping
to respond without a visible cause. The first couple of times when we saw
this problem, the misbehaving node re-joined the network after a couple of
minutes and resumed normal operation. The node did not reboot and did
not detect that it was offline for quite a while. We first expected external
interference to lead to this problem and decided to ignore it. In a longer
execution of several days we also saw this problem but this time nodes did
not report back for up to a day. Once again there were no anomalies before
the nodes died. Everything looked perfect and then stopped working. In the
end we discovered the problem to originate in a faulty timer library which
returned bogus values under some very unlikely conditions. The probability
to find such problems in short term tests is low and an appropriate execution
time for testing is therefore vital.

4.3 Know Your OS and Hardware

This experience taught us an important lesson: When programming sensor
networks one is very close to the hardware. Although the operating system
tries to provide a minimal abstraction layer an application running on a

4.4. DEBUG INFORMATION 43

sensor node is much more vulnerable to hardware events than a PC program.
Our timer issue for example was only triggered if a specific hardware interrupt
occurred during the execution of another interrupt handler. To know what is
going on in the operating system is the only way to discover such problems.
There are attempts at relieving application programmers from this burden,
for example by running a simple virtual machine on the node. However, the
problem will always remain to a certain extent as the resource constraints of
sensor network hardware do not allow to build arbitrary complex operating
systems, protecting applications from low-level hardware events.

Another important aspect of debugging sensor network applications is the
possibility to physically measure events directly on the sensor node hardware.
For example, by means of an oscilloscope it is possible to detect the execution
time of specific operations on the node such as turning on the radio and
sending a message. Such values have to be known in order to optimize the
operation of the program. If the timings are too loose a lot of energy is
wasted on keeping the node in high-power states although there is nothing
to do. If the timing is too aggressive the program will not work properly as
the hardware may be turned off before the completion of the current task.
As a consequence, if an application has to be optimized it is unavoidable to
also do some measurements directly on the hardware. Besides the very high
precision of this method of monitoring a node it also has the advantage that
it is much less intrusive towards hardware timings than a software monitoring
tool as it does not interfere with CPU usage or communication on the bus.

4.4 You do Not Get the Debug Information You

Want

There is an array of options how to debug an application on one sensor node.
Using the JTAG interface the exact execution of the application on the CPU
can be monitored, by means of an oscilloscope the timing of many hardware
components can be observed, and using the serial port even “printscreen”
debugging is possible to a certain extent. Unfortunately, only the most trivial
bugs can be found on one single node. In general, the complexity of a sensor
network application stems from its distributed nature. Thus, the trickiest
situations are very hard to reconstruct as they do not happen on one node
but are a result of a sequence of events occurring an multiple nodes.

It is not possible to have a deep introspection in the state of all nodes in
the network and thus only external information such as communication logs
can be used to reconstruct the conditions under which a problem occurred.
Nodes in the network may be executing different parts of the application code
and thus be in any arbitrary state. This makes debugging more demanding as

44 CHAPTER 4. LESSONS LEARNED

the entire application has to be cross-checked for potential interference prob-
lems. Despite the limited size of the applications this leaves a large number
of possible combinations which have to be checked. Furthermore, it is often
the case that nodes do not nicely start to generate incorrect behaviors which
can be logged but suddenly stop operating without any previous warning. In
this case debugging happens mostly blindly as the only available information
is the fact there is something wrong.

So far we have not come up with an idea how to alleviate this problem.
Having multiple tests logging the same problem may allow detecting a pattern
in the communication or execution of the application preceding the problem
but this is not necessarily the case. For this reason it is also extremely hard
to predict the time necessary to test a sensor network application before
release. A problem which occurs very rarely but leads to crashing nodes can
easily stall development for months.

4.5 Consider the Deployment and Offline Phases

A couple of months in the project the question of the deployment phase came
up. Unlike the testbeds we worked with at that time, the final deployment
site required some construction work. Therefore, it was not clear how long
the physical deployment would take and in what order nodes would be in-
stalled. We had to expect some nodes to be installed several days before the
rest of the network came online. This turned out to be a problem for our
system. It was designed to optimize schedules under the condition that there
is a network. However, in case of no connectivity nodes would continuously
scan the wireless channel for activity and try to find a network to join. This
was a desirable behavior for testbeds as it allowed newly updated nodes to
quickly find the other nodes of the testbed. For the real-world deployment
this feature turned into a serious threat. If a node was deployed a week in
advance of the rest of the network its batteries would be mostly depleted be-
fore the actual operation of the network would start. So we had to come up
with a solution for the deployment phase and chose a comparatively simple
randomize system as described in section 2.2.1. This simple startup protocol
is not optimal but allows reducing the amount of energy spent during discon-
nection to a level which is comparable to normal operation. It also has to be
kept in mind that a node may not only be cut off from the network during the
deployment phase but also during normal operations. For example a defect
at the base station or essential relay nodes may lead to a disconnection of
the network and also during this time, nodes have to save as much energy as
possible.

Summarized, the incorporation of a protocol managing offline phases is

4.6. SELF-REPAIR 45

a key requirement for any energy aware communication system. Without
such a component any unforeseen interruptions of connectivity may lead to
a drastic reduction of network life time.

4.6 Decentralized Self-Organization and Self-Repair

are Vital

In all of our experiments we have witnessed network instabilities. Links
came and went all the time. While on average over the whole network a
link might remain stable for several hours the deviation of link lifetimes was
high. Especially nodes in areas with a lot of external interference (e.g. close
to an elevator) or at the border of the network often had difficulties to stay
connected. As a result these nodes changed their position in the network
every few minutes before stabilizing for some time.

This observation was a confirmation of our expectations we had from the
start. We had already predicted this behavior during the design phase of the
protocols and therefore included self-organization capabilities in the network
stack. Nonetheless, it was impressive to see how the network could funda-
mentally change its structure within a few minutes to bypass a local zone of
interference. Only a decentralized algorithm can achieve such an optimiza-
tion at very low power consumption. A centralized solution would first have
to collect information about the current interference situation and possible
connectivity of the whole network. In a next step it would then centrally
compute an optimal topology. This task is very difficult to achieve in a low-
power communication system as nodes close to sources of interference may
not know how to route their information towards a central authority if their
old communication neighbors are no longer reachable. Furthermore, a cen-
tralized system also faces the problem that by the time the optimal solution
is ready to be broadcasted to all nodes, the network may have changed again
and the new topology does not allow communication along the planned links.

In contrast, a decentralized solution will often not construct the optimal
network structure as many decisions are taken with only limited, local in-
formation. However, it can react faster to interruptions as nodes suffering
from interference problems immediately check for alternative routing options.
Consequently, a decentralized system is much more robust and more apt to
cope with hostile environments than a centralized solution. Message routes
may become longer than on an optimal topology but communication in a
“working” network is much cheaper than if bootstrap protocols have to be
triggered to reconstruct a new topology. Therefore, the price for additional
message relaying is more than compensated by avoiding network breakdowns.

Based on these observations we come to the conclusion that centralized

46 CHAPTER 4. LESSONS LEARNED

communication systems may perform very well under controlled conditions
and on testbeds. However, it is questionable how they behave in real-world
scenarios where interference is the rule and not the exception.

4.7 Include a Software Update Option

A large number of iterations of program code are necessary before it reaches
a stable state. Approaches such as extreme programming and code audition
may help reduce the number of necessary cycles but in the end testing on
deployments is unavoidable.

As network sizes exceed desktop-size a pragmatic challenge arises: How
to reprogram the nodes with a new software release. Traditionally, a node is
connected to a personal computer using serial, USB, or similar connections
and flashed with a new firmware. This is no big deal for a small number of
nodes but already a setup of 20 devices easily takes 30 minutes to update.
If the devices are spread over a larger area such as an office floor, time goes
up significantly as the devices have to be found, collected, flashed, and re-
deployed. Even minute errors in the code like an incorrectly set parameter
or constant can thus lead to several hours of work. If the deployment is on
a remote site, the necessary effort for a software update quickly turns into
days.

Academic testbeds such as [60] can feature tethered connections to all
nodes or use a combination of wired and wall-powered, wireless technolo-
gies [16] to provide direct access to all deployed nodes. Usually the moni-
tored sensor nodes are thereby attached to the testbed infrastructure using
USB or Ethernet connections. If the employed sensor node does not provide
a corresponding interface, additional hardware extension boards have to be
used. Such a setup is cost and maintenance intensive and thus usually lim-
ited to indoor deployments of a couple of dozen nodes. Furthermore, one
has to keep in mind that hardware extensions or code on the node used for
monitoring purposes may change the behavior of the monitored node.

One of the most ambitious deployment support tools is JAWS [8]. Instead
of a LAN connection a second sensor node or support node is attached to the
primary node running the newly developed application. The support nodes
form a secondary, independent wireless network over which new versions of
the software can be distributed and flashed to the primary nodes. This ap-
proach removes the requirement of wiring all network nodes and is thus very
flexible to set up. A remaining drawback of the JAWS system is the possible
interference created by the wireless technology used on the support nodes,
which may have an impact on the execution of the new application. Fur-
thermore, the system is only intended for relatively short-term development

4.7. SOFTWARE UPDATES 47

purposes and cannot be used for deployments running over a long time period
as it is not optimized for low power consumption.

Also for a stable deployment an update option should always be consid-
ered. It may be that the requirements posed to the network change over
time (e.g. data samples at a higher rate may be required) or a hidden bug is
only found after several months of live operation. If collecting the nodes is no
option (e.g. due to an inaccessible deployment site) and support installations
such as JAWS are not possible, the only remaining option to allow software
updates is over-the-air reprogramming of the nodes. In TinyOS, Deluge is a
library offering this service. Unfortunately, Deluge’s mode of operation does
not work well with the tightly synchronized communication model in Dozer.
Deluge uses a randomized announcement system in which nodes periodically
broadcast information about their currently running application and other
stored firmware images. If a node overhears such a message and detects that
its own data is older than the announced image it will request the newer data
from the announcing node and update its cache.

Since in Dozer nodes spend virtually no time in overhearing mode the
random announcement mechanism of Deluge fails. We have implemented
two options how to integrate Deluge in Dozer. The first approach is to
store a second software image on the node in which it participates in the
Deluge protocol but not in any other activities. A reboot command is flooded
through the network using the command field in the beacon message to tell
the nodes to boot into this update image. A time-delayed execution of the
reboot reduces the risk that a node misses the reboot since the command is
flooded multiple times through the network. Once all nodes have booted into
the update firmware, the new program is injected in the network and spread
by Deluge. A final reboot command returns the nodes to normal operation,
executing the updated firmware.

The second approach involves overriding the radio control component in
Dozer. Instead of returning to sleep mode directly after each transmission
the radio stays powered and can thus overhear the wireless channel for Deluge
messages. Once again the command field integrated in the beacon messages
is used to activate this mode if an update is to be injected. The advantage of
this solution is that normal operation of the network can be maintained for
the whole time of the software distribution up to the point of the reboot into
the new release. The disadvantage is a more complex management of the
radio component and thus an increased risk that the update mechanism may
be prevented from proper execution due to a bug in the application running
on the node.

In both cases a software update comes with a certain risk as Deluge
lacks some fundamental functions. For example, it is not possible to col-
lect information about the update progress of all nodes. It is therefore at

48 CHAPTER 4. LESSONS LEARNED

the developer’s discretion to decide when to broadcast the finalizing reboot
command in order to make the nodes load the new firmware. If this reboot
command comes too late nodes spend too much energy on idle listening, as
in Deluge mode they cannot go to sleep. If the command comes too early
and not all nodes have updated their stored images these nodes are unable
to load the new firmware and, if a change to the communication protocols
was made, are no longer reachable. Deluge is not ideal but the best option
TinyOS programmers currently have to update their software over-the-air.
A number of recent work [59, 52, 40] has proposed improvements to Deluge
and it only seems a matter of time before a more sophisticated solution will
be available.

Chapter 5

Dozer Revisited

After Dozer’s initial release we investigated the performance results and con-
sidered the lessons we had learned from this first release. In general the sys-
tem was working extremely well and produced very good results. Nonetheless
we saw several points where we were not completely satisfied with the sys-
tem and expected to be able to improve the performance by tweaking specific
subsystems.

The most important point where we saw room for improvement was clock
drift handling. The initial Dozer release only used worst-case guard times
to cope with clock drift and although the time spent in idle listening per
transmission was only in the order of one millisecond it was already a sig-
nificant factor of the total energy consumption. Similarly, we reinvestigated
our management of potential parents for a node in the tree and the buffering
strategy. Furthermore, we analyzed the behavior of the system in case of
multiple sinks and also ran outdoor tests. In this section we give a summary
of what we changed as compared to the initial release and what impact these
changes had on the system.

5.1 Impact of Time Synchronization on Energy Con-

sumption

The basis for all time-related operations on a sensor node is an oscillating
crystal. The rate at which a node operates is defined by the oscillation
frequency of the employed quartz crystal. As no two crystals physically
oscillate in total synchrony clocks on different nodes in a sensor network
never tick at the same rate. Consequently, algorithms to compensate for these

50 CHAPTER 5. DOZER REVISITED

physical differences become necessary. In this chapter we discuss the impact
of time synchronization on the energy consumption in a sensor network.

5.1.1 Fundamentals

Clocks on different devices in a sensor network tick at different rates. The
reason for this difference is found in the slightly changing physical attributes
of the oscillating crystals used to clock the CPU and timers of each device.
Every crystal has a slightly different oscillation rate and is usually sold with
a guaranteed bound on how much it differs from “real-time” at room tem-
perature. Common low-cost crystals as we find them on current sensor nodes
come with a drift of up to 50 parts per million (ppm). At room temperature a
crystal which should oscillate at 1 MHz will be off by at max plus or minus 50
Hz; or if we look at the impact on clock values this corresponds to a maximal
drift of 50 microseconds per second. This drift is symmetric and clocks can
be faster or slower than their nominal rate. Consequently, the relative clock
drift between any two nodes in the network may be up to 100 microseconds
per second. Unfortunately, this bound is only valid at 25℃ temperature since
clock precision degrades if nodes face changing temperatures. The change of
clock rate versus temperature is usually modeled as a quadratic function

f = f0 ∗ [1− alpha ∗ (T − T0)
2]

f is the measured clock rate at temperature T and f0 the clock rate at
temperature T0. As the quadratic term (T − T0)

2 shows clocks get slower
independently of whether the device is heated up or cooled down. A worst
case scenario in terms of clock rate offset is therefore constructed by keeping
one node at 25℃ and the other node at the upper or lower bound of the
range of acceptable operating temperatures. Under such extreme conditions
drifts of up to 300 ppm may occur. While these extreme cases will not
happen regularly in real-world deployments, temperature differences of up to
40 degrees can easily be found. A common scenario where such differences
may arise is one node placed in an air conditioned building and the other
node in front of the window in the plain sun. In such a setup relative drifts
of 200-300 ppm have to be handled. Furthermore, as drift is incurred by
temperature differences it is not stable but fluctuates. The day-night cycle or
sudden changes of weather are two examples for sources leading to changing
temperatures and thus changing clock offsets.

5.1.2 Clock Synchronization

Synchronization of clocks on different devices is a problem which can be
tackled in various ways, all offering individual advantages and drawbacks. In

5.1. TIME SYNCHRONIZATION 51

general, a one shot solution synchronizing clocks once is unfeasible due to
dynamic change of clock rates as described in the last section. Thus, algo-
rithms which continuously synchronize clocks or at least do so periodically
are required. The most primitive approach of synchronizing devices is to pe-
riodically update the current clock value on the devices. The problem with
this approach of clock synchronization is that directly after the synchroniza-
tion event the clocks start to drift apart again, as their different clock rates
are not taken into account. A more sophisticated approach to time synchro-
nization is therefore not only to work on the value of the time register but
also to modify the clock rate. This is more difficult to do as the clock rate
is defined by the physical attributes of the oscillating crystal and thus lies
beyond the control of the software. It is therefore necessary to add a further
level of abstraction by introducing a “virtual clock”. This clock maps the
value of the physical clock to a virtual time which is then used by the ap-
plication. Depending on the algorithm used, an arbitrary complex formula
may be applied to compute the virtual time including the clock value and
rate. Recent work has shown that achieving network wide synchronization
is difficult [25] both from a theoretical [11, 26] as from a practical [27] point
of view and that also prominent protocols such as TPSN [14] suffer from
inherent scalability problems.

5.1.3 Time Synchronization and Communication Pro-
tocols

Many communication protocols heavily depend on clock synchronization. Es-
pecially TDMA-based and similarly scheduled communication systems are
vulnerable towards clock drift. If a pre-computed rendezvous time between
two communication partners is not met correctly by both involved devices,
lost transmissions and unnecessary packet collisions occur. The degree of
synchrony decides on the energy efficiency such protocols can achieve. In
case of perfectly synchronized clocks and totally stable clock rates nodes
might sleep for 100% of the time while they are not actively participating
in a communication process. They could only turn on their radio right on
time for the transmission and then directly go back to sleep. With less than
perfect synchronization and changing clock rates, additional guard times are
required to protect against transmission problems. The receiver has to wake
up slightly early to make sure to be in receiving mode when the expected
transmission starts. How much “slightly early” is depends on two factors:
First, the precision of the clock synchronization and second, the maximal
possible drift change since the last synchronization. The precision aspect
thereby defines how exact a synchronization algorithm manages to judge the

52 CHAPTER 5. DOZER REVISITED

different clock rates and values. In other words, it is the estimation error in
a scenario of totally stable clock rates as it may be witnessed if all nodes are
kept at exactly the same temperature all the time. All clock synchronization
algorithms aim at bringing this error to zero.

5.2 Clock Drift Compensation in Dozer

The initial implementation of Dozer’s network stack dealt with clock impre-
cision using worst-case guard times. For each message reception the radio
was turned on in time to guarantee a successful transmission at a relative
drift of up to 100 ppm. With a beacon interval and thus synchronization pe-
riod of 30 seconds these 100 ppm result in a guard time of 4.5 milliseconds.
Compared to the 4.7 milliseconds required for the actual transmission of a
data message this is a significant overhead. Since the majority of all trans-
missions between two nodes do not require worst-case guard times a more
sophisticated drift compensation mechanism has the potential to preserve a
large amount of energy.

An appropriate drift compensation component for Dozer has to feature
several properties. First, it should not demand additional message exchanges.
Considering Dozer’s low rate of maintenance traffic the cost of extra syn-
chronization messages would not only nullify their positive effect but even
increase total energy consumption. Second, due to the inherent limitations
of current sensor network hardware in terms of memory and computation
power complex calculations and data structures must not be relied on. After
a close analysis of our requirements we came to the conclusion that we did
not need a global synchronization of the network. Similarly to the two in-
dependent communication schedules a node maintains, our synchronization
requirements are only between a parent and its direct children. Such a local
synchronization is much simpler to realize than a global one and we were
therefore able to develop a clock synchronization mechanism solely recycling
information produced by the tree maintenance component.

For the initial release of Dozer we employed the common approach of
having the receiver compensate the clock skew. This approach is reasonable
when using fixed guard times but it suffers from a scalability problem if dy-
namic drift compensation is applied. Each node in Dozer’s data gathering
tree can have a large number of children and would thus be obliged to com-
pute and maintain an individual drift prediction for each of them. Dozer
avoids this issue by exploiting the tree structure of the network. It burdens
the child with the task of drift compensation for all communication with its
parent—independent of whether it is sender or receiver. Hence, each node in
the network only has to handle the drift compensation for one bidirectional

5.2. CLOCK DRIFT COMPENSATION IN DOZER 53

connection.

With the periodic beacon transmission a message exchange is available
which can be used to synchronize a child with its parent. When a child con-
nects to a new parent it is unable to predict their relative drift. Consequently,
it uses a worst-case guard time of 200ppm. On reception of the next parent
beacon it time-stamps the message with its system time. From the informa-
tion contained in the beacon the child is able to compute how much time has
passed between the last two consecutive beacon transmissions according to
its parent’s clock. Based on this value and its own local timestamps the child
derives the current relative drift between the two nodes. For the next beacon
reception the child incorporates its current drift. This process is repeated on
each beacon reception in order to maintain an up-to-date drift prediction.

Drift estimation is only half of what makes a drift compensation system.
It returns a point in time when the next beacon message is expected to
arrive. However, this is only an expected value and a drift compensation
system also needs to know how much the actual arrival time may vary from
this prediction. This knowledge is essential as it is needed to determine how
much in advance and for how long the radio needs to be turned on in order to
maximize packet reception while minimizing energy consumption; in other
words the system has to decide what guard times to use. In a perfectly
stable system this guard time could be set to zero but in real-world scenarios
drift changes over time. Even an optimal drift estimation system fails if the
environmental conditions abruptly change in between two synchronization
cycles.

Dozer deals with this problem by starting out with a large guard time
which rapidly shrinks towards a defined minimum. As described before a
newly connected node uses a worst-case guard time for the first beacon re-
ception. After receiving the next beacon the difference between the predicted
and the actual reception time, denoted as estimation error, is used as guard
time for the next communication. As a consequence, the employed guard
times rapidly converge towards zero. Since the system still has to cope with
sudden changes in the environment we limit the minimum guard time to the
maximum expected drift change within one beacon interval. This value is
hardware dependent and was empirically determined for the TinyNode plat-
form. To do so, a two-node setup consisting of one sink and one child node
was employed. Initially both devices were kept at room temperature for ap-
proximately 15 minutes. After this period, the child was placed in a freezer
and cooled down to -20℃. As shown in Figure 5.1 the temperature difference
between the two nodes grew rapidly and the estimated relative drift increased
by 60 ppm. Nevertheless, the estimation error indicating how much the child
was mistaken in its prediction of the next beacon arrival time never exceeded

54 CHAPTER 5. DOZER REVISITED

-50
-40
-30
-20
-10

0
10
20
30
40

Temp. Sink

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40

0 10 20 30 40 50 60
Time [min]

Temp. Sink
Temp. Child
Rel. Error
Rel. Drift

Figure 5.1: Drift estimation and error of a two node setup with one node at
room temperature and one in a freezer.

3 jiffies1 with an average error of 0.88 jiffies. In this experiment the nodes
were not confronted with the maximum or minimum service temperature and
thus the relative drift between them did not exceed 81 ppm. However, the
speed at which they changed their temperature gives a good estimation of
what is to be expected in common outdoor deployments. Based on the max-
imal measured estimation error of 3 jiffies we decided to set the minimum
guard time to 20 jiffies what corresponds to 0.6 ms. This conservative choice
enabled us to run Dozer in both, indoor and outdoor deployments with the
same settings.

In practice it still has to be expected that the system sporadically fails to
receive transmissions. In this case the guard time is immediately set back to
its initial worst-case value. Consequently, a trade-off between the size of the
minimum guard time and the number of failed transmissions has to be made.
For networks operating at more or less stable temperatures such as indoor
deployments, an aggressive minimum guard time results in best performance.
On the other hand, networks which have to deal with frequent temperature
changes such as most outdoor deployments benefit from a more conservative
setting.

11 jiffy = 1 clock tick = 1/32768 s

5.3. EXPERIMENTAL EVALUATION 55

Figure 5.2: Indoor deployment of 39 nodes. Node 0 (upper-right corner) acts
as data sink.

5.3 Experimental Evaluation

In this section we conduct an in-depth analysis of Dozer’s performance in
indoor and outdoor scenarios highlighting different aspects of the system.
The experiments were once again run on the TinyNode 584 [17] sensor nodes
operating on TinyOS 1.x.

5.3.1 Office Floor Experiment

As a first step we reproduced the office floor setup which served as a bench-
mark for the initial implementation to assess the influence of the introduced
enhancements and modifications on the power consumption of individual
nodes. The setup consisted of 38 sensing nodes and one data sink (node 0)
placed across a floor of our office building as depicted in Figure 5.2. Node 132
failed shortly after the initial deployment and did not recover.2 As a conse-
quence this node was excluded from all further calculations.

Dozer was configured analogously to the original experiment with a bea-
con interval time of 30 seconds and a data sampling rate of one measurement
every two minutes. The drift compensation system was set up to allow for

2Later investigations unveiled a defective power source to be the root of the problem.

56 CHAPTER 5. DOZER REVISITED

up to 200 ppm of relative drift and a maximal drift change of 20 ppm per
beacon interval as defined in Section 5.2.

In this office floor setup the initial implementation—compensating up to
100 ppm of relative drift—produced an average radio duty cycle of 0.167% for
the sensing nodes. A repetition of the same experiment using the improved
Dozer protocol resulted in a mean duty cycle of 0.128% which corresponds
to an improvement of more than 23%. This significant reduction in power
consumption is achieved by different system optimizations. The lion’s share
of the gained radio sleep time stems from the drift compensation component.
Looking at the minimum duty cycle of a leaf node a reduction from 0.07%
with the old implementation to 0.057% in the new release is found. This
observed performance gain can be accredited to the drift compensation com-
ponent as no other modifications influence this specific value. Consequently,
this component accounts for approximately 18% reduced radio uptime. The
remaining 5% result from a change in the potential parents mechanism. As
described in Section 2.1 each node maintains a list of neighboring nodes which
may serve as a parent in case of a problem with the current connection. In
the initial release this list used to be refreshed regularly in order to maintain
up-to-date information about known neighbors. Now, the update procedure
is disabled. The drawback of this decision are increased setup costs when a
new parent is required as it is harder to time a rendezvous with neighboring
nodes based on old information. Yet, these costs are more than compensated
by the amount of energy saved by not communicating regularly with all nodes
on the potential parents list. A detailed overview of the average duty cycles
for all deployed sensing nodes is given in Figure 5.3.

In the following we investigate the overhead incurred by clock imprecision
and guard times at a leaf node of the data gathering tree. We assume an ideal
system transmitting the same number of messages as Dozer in the given con-
figuration but with perfectly synchronized clocks. A leaf needs to exchange
4.5 messages per minute. A message including its preamble is 44 bytes long,
leading to a transmission time of 4.7 ms at 75 kbps. The radio switching
times from sleep to transmit and back add up to 2 ms. These parameters
result in an ideal duty cycle of 0.0525%. Thus our initial system, exhibiting
a duty cycle of 0.07%, suffers from an overhead of 33%. In comparison, the
new system with a duty cycle of 0.057% reduces this overhead to 8.57%.

Another interesting observation of the indoor experiments is the lack of
any message losses; all generated data samples reached the sink. In contrast,
our initial experiments produced an average loss of 1.2% in the same setting.
This improvement originates from a changed buffering policy. Dozer uses
link layer acknowledgments for all data traffic. Therefore, no messages are
lost in the course of their transmission. However, due to its limited amount
of memory a node can only buffer a finite number of messages. The buffering

5.3. EXPERIMENTAL EVALUATION 57

0

0.5

1

1.5

2

2.5

3

3.5

10
0

10
2

10
4

10
6

10
8

11
0

11
2

11
4

11
6

11
8

12
0

12
2

12
4

12
6

12
9

13
1

13
4

13
6

Node id

D
ut

y
cy

cl
e

[‰
]

Figure 5.3: Average radio duty cycles in per mill of all nodes with one (black)
and two (grey) sinks, respectively, in the office floor experiments.

strategy applied in the initial release allowed only one message from each
originator in a node’s forwarding queue. If more than one packet from the
same originator met in a node the older message was discarded. Now, Dozer
was configured to store an arbitrary number of messages from each source
as long as the required buffer space was available. Since no network inter-
ruptions of more than a couple of minutes occurred during the one week of
the experiment no buffer overflows happened and perfect message yield was
achieved.

Note that in case of hardware failures the current Dozer implementation
would lose the messages buffered in the failing node. For the majority of
application scenarios this loss is negligible. However, if not a single message
must be lost mirroring the message queue in the node’s permanent storage
would guarantee a possibility to recover the corresponding data. As EEP-
ROM access is expensive in terms of energy consumption (same order of
magnitude as a radio message) this solution creates additional overhead and
should therefore only be used when absolutely needed.

58 CHAPTER 5. DOZER REVISITED

5.3.2 Multiple Sinks

A challenge every multi-hop data gathering system faces is increased load
on nodes close to the sink. Serving as a relay for most data messages these
nodes are forced to handle higher traffic rates than other nodes in the net-
work. As a consequence their duty cycles increase and their batteries deplete
at a faster rate. Furthermore, due to their strategically important position
in the network their failure usually also marks the end of the whole net-
work as the remaining nodes cannot reach the sink any longer. Diminishing
the increased load at nodes close to the sink is accomplished by reducing
the amount of traffic actually reaching the sink. There are two feasible ap-
proaches to achieve this goal. First, in-network processing and aggregation
may be applied to condense the forwarded information. Depending on the
nature of the sampled data this optimization may result in a significant im-
provement. Unfortunately, in many scenarios neither in-network processing
nor aggregation can be applied since the full sampled information of each
node is required. Under these conditions the problem can only be countered
by the sensible deployment of additional sinks to spread the load on more
nodes.

Dozer is designed to handle dynamic addition and removal of sinks. If
more than one sink is available a separate data gathering tree for each of them
is constructed without any additional overhead. All nodes in the network
select a parent with minimal distance to any of these sinks. The different
trees are thereby not labeled and thus nodes do not know to which of them
they belong. As a consequence, nodes—and thus whole sub-trees—may freely
switch from one data gathering tree to another without even noticing. The
advantage of this system lies in its flexibility towards load and interference.
External interference may cut off parts of the network or enforce long detours
to bypass error-prone areas. In such cases the presence of additional sinks
may help avoiding data loss and generally reduces maximum tree depths.
Hence, not only load at nodes close to the sink is reduced but also the global
average duty cycle is improved.

Based on the network introduced in Section 3.3 we ran an additional ex-
periment with a second sink. The two data sinks were placed at opposite
sides of the building to provide a reasonable load balancing. As shown in
Figure 5.4 the second sink (node 1) had the desired effect in that two nearly
equal sized trees were constructed. Nodes in the central area of the build-
ing regularly switched between parents in either tree since their hop count
towards both sinks was balanced. With the decrease in tree depth the max-
imum observed load measurably dropped resulting in a global average duty
cycle of 0.093%—compared to 0.128% with one sink. Figure 5.3 depicts the
average duty cycle for each node in the network with one and two sinks,

5.3. EXPERIMENTAL EVALUATION 59

Figure 5.4: Indoor deployment of 39 nodes. Node 0 (upper-right corner) and
Node 1 (middle left) act as data sinks.

respectively. The majority of all nodes benefited from the presence of the
second sink and the reasons for the individual improvements are manyfold.
For example, nodes 134 and 136 were affiliated to the tree of node 1 avoid-
ing a link through the center of the building. In the single-sink experiment
both of them had to rely on this link which apparently suffered from high
packet loss. Other nodes such as node 107 had to service a lighter subtree
and therefore spent less energy forwarding messages. Following the same line
of argument it can also be explained why some few nodes such as node 102
suffered from an increased duty cycle in the two sink setup.

5.3.3 Outdoor Experiments

To get a notion of Dozer’s behavior in outdoor scenarios we ran an experiment
consisting of 30 nodes for a period of 3 days in a picturesque suburb of
Zurich, Switzerland. The site was located in a quiet residential district on a
hillside bordering a small forest (see Figure 5.6). While most of the nodes
were deployed in the open, three nodes (100, 105, and 116) plus the data
sink (node 0) were placed indoors. The test application running on top of
Dozer was designed to sense the intensity of the ambient light as well as the
temperature. The weather was quite unsettled during the operation of the
network ranging from a thunderstorm with heavy rain on the first day, to

60 CHAPTER 5. DOZER REVISITED

hot sunny weather on day three (see Figure 5.8 for a detailed history of the
nodes’ temperatures). To be able to cope with these conditions appropriate
housing for the sensor nodes was required to protect them from undesired
operating conditions without hampering their sensing abilities. The design
of sophisticated housing solutions is non-trivial and went beyond the scope
of our tests. We therefore deployed the TinyNodes in simple waterproof
boxes with a transparent top completely sealing in the node and its sensors
(c.f. Figure 5.5). The housing of node 125 turned out to be leaky and
water ingress resulted in unpredictable node behavior varying from normal
operation to total breakdown for more than a day. Consequently, this node
was excluded from all further observations.

From an analytical point of view we anticipated Dozer to perform equally
well in this setting as in the indoor experiments shown in Section 3.3. With a
measured average duty cycle of 0.172% this expectation was met to a certain
extent. However, the measurably increased radio uptime calls for a closer
investigation. In general, all nodes suffer from a slightly increased duty
cycle. This can be explained by the more dynamic nature of the outdoor
environment. Changing weather conditions influenced the characteristics of
the wireless channel and enforced a higher degree of adaptation. This is for
example reflected in a decreased link lifetime. On average a link remained
stable for 11.5 hours in the indoor testbed. In the outdoor setting this value
dropped to 8.7 hours.

Furthermore, the data gathering tree converged to a relatively deep but
stable topology. As a consequence, many nodes had to serve as relays. All
nodes exhibiting duty cycles of more than 0.2% (c.f. Figure 5.7) were affected
by this phenomenon. In particular, node 102 and node 115 were forced to
forward all traffic for the whole duration of the experiment since they repre-
sented the only stable bridge between the sink and the rest of the network.
These two nodes are an example of the problem discussed in Section 5.3.2.
Consuming significantly more energy than all other nodes in the network
they are the first to fail due to depleted batteries. As the other nodes will
then no longer be able to reach the sink, the network becomes useless as soon
as these two nodes fail.

Node 137 exhibits a unexceptional behavior. Despite being a leaf its duty
cycle exceeded 0.2%. From a close inspection we found that on this node
one important energy saving mechanism of Dozer was annulled. In order
to associate a child with a new parent a two way handshake is executed
in a contention window following the beacon message of the parent. Since
these connection changes are rare the window has to be explicitly activated
by the child. For this purpose the child transmits a busy tone right after
the reception of its parent’s beacon message. Simultaneously, the parent
conducts a RSSI sniff to decide whether to stay awake or go back to sleep.

5.3. EXPERIMENTAL EVALUATION 61

Figure 5.5: Location of the outdoor deployment and an encased TinyNode.

On node 137 this sniff failed, always reporting a busy channel3. Hence, the
node remained listening for 20 ms after sending its beacon resulting in an
additional duty cycle of 1‰. Further investigations revealed that also the
other two nodes located on the same terrace (node 102 and 115) suffered
from this problem. Due to the nature of the environment we were unable to
identify the source of interference.

As in the indoor setup, Dozer managed to reliably transfer all data to the
sink in normal operation. However, one anomaly was registered at node 101
in the early afternoon on the third day of the experiment; the node spon-
taneously rebooted twice. These restarts were a direct result of the warm
weather conditions. As depicted in Figure 5.8, the reported temperatures
of all outdoor nodes were beyond 60℃ at that time. It is to be noted that
these readings do not reflect the ambient temperate inside the box but repre-
sent the temperature on the node’s surface. This value is significantly higher
since exposure to direct sunlight heated up the hardware. The last received
samples of the failing node before its reboots indicated temperatures beyond

3A RSSI sniff captures energy within the whole available frequency band of the radio

and not only in the currently used channel. Consequently, even activity in adjacent

frequencies may lead to false positives indicating that the channel is in use although it

is not.

62 CHAPTER 5. DOZER REVISITED

Figure 5.6: Outdoor deployment of 30 nodes including a snapshot of the data
gathering tree. node 0 (lower-left corner) acts as data sink.

0

1

2

3

4

5

6

10
0

10
1

10
2

10
5

10
6

10
8

10
9

11
0

11
1

11
2

11
4

11
5

11
6

12
0

12
1

12
2

12
4

12
6

12
7

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

Node id

D
ut

y
cy

cl
e

[‰
]

Figure 5.7: Average radio duty cycle of all nodes in the outdoor deployment.

5.3. EXPERIMENTAL EVALUATION 63

0

10

20

30

40

50

60

70

80

90

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

Time of day

T
em

pe
ra

tu
re

 [°
C

]

Figure 5.8: Temperature of all nodes over three days. The steady curves at
23℃ originate from indoor nodes. Day 1: thunderstorm; Day 2: unsettled;
Day 3: sunny.

75℃. That is, the node was operating close to its maximum approved service
temperature. We assume that at the moment of the actual reboots the node
faced even higher temperatures leading to unpredictable behavior and even-
tually a system restart. Node 101 was a leaf in the tree and thus its temporal
malfunction had no effect on the other nodes in the network.

Excepts for nodes 102 and 115, all nodes in the network ran at less than
0.3% duty cycle. Applying the values from Table 3.1 a 0.3% duty cycle results
in 0.136 mW power consumption. Assuming a power source with 2000 mAh
at 3 volt the first node failures occur after more than 5 years. The average
node lifetime for this experiment is above 8 years.

Chapter 6

Dozer in the Wild

In this chapter we give an overview of a real world project using the Dozer
communication stack and an evaluation of Dozers performance under harsh
conditions. The project is called “PermaSense” and is a joint venture be-
tween the Computer Engineering group at ETH Zurich and the Glaciology,
Geomorphodynamics & Geochronology group at University of Zurich. We
are not directly participating in this project but have close relations to the
Computer Engineering Group and are thus closely following the project.

6.1 About PermaSense

The goal of PermaSense is to learn more about the impact of climatic changes
on rock fall in permafrost areas. To gather this data a dense wireless sensor
network grid is deployed featuring custom sensors to measure changes in the
rock and ice. Such a study has only become possible with wireless sensor net-
work technology as so far there were no easy to deploy geo-monitoring systems
that are low-cost, cheap in maintenance, and easy to reconfigure also after
deployment. Beyond the current scientific measurements the PermaSense
system may also be used to permanently monitor large natural hazard areas
and in combination with a warning system help to protect human lives.

Currently, the PermaSense project operates two deployments, one on the
Jungfraujoch (see Figure 6.2) and one on the Matterhorn. Both of these
deployments have been in operation for more than a year. The majority of
maintenance is remote controlled using a combination of wireless technolo-
gies and telephony. On-site work (also see Figure 6.1) involves a trip on
the mountains and is thus tedious and expensive. On the Jungfraujoch the
“Jungfraujoch railway” can be used to get close to the deployment. This

66 CHAPTER 6. DOZER IN THE WILD

Figure 6.1: Difficult deployment of a sensor node on the Jungfraujoch.
[source: http://www.permasense.ch/]

is a significant advantage over the Matterhorn deployment where extensive
climbing or a helicopter flight is necessary to access the nodes. Therefore,
the Jungfraujoch was chosen as a first deployment site.

6.2 Dozer to PermaDozer

Unlike in our own experiments the PermaSense project is no testbed but a
wireless sensor network deployment with the goal of collecting meaningful
information which is to be used by Geologists in their studies. This is also
what makes this project so interesting, as the interaction of different com-
ponents such as the complex involved sensors have a strong impact on the
operation of the communication stack. In this section we discuss how Dozer
is integrated in the PermaSense project and what changes were made to turn
Dozer into PermaDozer running on the PermaSense nodes.

In PermaSense the communication parameters are set analogously to our
own setups including a beacon interval of 30 seconds and a data sample rate

6.2. DOZER TO PERMADOZER 67

Figure 6.2: Current PermaSense deployment on the Jungfraujoch.
[source: http://www.permasense.ch/]

68 CHAPTER 6. DOZER IN THE WILD

of one every two minutes. A first significant change to the protocol became
necessary as the time to sample one of the employed sensors takes up to
five seconds and thus exceeds Dozer’s default frame length during which the
application is free to block system resources without interfering with the
communication stack. This is however a minor problem as Dozer can eas-
ily be modified to give the application larger time frames during which no
critical communication is scheduled. This modification results in a slight
reduction of message throughput as less time is reserved for communication
but at the given data sampling rates this results in no measurable additional
delays. Interestingly, although designed to protect the communication stack
from interference of the sensors and application, this separation also turned
out to be a vital requirement to generate precise sensor readings. The Per-
maSense team has shown that there is a significant interference within the
sensor node if all components are activated simultaneously. That is, the
RF components can distort the readings of the employed analogous sensors.
Therefore, Dozer’s coarse grained separation of communication and sensing
intervals turned out not only to help prevent message loss but also to increase
the quality of the sampled data.

Another challenge faced by the PermaSense deployments is the situation
where one or more sensor nodes are completely snowed in and cannot com-
municate with other sensor nodes any longer. This condition may remain
for months at a time and the sensing devices thus need a way to store their
readings “offline” as the queue in RAM is insufficient to buffer all readings.
In PermaSense this problem was solved by adding an SD card to each sensor
node which serves as a storage medium for all captured sensor readings. Once
a node regains connectivity it dumps its buffered data using the Dozer com-
munication stack. Although Dozer was not designed for such sudden bursts
in data, the protocol can handle the load. Dumping the readings stored over
a month of offline operation will take time as only approximately 10 messages
can be forwarded per communication round but the default acknowledgement
system suffices to make sure no messages are lost on the way and eventu-
ally all data is recovered at the base station. Using a simple time-stamping
mechanism the readings can also be sorted chronologically and thus as soon
as communication is possible again the readings of the snowed in nodes grad-
ually appear in the database. Furthermore, the SD storage can also be used
to verify data integrity after a year or two of operation. By comparing the
data samples gathered over the wireless connection with the data backed up
on the SD cards it can be proven, that no data corruption is incurred on the
wireless medium. This proof is important to convince other involved parties
such as the geologists working with the gathered data, that wireless sensor
network technology is as reliable as traditional measuring systems.

Another interesting challenge is the deployment of the nodes. PermaSense

6.3. PERFORMANCE 69

uses practically the same deployment/disconnection protocol as we used in
our own testbeds. That is, a node periodically sniffs the channel for any
messages and if it finds activity starts listening for a beacon interval to check
for beacon messages. As this system can be set to spend similar power as a
connected node it is well suited for the operation of a network which may be
physically disconnected for months at a time. However, the drawback is the
slow integration of sleeping nodes in the network. It is no problem if a node
that was offline for a month takes a day before detecting that the connection
to other nodes is once again possible. However, during the deployment phase
this slow reaction is a problem. It may take hours before a newly deployed
node reports its first reading to the database and the correct operation of
the sensors can be verified if it was in sleep mode during the deployment.
Additionally, the meaningless sensor readings generated between the time
when a sensor node is powered up and the time it is deployed (which may be
several days) should be removed from the memory card to prevent logging
bogus data. The simplest way to achieve these goals is to reset the nodes
and wipe the SD storage on deployment. As conditions on the mountains
are often damp, opening the water sealed boxes housing the electronics is
no option. PermaSense nodes have therefore two reed contacts and a buzzer
allowing a non-intrusive way to manually reset the sensor node and wipe the
flash memory on deployment.

These are the main modifications the PermaSense team has made to the
Dozer system to optimize it for use in the alpine deployments. While they
may seem minor from a conceptual point of view their importance for the
successful operation of the wireless sensor network must not be underesti-
mated. From the PermaSense project we have learned that the integration
of multiple components in a sensor node requires much more work than sim-
ply plugging them together. Only if this engineering step is executed with
care the complete system may operate at maximum performance.

6.3 Performance

Energy efficiency is vital for PermaSense as an unattended network life time
of three years is planned. During this time nodes have to operate on a
non-rechargeable battery capable of coping with the extreme ambient tem-
peratures ranging from -40 to +65 ℃. In [1] the PermaSense team gives a
detailed analysis of the power consumption of their entire system. Com-
paring the performance of Dozer in PermaSense to our own measurements
is not trivial as in PermaSense different constraints apply. For example a
single measurement results in five TinyOS messages to be sent by the node
as there is too much payload for a single message. Furthermore, in Per-

70 CHAPTER 6. DOZER IN THE WILD

Operating Mode Characterization [mA]

Sleep 0.026

DAQ active 2.086

Dozer RX idle 13.64

Dozer RX 14.2

Dozer TX 54.6

Measured Average Values [mA]

DAQ only (2 min) 0.110

Dozer only (30 sec / 2 min) 0.072

PermaDozer total (30 sec / 2 min) 0.148

Table 6.1: Power consumption in PermaSense for different operating modes
at 3.6V

maSense the transmission power of the nodes is higher than in our testbeds.
In our experiments we used a transmission power of 40.25 mW whereas in
PermaSense 196.6 mW are used. Similarly, due to the much more complex
hardware employed in PermaSense the sleep power drain of their nodes is
higher than for a vanilla Tinynode and has risen from 0.006 mA to 0.026
mA. Nonetheless we will do a rough analysis of the achieved duty cycles in
PermaSense based on the available numbers. The PermaSense team has con-
ducted power measurements for the individual components of their system
as listed in Table 6.1.

To compute the radio duty cycle of a node based on these values we
make the following assumptions. In every minute a node sends two beacon
messages and receives two beacons from its parent. Furthermore, it transmits
0.5 data samples which corresponds to 2.5 messages. That is, 4.5 messages are
sent and 2 messages are received. Using these numbers and the values from
Table 6.1 to compute the mean power consumption, a node draws on average
42.17 mA per transmission. Combined with the sleep power consumption of
0.026 mA and the total average power consumption of 0.072 mA we can
compute an estimated radio duty cycle of 0.11%. As in PermaSense 5 data
packets are transmitted per sensor sampling and not one as in our testbeds,
the message count per minute raises from 4.5 to 6.5, what corresponds to an
increase by 44%. If we factor in these additional messages the measured duty
cycle of 0.11% corresponds to a duty cycle of 0.076% in our experiments and
is therefore very close to our own findings. Also the plot over time for the
power consumption of three nodes as given in [1] and depicted in Figure 6.3
matches exactly our expectations and shows the proper operation of the data
acquisitions (DAQ) and communication stack.

Another observation of the PermaSense project is that communication is

6.4. CONCLUSIONS 71

no longer the main source of power consumption in their system. A node
draws on average 0.148 mA. This power consumption can be split into three
main contributing factors: Sleep mode plus overhead, data acquisition, and
Dozer. Sleep mode thereby accounts for 23%, data acquisition for 51.4%, and
Dozer for 25.7%. Simplified, one may say that the PermaSense system buys
“real-time” time data aggregation at the price of 25% of their total energy
budget.

C
ur

re
nt

 c
on

su
m

pt
io

n
[m

A
] 0

20

40

N
od

e
1

0

20

40

N
od

e
2

0

20

40

N
od

e
3

0 30 60 90 120 150 180
Time [s]

(1)

(3) Send data to parent (4) Sampling sensor (DAQ)(2) Send beacon to children(1) Receive parent beacon

(4)(2)

(3)

Figure 6.3: Power analysis for three nodes without children in PermaSense
as given in [1]

6.4 Conclusions

Our Dozer code is not available to the public due to the commercial rights
by Shockfish. We are therefore very happy with the special agreement al-
lowing our colleagues from the PermaSense project to use Dozer for their
deployments. For the first time external developers had the chance to use
our protocols and thus to proof the performance claims we made for our
system. With the extreme application scenario in the Swiss Alps it is also a
perfect showcase for the viability of our system under harsh conditions. We
are very pleased with Dozer’s performance in PermaSense and that no major
changes to the system were necessary to use it in this project.

We are especially proud of the finding that in PermaSense the commu-
nication stack no longer represents the main power consumer of the system.
This finding is in contrast to the common belief that the communication sys-
tem is the most expensive component in terms of energy in any real-world
sensor network [43, 44]. The PermaSense team concludes that the reason

72 CHAPTER 6. DOZER IN THE WILD

for this finding is the previous lack of power analysis in integrated systems
as compared to individual components. We agree that this different form
of power analysis has an impact on the precise distribution of the energy
budget. However, the impact is not large enough to lead to such a significant
shift in the distribution of the power consumption. PermaSense, although
operating under extreme conditions, falls precisely in the category of data
gathering applications Dozer is designed for. Therefore, PermaSense benefits
from optimal performance of our system and we know of no other communi-
cation stack for sensor networks which could achieve comparably good results
in this scenario.

Chapter 7

Related Work and

Comparison

Before we come to the actual related work we make a short excurse to the
problems faced when comparing different wireless sensor network applica-
tions. One of the basic rules in science is to compare your results with existing
work. Obviously this requirement helps appraising the impact of new ideas
and may also show hidden strengths and weaknesses. However, when talking
about communication protocols it is far from trivial to design fair tests to
compare different protocols with each other. Especially when looking at en-
ergy efficient MAC-layers and routing protocols it quickly becomes clear that
it is rather trivial to come up with test cases where one protocol will perform
exceptionally badly whereas another one may shine. For all algorithms exist
traffic patterns where a minimal overhead is produced and others where the
vast majority of energy is spent in vain. Developers are aware of this and
may be tempted to benchmark an algorithm on a scenario where the own
work has the edge on its competitors. This is not even necessarily a bad
thing as—while this is also true in almost all other areas of life—especially
in sensor networks custom solutions for specific applications always perform
best. Hence, it is natural to use a test case for which the new algorithm was
designed. However, one has to keep in mind that results of such tests usually
do not translate well to other conditions. Also the kind and quality of the
implementation has a significant impact on the outcome. Pure simulation
results are often far off of what we witness in real-world deployments. Com-
munication models are either too simplified or too harsh, timing problems
(e.g. due to changes in temperature) are often neglected, traffic patterns are
artificially chosen, and interference follows the strict rules of a model. As a

74 CHAPTER 7. RELATED WORK

consequence, when dealing with numbers deduced from simulations the lim-
itations of the simulation need to be kept in mind and thus not all results
may be taken at face value.

Unfortunately, also measurements on testbeds consisting of hardware
nodes can differ significantly. The topology of the network, the number
of deployed nodes, as well as the external conditions (e.g. air conditioned or
outdoor deployment) have a major impact on the achieved results. In addi-
tion the employed hardware is of importance. If the radio has good switching
times between off and RX/TX and can cheaply conduct an RSSI sniff a pro-
tocol based on low-power listening (cf. Section 7.1) will perform much better
than on hardware with a slow startup and expensive radio sniffs. Also the
quality of the implementation has to be considered as a proof of concept im-
plementation will perform significantly worse than a fully debuged version of
the same system. Unfortunately, for many of the more sophisticated proto-
cols no optimized implementations are available, making direct comparisons
on a testbed very difficult.

An even bigger problem is finding good metrics to compare protocols.
For example, how to measure energy efficiency? Energy efficiency is the holy
grail of wireless sensor network development and finding the most efficient
protocols for a deployment may make the difference between a successful
project and a total failure. Still, there is no standardized approach for mea-
suring the efficiency of a protocol. As described before, due to the varying
demands of different applications no single benchmark can be fair for all pur-
poses. However, many of the existing communication stacks can be clustered
based on the employed basic schemes. For example there are numerous LPL-
based [9, 42] protocols and TDMA-based [20, 45] approaches. Nonetheless,
there is no standardized benchmark setting for either of these classes. As
a result authors choose different parameters when testing their systems and
represent their findings in various formats. Sometimes energy consumption
is given in milliwatt other times the radio duty cycle notation is used. The
former has the drawback that it is extremely hardware dependent and thus
results cannot be compared to tests conducted on another platform. The lat-
ter translates better to other hardware although radio switching times still
have a strong impact on the measurements. Both approaches suffer from the
problem that the data rate and traffic pattern of the test application run-
ning on top of the communication stack has a strong influence on the results.
A protocol may be very efficient if it has to send ten messages per second
and node but still use a similar amount of energy if only one message per
minute is sent; of course the opposite may also be true. Simply removing
the payload completely and only benchmarking the consumption of a com-
munication layer in idle state is no option either as the trivial algorithm not
sending anything at all would be optimal in this setting.

7.1. COMPARISON 75

To a certain extent the performance of a system under specific conditions
can be extrapolated from values measured in a different setup. However, by
doing so the advantages of real-world tests over simulation results get lost.
The conclusion of this section is that we need standardized test cases for each
different class of sensor network applications. The definition of what settings
to use and how to standardize the setup of the testbed is far from trivial and
will not only result in technical but also “political” discussions. Only if the
whole community working in this area can agree on a set of test cases, more
meaningful comparisons can be achieved.

In the absence of such standardized tests we have decided to use a math-
ematical approach to compare Dozer to its related work. The best possible
numbers available for related algorithms were used to extrapolate their be-
havior under the same conditions we used to benchmark Dozer. The resulting
numbers are definitely not precise but they suffice to give a strong indication
that Dozer outperforms other protocols in the scenario it was designed for.

7.1 Comparison

In this section we compare the performance of Dozer with field-tested pro-
tocols deployed in environmental monitoring applications and recent related
work published after Dozer.

7.1.1 LPL and Twinkle

First, low-power listening, or LPL in short, a strategy to condition contention-
based medium access protocols to low-power requirements is evaluated against
our system. This technique is included in B-MAC [42], the standard medium
access protocol shipped with TinyOS. In LPL, the radio periodically probes
the wireless channel for incoming packets. If no activity is detected the node
returns to sleep mode. Otherwise, it remains on and the incoming packet is
received. To ensure the receiver is listening a sender has to prefix its packets
with a long preamble acting as an in-band busy tone.

Second, we compare Dozer to Twinkle [19]. Twinkle, a descendant of FPS
[20], features some similarities to our system. It establishes a TDMA schedule
where each node allots distinct time slots to all of its children thus allow-
ing collision-free communication among them. The protocol thereby relies
on a global coarse-grain time synchronization. Collisions between neighbor-
ing nodes which are neither siblings nor parent-child related in the tree are
resolved using CSMA. Other protocols for low-power data gathering were
proposed [28, 45, 64]. As they are evaluated by means of simulation or in
single-hop networks only we refrain from comparing them with Dozer since

76 CHAPTER 7. RELATED WORK

it is difficult to assess how well their results translate to a real-world deploy-
ment. An overview of these protocols and their pros and cons is given in
Section 7.2.

Both LPL and Twinkle are evaluated on the mica2dot sensor node plat-
form in [19]. Since no source code is available for the latter all measurements
for the two protocols are directly taken from [19]. Similar to our indoor
testbed discussed in Section 5.3 all tests were conducted on a 30 nodes in-
door deployment. Different hardware platforms and testing environments
hamper an in-depth comparison of the three protocols. Nevertheless, we
gain a rough estimate of their performance in real-world deployments and
their energy-saving capabilities.

Figure 7.1 depicts the average power consumption of the three considered
contestants if one sample is generated every two minutes. Along the lines of
[19] the energy drain for this sampling rate was extrapolated from existing
measurements. For both LPL and Twinkle the shown values represent the
power consumption of a leaf node. This lower-bounds the load of all nodes in
the network since these nodes do not have to forward any external data. Low-
power listening1 consumes 2.83 mW on average. With Twinkle a leaf node
experiences a power draw of 0.42 mW which is an approximate improvement
by a factor of 6.7 compared to LPL. As shown in Section 5.3 Dozer achieves
an average duty cycle of 0.128% on all nodes. Applying the values from
Table 3.1 results in a mean energy consumption of 0.066 mW. Consequently,
Dozer outperforms Twinkle by a factor of 6.4 and LPL by a factor of 43,
respectively.

These numbers indicate a significantly reduced power consumption in
Dozer compared to the other two protocols. In the following some of the
reasons leading to this result are discussed. We start with LPL: Low-power
listening suffers from several fundamental limitations. On the one hand, the
constant periodic channel polls are not for free. In particular, radio switching
times are not negligible. Furthermore, finding the optimal trade-off between
polling frequency and preamble length requires a priori knowledge of the
traffic demand. On the other hand, LPL is prone to the problem of over-
hearing. Communication on a link misleads all other nodes in the sender’s
transmission range to wake up and switch into receive mode. Nevertheless,
LPL is a powerful approach in scenarios beyond the scope of ultra-low power
data gathering. Its simplicity and robustness make it an excellent choice for
a wide range of other applications.

Twinkle achieved a substantially better result but still performed mea-
surably worse than Dozer. Based on the information extracted from [19] we

1In fact, we consider a variation of LPL called Pulse [42]. It optimizes the power

consumption of LPL by listening for energy on the channel rather than a decodable

preamble. This reduces the cost of listening substantially.

7.1. COMPARISON 77

assume that the difference mostly stems from two protocol aspects. First, the
mechanism used to associate a child with a parent requires periodic trans-
mission of advertisement messages and channel overhearing in the length of
a TDMA slot used to accept incoming connection requests. This procedure
can be mapped to Dozer’s beacon messages and their subsequent contention
windows. However, in our system the contention window is only activated
upon request and its length is considerably shorter than its counterpart in
Twinkle. Second, the combination of coarse-grain time synchronization and
CSMA-based collision avoidance leads to additional overhead. Even in steady
state random backoffs before the start of each transmission prolong a node’s
radio uptime.

Since the publication of Dozer new systems for data gathering in wire-
less sensor networks have been proposed. We discuss two of these systems,
Koala [36] and TSMP [41] as they claim to achieve similar performance re-
sults. Furthermore we briefly discuss IP 6LoWPAN [34] as it might represent
one future path for sensor networks.

7.1.2 KOALA

Koala follows an antipodal approach to Dozer. Instead of decentralizing as
many of the tasks as possible Koala uses a centralized authority to manage
communication. The argumentation of the authors is that previous work [53,
54, 56] has shown that systems with a lot of complexity on the sensor nodes
are failure prone. They conclude that to solve this problem the complexity
should be moved to the base station.

The Koala system builds on the Flexible Control Protocol (FCP), which
is used to manage communication paths. All communication within FCP
is initiated at the sink. Each sensor node periodically sends a beacon mes-
sage and checks if it receives an acknowledgement for this beacon. If no
acknowledgement is received the node goes back to sleep. To start a com-
munication round the base station listens for incommoding beacon messages
and acknowledges them. Nodes receiving an ack stay awake and start to
acknowledge the beacon messages they receive from their own neighbors as
well. Applying this mechanism recursively the entire network is brought on-
line. All nodes also forward their direct neighborhood towards the sink who
is then able to generate a graph of the network topology and to compute
paths to all nodes.

Using source routing the base station then sends a message to the first
node it intends to download data from. All nodes on the path switch to a
different communication frequency and establish a virtual channel forwarding
all messages according to the route stored in the setup message. Once the
node at the end of the path has finished uploading its data it returns to the

78 CHAPTER 7. RELATED WORK

common management frequency and goes to sleep. The previously second
last node on the path then starts to upload its data towards the sink. Once
all nodes of a path have completed their upload the base station once again
wakes up the entire network and starts downloading data from another path.
That is, to collect data from all nodes, the network goes through multiple
wake-up cycles which require the network to stay awake up for extended
periods of time. In many practical scenarios where the network diameter
is small (e.g. 3-5 hops) but in turn the MST is wide, the network will go
through up to O(n) wake-up cycles with n being the number of nodes in the
network before all nodes have uploaded their data.

The Koala approach is promising for scenarios where data is not continu-
ously collected at a sink but only on demand and at a very low rate (e.g. once
a week). In [36] the beacon interval of a node in stand-by is set to 20 seconds
what corresponds to a radio duty cycle of approximately 0.1%. In turn, the
actual data aggregation is very expensive. Assuming a simple line topology
of 10 hops and no collisions of any acknowledgements the time to wake up
the entire network is on average 100 seconds. Nodes once woken-up may not
return to sleep and thus nodes close to the sink have to stay awake for the
entire 100 seconds. Even at a data collection rate of only once per three hours
these 100 seconds of activity result in an additional 1% overall radio duty cy-
cle. In order to limit the impact of these collection phases on the radio duty
cycle it is therefore necessary to aim for an aggregation rate of less than once
a day. On top of the network wake-up time come the non-negligible costs
for the aggregation of the network topology and the consequent notification
of the network specifying which nodes have to remain awake and are now
part of a communication path. Unfortunately, the power analysis in [36] is
incomplete and it is thus not possible to give a precise estimation of the total
radio duty cycle for a given scenario. However, the Koala approach clearly
favors scenarios in which data has to be collected at very large intervals. In
this case the overhead for setting up the communication paths is compen-
sated by the low stand-by power consumption of the network. For the same
reason Koala is ill suited for “continuous” data aggregation as in this sce-
nario the wake-up costs dominate the power budget and the performance of
the system deteriorates. Another limitation of the system is the requirement
for the network to remain stable over extended periods of time during which
the routing path is computed and the actual data upload is executed. As
discussed in Section 1.3 this basic requirement may not be matched in many
real-world scenarios and Koala will spend more energy on recomputing data
aggregation trees or fail completely in case of high interference.

7.1. COMPARISON 79

7.1.3 TSMP

The Time Synchronized Mesh Protocol (TSMP) was proposed by Dust Net-
works [38] and represents the state of the art in industrial sensor network
communication stacks. TSMP is part of the Wireless HART [62] standard
defining the wireless counterpart to the widely used HART standard for com-
mercial building automation. As Koala, TSMP is fully centralized but uses a
synchronized communication model. All nodes in the network share a counter
telling them how many slots of the global schedule have been executed since
the startup of the network. According to this counter and the schedule de-
fined by the base station each node knows when to send and receive messages.
This slot counter is also used to determine the communication frequency, as
TSMP uses channel hopping to reduce communication problems.

All nodes connected to the network broadcast advertisement messages
which newly joining nodes use to detect the presence of a network. A new
node sends a join request to the sender of the advertisement packet which
in turn forwards the request to the central authority. The base station then
provides the new node with one or multiple dedicated communication slot in
the global schedule. TIt also defines along which paths the node is expected
to forward its data and for which other nodes it has to serve as a relay. This
information is distributed to all affected nodes that update their local routing
table accordingly.

In order to sustain the global schedule all nodes in the network are syn-
chronized using a simple clock sync mechanism. The clock value of the base
station is periodically distributed through the network and MAC layer times-
tamps are used to minimize estimation errors. To optimize power consump-
tion both a push and a pull mechanism are included for clock value distribu-
tion.

Furthermore, unlike the majority of academic systems TSMP offers the
user the possibility to define that a network is now “complete”. That is, once
all expected nodes have registered with the network, advertisement messages
can be turned off to save more energy. According to [41], a leave node can
thereby reduce its idle radio duty cycle to 0.01% as it only receives periodic
messages to maintain its clock synchronization.

In [41] the authors compare TSMP results to Dozer. To do so, they
recreated the conditions of two different nodes in our office floor setup of the
initial Dozer release. On the one hand they constructed the network topology
according to a snapshot given in Section 3.3 for a node with 5 children and 13
descendants. This node had a radio duty cycle of 0.32% in our experiment.
With TSMP the authors were able to reduce this duty cycle to 0.27%. For
the measurement of the radio duty cycles the authors have thereby chosen a
stable network topology and turned off TSMP’s beacon messages. In other

80 CHAPTER 7. RELATED WORK

words, TSMP was locked for a static topology and the protocol was no longer
able to make any changes to the network topology in case of interference. In
contrast, Dozer was executed with all features turned on in a “live” scenario
in which no such stable topology existed. Consequently, multiple changes
to the network topology where necessary each day to cope with external
interference and a static network definition would have failed to collect the
sensor readings.

The second comparison presented in [41] is for a leaf node. TSMP achieves
a radio duty cycle of 0.02% as compared to 0.07% in the initial Dozer system
or 0.05% in the latest Dozer release. Here the comparison is simple as in
TSMP (once again with turned off advertisement messages) only one mes-
sage is received to synchronize the node to the network. In Dozer, the parent
beacon corresponds to this synchronization message. Additionally, in our
system, the node also sends a beacon message of its own (which corresponds
to an advertisement in TSMP) which doubles the power consumption. The
remaining difference between the systems stems from the different maximal
clock drift compensation, as in TSMP only 20 ppm of relative drift are han-
dled whereas in our experiments up to 200 ppm were covered.

The option to turn off beaconing for leaf nodes is interesting as it offers
a reduction in power consumption of approximately 50%. However, in a
dynamic scenario where a leaf node may be required to become a relay at any
point in time, turning off the beaconing mechanism may lead to massively
increased energy costs for other nodes looking for a new parent or even a
network breakdown in the worst case. Furthermore, leaf nodes already now
spend only a small fraction of their total energy budget on radio uptime
and are the last nodes in the network to deplete their batteries. For Dozer
we have therefore decided that the energy spent on beacon messages at leaf
nodes is more than compensated by the increased flexibility of the system.

7.1.4 IP is Dead, Long Live IP for Wireless Sensor Net-
works

J. Hui and D. Culler propose a different approach to communication in wire-
less sensor networks. They make the point that after several years of studying
sensor networks and their properties it is time to work on the integration of
WSNs into IP-based networks. They argue that with IPv6 a new standard
suitable for adaption to the requirements of sensor networks is available.
In [21] they propose a system adopting IP routing for wireless sensor net-
works. The system they propose consists of a MAC and routing layer, as well
as mechanisms to modify properties of IPv6 to match the limited resources
available on sensor nodes featuring an 802.15.4 compliant radio. The network

7.1. COMPARISON 81

setup consists of sensor nodes and so called “border routers” interfacing the
sensor network with an external IP network.

The MAC layer of the proposed system uses a highly optimized low power
listening (LPL) strategy similar to WiseMAC [9]. The authors argue that a
LPL strategy better matches the properties of an IP-based communication
system than a synchronized model. They argue that IP-based systems usually
expect a link to feature “always-on” and “low latency” properties which are
easier to realize with a LPL mechanism than a scheduled communication.

The inbuilt routing system is based on the Distance-Vector Routing prin-
ciple in that a node stores the costs to reach a border router through each
neighbor. Costs are thereby computed in terms of necessary message trans-
missions including expected message losses along the path.

Another challenge for the system is header compression and dealing with
the different Maximal Transfer Units (MTU) of IPv6 and 802.15.4 radios.
The minimum MTU supported by IPv6 is 1280 bytes and the header size
is at least 40 bytes. In contrast the payload of a 802.15.4 frame is limited
to 127 bytes. With RFC 4944 [34], also known as 6LoWPAN, the authors
propose a system dealing with packet fragmenting and header compression
however, a detailed description of RFC 4944 goes beyond this comparison.

The authors of [21] also provide an implementation of their network stack
including support for one UDP and one TCP connection. With a ROM
footprint of 24,034 bytes and a RAM usage of 3,598 bytes this stack can
be run on most current sensor nodes but especially for the low-end devices
supporting only 4kB of RAM there is not much space left for application
and sensor specific code. They provide numbers for a demonstration setup
consisting of 15 nodes. 7 of the nodes were directly connected to the border
router and the remaining nodes are within a 2-3 hop neighborhood. With
one data sample per minute the network achieved an average radio duty
cycle of 0.65%. Unlike claimed in [21] this is approximately six times as
much energy as Dozer would require in the same scenario. However, the
low-power listening approach brings the advantage of a lower per hop delay
and thus on average a message is forwarded one hop within 0.125 seconds as
compared to 15 seconds in Dozer.

With its novel approach of making WSNs IP compliant and thus easy to
access from the Internet the proposed system may be the way to develop fu-
ture WSN applications and to help the technology achieve its breakthrough.
First practical studies such as [49] proof the conceptual feasibility of the sys-
tem. A remaining open question is whether it is the best approach to move
the entire complexity of IP, UDP, and TCP into the sensor network. Sev-
eral translation steps such as header compression in 6LowPAN are inherently
necessary in every deployment. That is, a border router will always have to
provide some services to the sensor network and one might thus consider

82 CHAPTER 7. RELATED WORK

0

0.5

1

1.5

2

2.5

3

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

LPL

Twinkle

Dozer

Figure 7.1: Average power consumption of LPL, Twinkle, and Dozer given
a two minute sampling period.

moving more application specific code into the gateway. On the one hand,
having the entire complexity directly in the sensor nodes allows the produc-
tion of simple, generic border routers as they can be agnostic to the semantics
of the communication between the sensor network and the Internet. On the
other hand, providing the functionality of a simple application server on the
gateway might drastically improve the performance of the system. For ex-
ample, the answer to popular queries might be cached at the gateway and
would thus not result in a lot of repeating traffic in the network. Similarly,
application specific communication systems not matching the requirements
of IP connections could be employed in the sensor network while still main-
taining the IP-frontend to the Internet by having the gateway (proactively)
storing all necessary information. Making the sensor network accessible to
Internet-based services is doubtlessly the right approach and time will tell
whether the fully decentralized approach or a mixed strategy will result in
the best results. A more indepth comparison of the pros and cons for dif-
ferent methods of connecting sensor networks and IP-based infrastructure is
given in [7].

7.2 More Related Work

Corresponding to the importance of the problem, there have been a plethora
of research efforts addressing data gathering in the last few years. Energy
efficiency of most existing work [24, 31, 56, 48, 4] stems from the application
of generic energy-efficient MAC protocols [42, 58, 63]. These protocols turn
off the wireless transceiver whenever possible to save power. Two types of
protocols are thereby distinguished: TDMA and contention-based protocols.
Protocols falling in the latter category incorporate duty cycling to achieve
low power operation. [63] and [30] coordinate the nodes’ sleep schedules such
that neighboring nodes are awake at the same time. In the active phases CS-
MA/CA is used to control channel access. To achieve high energy efficiency
the active periods must be very small compared to the time nodes are in sleep

7.2. MORE RELATED WORK 83

mode. Since the whole network wakes up at roughly the same time nodes
suffer from high channel contention which reduces network throughput. T-
MAC [58] is an improvement of S-MAC [63] handling varying traffic load with
adaptive duty cycling. The protocol does however not overcome the inherent
limitations of this approach. Low-power listening is another strategy to con-
dition contention based MAC protocols to low-power requirements. To avoid
idle listening nodes turn off the radio most of time, only periodically probing
the channel for the presence of activity. Once network activity is detected
the node switches on its radio to listen for the incoming packet. To ensure
the receiver is listening a sender has to prefix its packet with a long preamble
acting as an in-band busy-tone. A key advantage of asynchronous low-power
listening protocols [42, 9] is that the sender and receiver can be completely
decoupled in their own duty cycles. However, these protocols suffer from
the overhearing problem, since the long preamble also wakes up nodes who
are not the intended receiver of a packet. To overcome this drawback [64]
proposes to synchronize the channel polling times of all neighboring nodes,
thus preventing the protocol from sending long preambles. This move incurs
contention during the scheduled channel probing which is resolved by using
CSMA. A drawback of this protocol is that all nodes require to be tightly
synchronized to meet energy efficiency which creates additional costs.

In contrast to the aforementioned protocols, TDMA-based solutions es-
tablish a schedule where each node is assigned one or possibly multiple time-
slots. In each slot nodes are then able to communicate without provoking
packet collisions or suffering from overhearing. Pure TDMA protocols are
however hardly feasible in reality since they require global time synchro-
nization and are susceptible to topological changes of the network. Hence,
most proposed protocols use a combination of pure TDMA and the above
mentioned contention-based approach.

In [45] a two phase protocol is proposed. In the first phase a node col-
lects information about its two-hop neighborhood and participates in a dis-
tributed slot allocation procedure. In addition, a protocol for network-wide
time synchronization is executed during this phase. Once the TDMA sched-
ule is computed in the first phase the protocol switches over to the second
phase where the schedule is executed. DMAC [28] proposes an adaptation
of S-MAC optimized for data gathering. The protocol assumes that a rout-
ing tree towards the data sink exists. The active periods of the nodes are
staggered according to their level in the tree. CSMA is used to arbitrate
between children in order to prevent collisions. DMAC achieves low data
delivery latency at the sink. However, there is a substantial overhead in case
of network instabilities and due to the local synchronization at the nodes.
FPS [20] and its descendant Twinkle [19] are closest related to the protocol
described in this paper. The coarse grained scheduling of FPS represents

84 CHAPTER 7. RELATED WORK

a distributed TDMA approach where each node schedules its own children.
Although this schedule ensures that parents and their children are contention
free, collisions may still occur due to other nodes in the network or poor time
synchronization. This contention is handled using CSMA. The protocol does
not incorporate a tree construction and is thus dependent on other protocols
establishing such a network topology. In contrast to our solution FPS—and
thus also Twinkle—requires global time synchronization.

Chapter 8

Concluding Remarks and

Outlook

With Dozer we have proven the viability of time scheduled communication in
multi-hop wireless networks at very low radio duty cycles. For the application
scenario of long-term environmental monitoring our protocols achieve duty
cycles in the order of 0.1% while maintaining full self-organization and self-
repair abilities in the network. Several productive deployments of Dozer are
in operation by Shockfish and the PermaSense project successfully employs
our communication system for their deployments in the Swiss Alps.

Dozer is designed and optimized for low data rate data aggregation ap-
plications where delay is of limited importance. For this class of applications
we do not see much more optimization potential. Tweaking parameters such
as the parents update mechanism and the minimal guard times according to
the environmental conditions of a specific deployment may lead to a slight
decrease in the radio duty cycle but the saved energy will not be significant.

However, there are related scenarios for which Dozer is currently un-
suited but where modifications to the protocol might be interesting. For
example, by breaking up the current fix data rates and slot lengths in the
TDMA schedules one could construct a protocol offering variable data rates
on different links. Connections between leaf nodes and their parents could be
slowed down so that uploads only occur at the same rate as the sensor is sam-
pled. Similarly, links closer to the sink might benefit from faster schedules to
forward their buffered messages. Besides an increased message throughput,
such a mechanism might also lower the end-to-end delay messages incur in
the network.

Other possible adaptations include leaving the many-to-one communica-

86 CHAPTER 8. CONCLUSIONS AND OUTLOOK

tion scenarios and to allow any-to-any message exchanges. Such a change
would significantly change the operating parameters as meta information
about more links would have to be stored on the nodes. Memory becomes a
bottleneck and additional mechanisms deciding on the priority of communi-
cation links have to be developed.

Another open issue is the question of the optimal tree topology. In general
multiple data aggregation overlays can be built on a physical network. At the
moment Dozer tries to find the most stable, shallow tree as the hop distance to
the sink is the primary attribute according to which a node chooses its parent.
Intuitively this is a reasonable choice in many scenarios but under certain
conditions it may lead to an undesirable, unbalanced traffic distribution in
the network. Incorporating other factors in the parent selection mechanism,
such as energy left in the batteries or the current message rate, these cases
might be detected.

Beyond the possible modifications to the protocol we also learned from the
PermaSense project that an implementation as complex as Dozer is difficult
to use for external developers. Without in-depth knowledge of the system
it is hard to incorporate our code in a full-fledged application. A set of
additional tools could help alleviate this problem. Such tools could include
configuration wizards helping to set the numerous parameters through which
Dozer can be fine-tuned but also include application examples showing how to
embed the communication stack and how to use the command dissemination
mechanism.

Part II

Developement Support for

Wireless Networks

Chapter 9

Introduction

Parallel to the development of the Dozer project we were interested in how
to improve the development cycle of distributed applications in ad hoc and
wireless sensor networks. At first, the focus was more on ad hoc networks con-
sisting of larger devices featuring wireless LAN interfaces but over time—and
with our growing experience in this area—it moved towards wireless sensor
networks. Although these two classes of networks both fall in the category of
wireless networks, we learned that their development requirements are often
different. Computation power, available memory, employed programming
language, and underlying operating system are some aspects leading to these
differences. Another important difference influencing the development cycle
of applications is the available user interface. While PDAs, cell phones, or
notebooks offer a wide range of possibilities to give feedback and status re-
ports to a user this is not the case for wireless sensor nodes. Three LEDs
are oftentimes the only directly accessible information a human can get from
a sensor node. If this is insufficient, serial communication or over-the-air
transmission of debug information becomes necessary.

At the outset of this dissertation the development process for wireless
sensor network applications bore a close resemblance to writing programs
for personal computers in the 1980s: A simple text editor for programming,
shell-based compilation and flashing of the applications, and communication
logs in the form of hex-dumps were the tools we had to work with. This total
lack of development support was one of the reasons for the long development
cycle of the Dozer code. We not only had to write the communication stack
but also a set of monitoring and analyzer tools. From discussions with other
researchers in this area we found that this is a common problem and even
the most basic support tools were re-developed over and over again for each

90 CHAPTER 9. INTRODUCTION

new project. We therefore decided to investigate how to build generic de-
velopment support tools that help speeding up the development process of
wireless sensor network applications.

In the second part of this thesis we present support tools that we have
developed over the last years. We discuss the advantages but also limitations
of our applications and try to evaluate their impact on the community they
were designed for.

Chapter 10

Simulation of Ad Hoc

Networks

The question of development support for wireless ad hoc networks arose for
the first time during a course for graduate students called “Mobile Com-
puting”. In this course the students were expected to develop an instant
messenger application in Java. To make things a bit more challenging the
messenger system was completely server free, communication was based on
IP multicasts, and a multi-hop routing scheme for communication with other
users out of direct transmission range was to be developed. We provided the
students with a set of routing and application level protocols which they had
to implement during the semester. At the end of the course we organized
a get-together during which the students had the chance to test if their ap-
plications where compatible to each other and to see if they could exchange
messages.

Previous years had shown that the students were generally quite excited
with this semester-long exercise. However, as soon as the multi-hop part of
the exercise started they ran into difficulties. One of the most prominent
problems turned out to be the challenge of testing and debugging the appli-
cation. Single-hop communication was easy to test by working in small teams
but as soon as message relaying was required things became more compli-
cated. Wireless LAN adapters have a reach of several meters and thus even
a minimal two-hop communication experiment required at least three people
to spread over a whole office floor; a rather inconvenient way of testing an
application. Thus, many students either gave up on the exercise or handed
in untested solutions which often crashed under live conditions.

To improve this situation we searched for development tools that might

92 CHAPTER 10. SIMULATION OF AD HOC NETWORKS

be of help. Especially, simulation and emulation tools were of interest to us.
At first we evaluated well known simulation systems such as NS-2 [10] and
GloMoSim [65]. These systems aim for perfect simulation of all network layers
and are consequently very complex. Due to their complexity these tools bring
the risk that improper configuration of the simulation environment may lead
to erroneous or misleading results. Furthermore, if only one or few layers of
the network stack are to be evaluated, employing a full network simulation
is like breaking a fly on the wheel. For educational purposes—such as in
our case—the complexity of these network simulators turns into a problem
as the effort and time necessary to understand the simulation environment
often stands in no reasonable relation to the yielded benefits.

Another problem with simulation environments is that they usually re-
quire code to be written in a product specific language. In the end an imple-
mentation of our instant messenger for the simulator would only run within
the simulation tool and not directly on a notebook. This was contradictory to
our intent of increasing the students’ awareness of real-world problems faced
when developing algorithms and applications for wireless networks. In the
end we found that there was no simple to use solution available to test an ap-
plication using multicast communication in Java. This was surprising as with
the constantly increasing number of devices supporting WLAN and Java—
especially cell phones—this specific method of communication seems very
promising for applications involving interaction between groups of people in
one room. Particularly, in the domain of social networking IP multicasts
could be used to connect crowds of people in the same area.

10.1 Simple Ad Hoc Network Simulator

Against this background we introduce SANS, a Simple Ad Hoc Network
Simulator with the goal of providing an intuitive and easy to use emulation
tool. Ideally, five minutes should suffice to become familiar with SANS as a
development, testing, and debugging tool.

One of the main reasons for SANS’ simplicity lies in its focus on the simu-
lation of network and transport layer protocols. Both of these layers deserve
special attention in the context of ad hoc networks as wireless links are much
more dynamic than traditional wired connections. For example, packet loss
rates are much higher and thus routing and transport layer protocols have to
be designed to be able to cope with lost messages. To help developing such
protocols SANS provides an abstraction of the physical and data link layers.
In particular, a program running in the simulator can use the Java UDP
multicast interface to send and receive data packets from its direct neighbors
in the simulated ad hoc network. An advantage of this approach is that

10.1. SANS 93

applications running in SANS can directly be executed on any Java-enabled
system as long as the platform supports the Java UDP multicast interface.

Since SANS is not only intended for prototyping but also for educational
purposes, Java has been chosen to implement the simulator itself and also as
the programming language used to write the simulated programs. As a direct
consequence the simulator is platform-independent and can be employed on
all operating systems supporting the Java environment. Furthermore, it is
possible to run the simulation from within a Java IDE such as Eclipse [55] and
to make full use of the debug facilities of the IDE. It is therefore possible to
use features such as breakpoints or variable introspection in the application
running on a simulated node.

10.1.1 Design Goals

Our goal was to design a system which does not require more than a couple
of minutes to get used to but still offers all necessary options for testing and
presenting algorithms running on wireless networks. The key features we
defined for our system can be summarized as follows:

• Ease of use,

• graphical representation of the network,

• real-time network simulation,

• code developed on the simulator should run on hardware without adap-
tation,

• individual transmission ranges for each node,

• adjustable link properties such as delay and packet loss, and

• support of a standard programming language.

In the following sections we will give an overview of how we realized these
design goals.

10.1.2 Overview

SANS simulates an entire network of independent nodes on one computer.
The simulated nodes are thereby completely isolated from each other and do
not have to execute the same application. As shown in Figure 10.1 SANS
renders a schematic representation of the network including nodes and pos-
sible links in its main window. Network nodes running arbitrary Java client
applications are displayed as circles with a node identifier in the center. Links

94 CHAPTER 10. SIMULATION OF AD HOC NETWORKS

Figure 10.1: SANS main window showing a network of eight partially con-
nected nodes.

indicating that two nodes are within (mutual) communication distance are
symbolized by arrows. Whenever a message is sent over such a virtual link
the head of the corresponding arrow flashes for a moment and the packet
count of the link is increased. In many cases this visual feedback suffices to
observe the behavior of an algorithm without the need of additional log files
and similar post processing techniques.

Setting up a network is a matter of a few drag-and-drop operations and a
few small dialogs for entering parameters. A right-click on the main window
creates a new node at this position and a dialog pops-up where the user
is asked to specify the client application which is to be run on this node.
Similarly, a virtual link between two nodes is established by dragging a line
from one node to the other. The dialog shown in Figure 10.2 opens and
the user is asked to specify the link properties. SANS supports one-way
and bidirectional links. Thus, it is possible to simulate networks consisting
of heterogeneous hardware with different transmission ranges. Also delay

10.1. SANS 95

and packet loss can be set individually for each link. We have explicitly
decided against using a model-based approach to define which nodes are
within mutual communication range. The reason for this decision is that
practically all models, from the simple Unit Disk Graph (UDG) to complex
Signal to Interference and Noise Ratio (SINR) systems, expect transmission
ranges to be symmetric in all directions. Especially, for indoor setups where
walls and other obstacles are blocking direct line of sight between nodes it
is easy to come up with a scenario where a circular transmission range is
unreasonable. However, also on a plain field communication ranges are not
identical in all directions [22]. Differences may be caused by the design of
the employed antennas or external interference. Thus, all simulations based
on such connection models make assumptions which do not map well to
real-world deployments. While the simulation of networks with hundreds or
even thousands of nodes can only be realized by having an algorithm place
and connect the nodes, small scale experiments such as the ones possible with
SANS can easily be configured by hand. We therefore decided to prioritize the
possibility of building tricky topologies (e.g. with zones of high interference)
over a more convenient model-based topology generation.

Another feature worth mentioning is the possibility of topology changes
at runtime. Links and nodes can be added or removed while the simulation
process is running, without the need of a restart. Hence, SANS can be used to
test the reaction of an algorithm to spontaneous network topology changes
which are a common problem in wireless networks. Of course SANS also
provides convenient access to console output produced by the applications
running on the simulated nodes. The output of each individual node is shown
the GUI and also the generation of log files is supported. In combination with
the inbuilt message history it is possible to reconstruct the exact course of a
simulation run which may be necessary when debugging an application.

10.1.3 Simulation of Physical and Data Link Layers

SANS is designed to help evaluating transport layer and routing algorithms.
Hence the system has to provide a simulation of the lower layers of the com-
munication stack. Following our demand for simplicity we decided to build
an overlay network on top of the UDP multicast system. Multicasts feature
similar properties as radio communication as not only the intended recipient
receives a message but all members of a multicast group. In SANS all nodes
join the same multicast group and thus, every message sent through the sys-
tem is received by all nodes in the network. This behavior maps to a network
where all nodes are within mutual communication range or a fully connected
topology if we think in terms of network graphs. This model is therefore unfit
for testing multi-hop communication algorithms. To overcome this limita-

96 CHAPTER 10. SIMULATION OF AD HOC NETWORKS

Figure 10.2: Configuration dialog for link propertiy definitions.

10.1. SANS 97

tion, SANS uses a firewall-like mechanism to limit message delivery to nodes
directly connected to the sender in the schematic network representation.

The main advantage of building an overlay network on top of a UDP mul-
ticast group is the existence of a handy interface in Java dealing with mul-
ticast communication java.net.MulticastSocket. SANS intercepts calls to
this interface and handles them internally. This process is completely trans-
parent to the user and the application executed on a simulated node. For
developers this brings the advantage of a well-known and documented inter-
face to send and receive messages. Furthermore, the multicast interface is
supported by all Java virtual machines down to JavaME running on hand-
held devices. Due to this widespread support for the communication interface
and the transparent interaction with SANS applications developed within the
simulation environment can also be executed on real hardware without any
adaptation. Method calls which are intercepted when run in the simulation
environment are then handled by a physical network device.

Figure 10.3 depicts the process performed when a message is sent in
SANS. The communication is initiated by a client application calling the send
method of the Java MulticastSocket to broadcast a packet. This method call
is intercepted by SANS and instead of delivering the data to a networking de-
vice it is processed by the simulation system. First, SANS determines which
nodes are within transmission range of the sender (which means that there
is a link in the schematic network representation between the sender and
these nodes). In a second step the individual link properties of each of these
connections are analyzed. According to the user-defined error model, the
system decides if the message reaches the receiving node or if it is dropped
due to simulated packet loss. Finally, if the message is not dropped, SANS
calculates the time of arrival of the packet according to the link delay and
puts the data in the delivery wait queue of the receiving node. Eventually,
the receiving nodes call the receive() method of the MulticastSocket to poll
for newly available data. Again, this call is intercepted and SANS returns
the next valid packet from the corresponding wait queue.

10.1.4 Internal Network Simulation

In order to be able to run arbitrary applications in SANS the transparent
interception of radio calls and strict separation of the namespaces of different
simulated nodes is of fundamental importance. We exploit Java’s class load-
ing mechanism to achieve both goals. Each simulated node is started in a new
thread and with a new custom class loader. Although SANS and all simulated
nodes run within one instance of a Java virtual machine these different class
loaders provide individual namespaces to their appointed simulated node. It
is therefore guaranteed that there are no hidden communication channels be-

98 CHAPTER 10. SIMULATION OF AD HOC NETWORKS

Application 1

Network
Properties

Link
Queues
Packet

Multicast Interface

Connectivity

Packets

Application 2 Application n. . .

Send Receive

Packets
Sent Arriving

Figure 10.3: Architecture of the network simulation layer.

tween the simulated nodes (e.g. by means of static variables). Furthermore,
we have full control over these class loaders and are able to hook into the Java
network code. To do so the setDatagramSocketFakapictoryImpl method of
the DatagramSocket class is used. The DatagramSocket class represents the
base socket for all UDP communication in Java. By setting a different factory
we force Java to return our own Sockets instead of the default implementa-
tion. Since this new factory is set before the first class of the simulated node
is initialized, we are certain to catch all calls from the simulated application.
As a side effect of this solution SANS not only supports communication by
multicasts but all UDP communication is simulated properly.

10.1.5 Related Work

Various very powerful network simulators are available which offer full net-
work simulation. Among the most prominent ones are NetSim [18], Glo-
MoSim [65], and ns-2 [10]. From a feature perspective these simulators play
in a totally different league than SANS and support far more complex sim-
ulation setups. Their disadvantage is their usage complexity and we built
SANS specifically for the niche of comparatively simple simulations where
ease of use is a major requirement.

Another interesting approach to simulation and validation of network
algorithms is presented in Sinalgo [12]. Instead of simulating the different

10.1. SANS 99

layers of the network stack, Sinalgo focuses on the verification of the network
algorithm by abstracting from the underlying layers. Using a message passing
model to simulate communication it can be used to quickly evaluate the
performance of an algorithm under different conditions. Sinalgo therefore
aims at a different aspect of algorithm design as it does not help testing an
implementation of the protocol as it is the case in SANS, but helps verifying
the correctness of the underlying algorithm.

Another class of network testing tools are network emulators like the APE
testbed [29], JEmu [13], or EMPOWER [39]. Unlike in simulation tools these
emulators use networks consisting of several computers to evaluate a realis-
tic implementation of an algorithm. In JEmu and APE, the topology of the
underlying network is a simple star with the simulated clients running on
the peripheral nodes whereas the management component of the emulator is
run on the central instance. The management component controls the com-
munication flow between the client machines making it possible to emulate
various virtual network topologies. EMPOWER follows a more sophisticated
decentralized approach to emulate the network. The benefit of the decentral-
ization is a better scalability at the cost of a more complex network setup. A
drawback of these network emulators is that multiple executions of the same
experiment may result in different results, as the communication between the
physical test machines is non-deterministic.

SANS simulates test networks on one computer but supports the stan-
dard multicast interface (java.net.MulticastSocket) for communication
between clients. Consequently, implementations of algorithms developed
with SANS can easily be ported to run on one of the more sophisticated
network emulation systems or even on the real-world target platforms for
closer evaluation.

10.1.6 Concluding Remarks

SANS is a simplistic tool and its feature set cannot be compared to any
of the well known simulation systems. It was never our goal to create a
solution for high performance and complex simulations. For these scenarios
the simulation frameworks referenced in the Related Work Section 10.1.5
are far superior. However, when we look at the problem of how to raise
the awareness of students towards problems of distributed systems SANS is
an interesting option. The training time for new users and the amount of
necessary help to get started with SANS is minimal. Developers with basic
Java knowledge will be able to run their first simulations within a couple of
minutes.

In our case we saw a significant increase in handed in solutions for our
multi-hop instant messenger exercise once we started using SANS for the

100 CHAPTER 10. SIMULATION OF AD HOC NETWORKS

lecture. But not only had the quantity of the handed in work improved
but also the quality. In previous years many of the messenger applications
failed to communicate with implementations of other students. In contrast,
with SANS as developments tool the solutions of our students were more
thoroughly tested. Thus, the majority of them were able to hand in a working
solution respecting our protocol specific specifications and thus to exchange
messages with other implementations.

From a didactical point of view it was an important step to give our
students a better development tool helping them overcome the difficulties of
testing a distributed application. Especially for the more interested students
it used to be frustrating to work on the exercises for several weeks and in the
end not to achieve the success of a working solution. With SANS we were
able to give them the tool they needed to test and debug their solutions.
The feedback from the students at the end of the semester confirmed that
they now really enjoyed the messenger exercise and some of the handed-in
solution far exceeded the functionality we had asked for.

Chapter 11

Monitoring Sensor Networks

Monitoring wireless sensor networks is a difficult task as usually there is no
direct access to all deployed nodes. During the development of the Dozer
system we quickly started to miss several tools which could have saved us a
lot of trouble while debugging and benchmarking the protocol. For example
there was neither a way to query the state of system variables in a specific
node nor a simple mechanism to log and store certain values. As these are
common requirements for the development of wireless sensor network appli-
cations, we have decided to design a generic framework providing support for
the following tasks:

Remote Procedure Calls (RPC) to execute functions on different nodes
in the network.

Logging of arbitrary data directly in the flash of the sensor node and the
possibility to remotely read out this storage.

Topology monitoring providing information about which nodes are in mu-
tual, physical connectivity range.

Topology control allowing the blacklisting of individual physical connec-
tions and thus to form a different logic network.

We built this tool including several student theses on the Eclipse [55] frame-
work as Eclipse was well documented and open to extensions. Unlike in Dozer
we decided not to build all involved components from scratch but relied on
existing libraries such as the “Drip and Drain” module for data dissemination
and collection in the network.

102 CHAPTER 11. MONITORING SENSOR NETWORKS

IP/serial

communication

Gateway node

Wireless sensor network

Figure 11.1: Setup of the control and monitoring application. An Eclipse-
based application is executed on a work station providing the user interface.
A gateway sensor node is attached to this workstation. The sensor network
side consists of the deployed sensor nodes running TinyOs code.

11.1 Overview

The controlling framework consists of two logical components as depicted
in Figure 11.1: The “client side” is a personal computer with an attached
gateway sensor node. The gateway node thereby runs a simple application
forwarding all data messages received from the work station to the sensor net-
work. Analogously, messages received from the sensor network are forwarded
to the work station. The “sensor network side” represents the deployed sensor
nodes running the application to monitor.

11.1.1 Workstation Application

The user interface is fully integrated in the Eclipse software development
framework (also see Figure 11.2) and offers five different views:

• The navigator view is used to manage all involved files.

• The editor view shows the connectivity map of all deployed nodes. Ar-
rows indicate that two nodes are within mutual communication range.

• All available nodes are listed in the outline view. Opening the entry for
one node lists all their installed modules, loggers, available variables
and RPC commands.

11.1. OVERVIEW 103

Figure 11.2: User interface on the workstation.

• The properties view provides detailed information about a selected
item. Depending on the context information about the node, module,
logger, RPC command, or current value within a variable are shown.

• The serial forwarder view is used to setup the connection between the
work station and the gateway sensor node. It also provides a raw view
of the incoming and outgoing traffic on the gateway node.

11.1.2 Sensor Network

The sensor network code consists of multiple TinyOS modules providing the
necessary functionality to monitor and control the operation of a deployed
sensor node. To save resources, a developer may customize the system by
only including the components which are required for the current task. If, for
example, no loggers are required, the entire logging facilities can be excluded.

104 CHAPTER 11. MONITORING SENSOR NETWORKS

11.2 Remote Procedure Calls

Remote procedure calls are essential for a monitoring and control application
to execute support code on the nodes. For this project we decided to rely
on the Marionette Pytos [61] library developed at UC Berkeley which repre-
sented the state of the art at that time. Pytos offers RPC functionality for a
sensor network. At compilation time a custom XML file is generated contain-
ing details about the built application, including information about the used
modules and variables and where to find them in the node’s memory. Fur-
thermore, Pytos includes TinyOS modules allowing the execution of specific
functions on the node and to read and write to global variables. Furthermore,
Pytos uses the Drip and Drain library as a multi-hop communication stack.
Drip is an epidemic protocol used to disseminate messages through the entire
network. Pytos uses Drip to broadcast RPC command to the nodes. Drain
complements Drip in that it offers data aggregation functionality from the
network to a base station. Drain relies on a data gathering tree rooted at the
sink and all nodes store some information about their position in this tree.

As the name indicates Pytos relies on Python scripts which we have in-
cluded in our environment. That is, the Pytos functionality is available to
the user directly from within Eclipse and no additional command line tools
or installations are required. To make a function available to RPC access
the only requirement is to tag the declaration of the function with “rpc()”.
This tag is used at compilation time to include the function in the XML file
describing the application. Our Eclipse plug-in parses these XML files and
lists all available RPC calls and global variables in the outline view of a node.
To execute a RPC or to read/set a global variable the user can simply click
on the corresponding function in this view and gets a direct feedback in the
properties view. One of the costs incurred by the Pytos system is its non-
negligible footprint in terms of memory usage and especially program size.
We have therefore decided to build our own extensions around the available
Pytos functions. For example, we also use the Drip and Drain modules for
all communication in the network as this communication stack has to be
included anyway to enable RPC.

11.3 Logging

With the RPC functionality in place we started to think about how to mon-
itor the state of a node over an extended period of time. At high resolution,
real-time data aggregation becomes unfeasible as the low data rates sup-
ported by the radios employed on sensor nodes do not suffice to efficiently
collect the generated information. We therefore included a logging function-
ality in our tool that uses the inbuilt flash memory.

11.3. LOGGING 105

11.3.1 Design Goals

We defined the following design criteria as essential for our logging compo-
nent:

Persistency: Log entries have to be stored persistently on the nodes. That
is, in case of a node crashing or rebooting as few log messages as
possible must be lost. Furthermore, existing log entries must not be
overwritten on node reboot but new log messages are to be appended
at the first free position in memory.

Memory Management: The memory footprint of the logger module must
be kept as small as possible. Additionally, to grant other components of
the application running on the sensor node access to the flash memory,
the available storage a partitioning of the available resources has to be
supported.

Limited Flash Access: The inbuilt flash storage of a sensor node uses
EEPROM technology. As access to this memory is expensive in terms
of energy and since an EEPROM chip only supports a limited number
of erase-write cycles, access to this memory must be minimized.

Multiple Loggers: To support the simultaneous observation of different
parts of the sensor node application multiple, independent loggers are
to be supported.

Remote Access: To prevent the need of collecting all nodes to read-out
their logged data a remote read out of the stored information has to
be supported.

11.3.2 Logger

As with the remote procedure call functionality we tried to reuse existing
system libraries. However, due to the more detailed requirements for flash
management no system matching our demands was found. We therefore built
a new flash management component only relying on low-level TinyOS flash
access routines. To deal with the tradeoff between minimizing the number of
write accesses to flash memory and the persistency of the logged data we let
the developer decide how many entries to cache in RAM before flushing this
buffer to EEPROM. A large buffer reduces energy consumption and prolongs
node life-time but there are also a larger number of logged entries lost if a
node crashes and reboots.

EEPROM memory has the inherent limitation that it can only be writ-
ten in pages. That is, for the commonly used AT45DB041 chip every write

106 CHAPTER 11. MONITORING SENSOR NETWORKS

operation writes 264 bytes to flash. Selecting a buffer smaller than an EEP-
ROM page size should therefore be avoided if possible to prevent flash access
overhead. However, for applications where the loss of log entries is unaccept-
able, a smaller buffer size and thus more frequent flush to EEPROM may be
preferable. A buffer size larger than the EEPROM page size is unadvisable
since as soon as the buffer exceeds the bounds of a flash page it has to be
written anyway. Therefore, no write accesses are saved but more buffered log
entries get lost if the node reboots.

We use a simple file system consisting of meta information at a well known
address in flash memory to organize the persistent memory. For each logger
there is an entry defining its starting position in memory, the length of one
log entry, and the amount of memory pages to reserve for this logger. With
this information it is possible to grant each logger its own share of the flash
memory and to prevent collisions. An individual logger is implemented as a
circular queue that will overwrite the oldest entry if it runs out of memory.

Besides the meta information about the logger itself each page of log
entries is trailed by four bytes of meta data including a sequence number
and the number of log entries in this page. It is therefore possible to find the
end of the current log also after a reboot by traversing the pages of the flash
store until an inconsistency with the page numbers is found.

11.3.3 Remote Log Reader

Logged data can be retrieved on a push or pull basis. In push mode, a logger
is configured to send its log to the workstation as soon as a certain number
of log entries were generated. Especially for long term surveillance this mode
is preferable as no data loss due to overflows within the queue of the logger
may occur. Pull mode is best suited to get a live update of the current state
as it is often required during debug sessions. The developer can access all
installed loggers by opening the entry of a node in the outline view of Eclipse
and then requesting the download of the stored values of a specific logger.

The actual data transfer from the nodes to the client is handled by the
Drain module, which is also used for RPC. Drain does not handle message
losses on the wireless channel and therefore the log received at the client
may be incomplete. Due to the employed sequence and transaction IDs it is
however possible to identify the missing packets and to individually request
them for retransmission.

On the client side several tools for log handling are integrated in Eclipse.
A live view of the received data in its raw state as a hex dump is available
in the console and generation of a log file is also supported. Furthermore, we
have integrated a database interface allowing the insertion of log entries into
an SQL database. As the schema of the database used to store logged data is

11.4. TOPOLOGY CONTROL 107

application dependent the developer is asked to provide corresponding insert
statements for received log data. The arriving raw data is parsed according
to the logger meta information and the insert statement is called for each
individual log entry.

11.4 Topology Control

The last major component of the control and monitoring application is its
topology control module. Multi hop setups are often difficult to construct,
especially if specific topologies are required. A commonly employed trick
is to encode topology information in the testing application. That is, each
node gets a white or black list defining which other nodes are acceptable
communication partners and which other nodes are to be ignored. Using
this approach multi hop networks can be constructed while keeping all nodes
in a close area. The results of such a testbed are not 100% realistic as the
blacklisting of certain communication channels is purely virtual and thus
undesired physical effects such as packet collisions happen at a higher rate
than on a real world deployment with a less dense node distribution. On
the other hand, as all nodes are kept in close vicinity to each other they
also witness similar environmental conditions and are thus for example not
forced to compensate for different ambient temperatures. Nonetheless, such
a virtual testbed is a great tool for initial testing of an application and more
reliable than simulations.

11.4.1 Physical Neighborhood

As a basic service of the control application all nodes periodically send a
beacon message containing information about them. All nodes in reception
range add the sender of a received beacon message to their list of physical
neighbors. This list can be accessed from the Eclipse application (see Fig-
ure 11.3) to draw a graph of the physical network topology. Furthermore,
nodes automatically notify the client if their neighbor information changes,
that is if they hear a beacon from a new node or if they fail to receive multiple
consecutive beacons from a previously found neighbor.

11.4.2 Virtual Overlay

To enable the topology control component on the sensor nodes, TinyOS 1.x’
default communication interface GenericComm has to be replaced with a cus-
tom module providing the same interface as GenericComm but which also
incorporates a firewall like component we use to block specific messages.

108 CHAPTER 11. MONITORING SENSOR NETWORKS

Figure 11.3: Graph view of the physical communication ranges and black-
listed connections node111− > node4 and node4− > node104.

This replacement can be hardcoded by directly linking the new module or
more elegantly by using a precompiler statement. The second approach has
the advantage that the full functionality of the blacklisting mechanism can
be turned on/off at compile time by enabling or disabling a single command
in the make file.

The topology control module on the nodes maintains a blacklist of neigh-
bors from which the application is not allowed to receive messages. The
originator of every physically received message is compared to the blacklist
and in case of a match the message is destroyed without notifying the ap-
plication running on the node. To modify the blacklist a set of simple RPC
functions is available. A developer can modify the list of a node directly
within Eclipse by using point and click operations on the graph rendering
physical topology of the network.

11.5 Concluding Remarks and Outlook

The controlling and monitoring framework was our first major project in the
area of development support for TinyOS applications. At the start of the
project, several promising command line tools with more or less complicated
installation and usage requirements were available. We decided to reuse
as many of these existing libraries as possible but to hide their complexity
from the developers by giving them a user-friendly interface to all available
functionality.

11.5. CONCLUDING REMARKS AND OUTLOOK 109

The project successfully imported the the Pytos library, which was the
most powerful remote control library at that time. Building on Pytos allowed
us the rapid development of multiple control and monitoring features. The
combination of topology control, logging, and remote introspection of the
node state sums up to a powerful tool enabling the observation of a program
at a level of detail usually unavailable to sensor network developers.

One of the most critical decision we had to make was whether to include a
custom communicaion stack or to tap into the communication system imple-
mented by the application we are monitoring. We decided to include a custom
communication system for two reasons: First, not all applications necessarily
contain data aggregation functions and therefore it was not certain that a
suitable communication stack would be available in all applications. Second,
the integration of Drip and Drain in Pytos was hardcoded at several places.
It would have been possible to strip the communication stack from Pytos and
replace it with another system but due to the tight integration of the two
systems we feared negative side effects. We therefore decided to also rely on
Drip and Drain for the additional functionality we were implementing.

In practice the system works well for small to medium-sized networks
with up to a low two-digits number of nodes. If larger networks are moni-
tored the communication overhead of Drain becomes a nuisance as the tree
maintenance results in a lot of flooding and echo messages. Furthermore,
the program size for the full-fledged application including RPC, logger, and
topology control fills up the most part of the sensor node’s ROM.

As already the authors of Marionette Pytos have stated, the communica-
tion overhead of Drip and Drain is often acceptable during the development
and debugging phase of an application. However, for the final deployment
the system is too energy intensive to be used. As a future work we therefore
see the integration of a more energy aware communication stack. The chal-
lenge will thereby be to reduce power consumption while maintain a certain
level of responsiveness in the system.

Chapter 12

YETI: An Eclipse Plugin for

TinyOS Development

12.1 Introduction

Since different fields of applications for sensor networks oftentimes require
specific hardware, a lot of work has been spent on building highly efficient
nodes. Various node families have been developed with different design goals
and target applications in mind. A perfect node, ideal for all tasks cannot be
designed. However, today’s platforms offer sophisticated solutions for most
requirements, be it a large set of preinstalled sensors [47], simple extensibil-
ity [5, 17], a long transmission range [17], multiple on-board radio devices [2],
or an integrated USB interface [35]. Also TinyOS, one of the most promi-
nent operating system for sensor networks, is under constant development.
An active community of developers improves the system’s performance and
extends its functionality.

Despite the large user base and the advances in hardware and software,
development tools for TinyOS are still rare and often severely limited in
terms of functionality. Hence, TinyOS developers are forced to use generic
text editors for writing their applications. A command line shell is required
to compile code and flash nodes with the resulting binaries. The lack of con-
venience functions such as real time spell checking, code completion, or even
a correct syntax highlighting makes the development of TinyOS applications
an unnecessary cumbersome task.

With YETI1, we provide an Eclipse plug-in offering support for TinyOS

1YETI is an Eclipse based TinyOS IDE

112 CHAPTER 12. YETI

development from within the Eclipse framework [55]. YETI provides all im-
portant features known from development environments for other program-
ming languages and is designed to be of use for both, inexperienced and
professional sensor network developers.

12.2 Development Requirements

From our own experience and numerous discussions with other TinyOS and
sensor network developers we found that the requirements of TinyOS new-
comers and experienced developers vary. Newcomers who have little experi-
ence in writing sensor network applications need help on fundamental aspects
of TinyOS development. For one, getting used to the design philosophy of
the operating system is not easy. Especially its completely modular appli-
cation design and the unique way of combining modules by means of a so
called wiring require some time to get used to. The well written tutorial on
the TinyOS homepage helps to overcome this steep learning curve since all
important features of TinyOS and its programming language nesC [15] are
discussed. Still, it is not unusual for the first contact with TinyOS to be dis-
couraging. The installation of the system and the necessary toolchains often
leads to problems. If the provided installer fails, repairing a new TinyOS
installation requires a sound knowledge of the system which inexperienced
developers have not yet achieved.

Another problem for new TinyOS developers is the vast amount of files
included in the sources of the system. TinyOS features numerous modules
solving many common tasks. Alas, it is often difficult to find the correct files
providing the required functionality and thus newcomers show a tendency
to ignore them. Experienced developers are more aware of these sources.
Yet, in spite of their in depth knowledge of the system they spend a signif-
icant amount of their development time browsing through various TinyOS
directories looking for adequate implementations of the functions they need.

For more ambitious projects also aspects such as rapid prototyping, cross
platform development, and support for backup and version control systems
are of greater importance. Furthermore, the possibility of having several
parallel installations of the TinyOS source tree is critical for many develop-
ers. On the one hand a snapshot installation provides a stable development
environment while on the other hand a Concurrent Version System (CVS)
checkout of the operating system allows using bleeding edge technology which
has not yet made it into the stable release.

12.3. FEATURES 113

12.3 Features

The goal of YETI is to provide an efficient development tool for experienced
users and a convenient, easy to use environment for newcomers. Conse-
quently, all requirements mentioned in Section 12.2 have to be considered.
Also aspects such as Look-and-Feel are of importance if a large number of
users is to work with the tool. We therefore decided to build YETI on top of
the widely used Eclipse framework [55]. Eclipse provides a powerful plug-in
mechanism allowing nearly unlimited extensions and enhancements of its in-
built functionality. Due to this ease of extensibility Eclipse has become first
choice for many developers and plug-ins supporting various programming
languages such as C(++), Fortran, or Cobol have been written. Further-
more, Eclipse is designed to allow easy incorporation of existing features in a
new plug-in. Consequently, YETI benefits from various existing Eclipse com-
ponents such as the basic editor, the persistency system, or the CVS client.
Also updating the plug-in is possible using Eclipse’s update mechanism.

YETI consists of two Eclipse plug-ins: The System plug-in containing the
functionality of the development environment and the TinyOS Environment
Wrapper plug-in providing access to a TinyOS installation. In the subsequent
sections we will discuss these two plug-ins in more detail.

12.3.1 System Plug-in

The System plug-in provides the actual programming environment and tools
for TinyOS development in Eclipse. As can be seen in Figure 12.1, once
YETI is installed a new custom TinyOS perspective becomes available. This
perspective is optimized for the task of writing sensor network programs and
hosts helpful features for all stages of development.

Project Creation

New projects are created using the TinyOS project wizard. In a short dialog
the user can name the new project, choose one of the available TinyOS
installations (also see Section 12.3.2), and define a default make target. This
target specifies which sensor node platform to use as a default if no other
arguments are specified. YETI does not offer a hard coded list of targets
but queries the TinyOS make system for supported devices. This guarantees
that for each installation of the TinyOS system all supported node platforms
are available to the user.

114 CHAPTER 12. YETI

Figure 12.1: Screenshot of YETI. 1: Navigator listing all files of the project.
2: Main window showing the editor with the current file or the application
graph. 3: Outline of the open file showing its structure. 4: Make option
window containing predefined make targets. 5: Multi purpose panel hosting
various features such as problem view, console and TinyOS search.

12.3. FEATURES 115

File Editing

For the development of applications YETI provides a customized editor sup-
porting the nesC programming language. It features a correct syntax high-
lighting and incorporates various commodity functions known from other
development environments. Its most important feature is definitively the
real time spell checker. Syntactic and semantic errors are detected within a
fraction of a second and are marked with a red X at the beginning of the
line. Furthermore, an error message is generated in Eclipse’s Problems log
containing clickable links pointing to the corresponding location in the source
code. For the most common problems such as missing semicolons the error
messages also offer a suggestion on how to fix them (also see Section 12.4.2).
Moreover, the editor contains a code completion function which can be used
to create stubs for methods which have to be implemented in a file providing
or using a specific interface.

Outline

For a better overview of the application YETI provides an Outline of the
open file. This outline lists all components, interfaces, modules and configu-
rations which are the building blocks of every TinyOS applications. With a
simple click it is possible to open the declaration of an interface or to jump
to a specific function within the open source file. Due to the lack of an ex-
plicit package structure within TinyOS multiple implementations of the same
interface may be available. This is mostly the case if hardware specific fea-
tures are used. For example, accessing hardware timers works differently on
different processors and thus the Timer interface used in nearly all TinyOS
applications has many custom implementations for the various sensor node
platforms. YETI uses the currently chosen target platform to decide which
of the various files to open. Consequently, the user always sees the imple-
mentation which will be used to compile the application.

TinyOS Specific Search

A TinyOS specific search function allows browsing through all available in-
terfaces and to scan for modules implementing them. For this purpose the
structure of the appropriate source files is parsed and evaluated. Several
special search modes are available. Interfaces, modules, and configurations2

can be listed, filtered and accessed from the search frame.
This feature is especially helpful since TinyOS uses a complex set of rules

to decide which modules to include when compiling an application. YETI’s

2In TinyOS configurations are used to combine several modules to an application or

a subprogram.

116 CHAPTER 12. YETI

search function follows all valid paths, including custom imports made by the
user, to find files matching the entered search queries. This ensures that all
valid files are found but no sources incompatible to the current make target
are shown.

Compiling and Flashing

For compiling applications and flashing sensor nodes with the resulting bina-
ries YETI relies on the TinyOS make system. However, users are no longer
required to type in cryptic command line calls but a simple wizard helps set-
ting up make options and stores them for later reuse. YETI automatically
identifies all available target platforms for a given TinyOS installation and
also examines further valid parameters such as possible extension boards.
The identified options are displayed in a dialog and the user can create even
complex make calls by means of simple point and click operations.

Feedback on the results of a call to the make system are printed to
Eclipse’s built in console. This user interface is not only easier to utilize
but it also prevents the generation of invalid make calls. Furthermore, YETI
allows batch execution of the make system simplifying the tedious process of
reprogramming large numbers of nodes.

Application Graph

Another feature of the System plug-in is the Application Graph. This tool
produces a graphical representation of the currently developed application
and can be used to plot the relation between its modules. Exploiting the
hierarchical structure of TinyOS modules the user can decide on the graph’s
level of abstraction by expanding or collapsing some of the elements. If
required it is possible to expand the graph to show all modules forming the
current application including the ones of the operating system. However,
as can be seen in Figure 12.2 even simple programs such as the Blink demo
application lead to complex graphs if fully expanded. Therefore, in most cases
it is advisable to keep a certain level of abstraction to view the structure of
a program.

12.3.2 TinyOS Environment Wrapper

The task of the TinyOS Environment Wrapper is to provide the System plug-
in with a well-defined access to a TinyOS installation. This separation of de-
velopment environment and TinyOS system has several advantages. First, it
allows having several independent installations of TinyOS for different target
platforms. This is desirable since in many cases the tool chain necessary to

12.3. FEATURES 117

Figure 12.2: Graph of the Blink application at two different levels of abstrac-
tion

118 CHAPTER 12. YETI

compile applications for one sensor node platform interferes with the tools for
another one. This problem is one of the main reason why it is so tedious to
test newly written applications on various nodes. With YETI it is a matter
of one click to change between the different available TinyOS environments
and to test the application on all available node types.

Another advantage of this separation is that hardware producers may
provide their own TinyOS Environment wrappers. With such individually
optimized TinyOS installations it can be ensured that the application devel-
opers work on a correctly configured environment. For the software devel-
opers this approach has the advantage that a newly installed environment
will not interfere with or even destroy existing TinyOS installations as it is
sometimes the case without YETI.

The only drawback of this approach is the increased hard disk space
necessary to install several independent TinyOS environments. However,
with the ever-growing hard disk sizes it should not be a problem to have
several installations with a total size of one to two gigabytes.

In its initial release, YETI provided three different TinyOS Environment
Wrappers. The first one contained a full installation of the current TinyOS
1.1.15 release. This wrapper was the best choice for most developers as it
provided a stable environment with support for various sensor node plat-
forms. Similarly, the second wrapper provided an installation optimized for
the TinyNode 584 platform by Shockfish SA. These two wrappers provided
an easy way to set up a new development environment with a preconfig-
ured toolchain to build and flash the applications. The third wrapper was
an “empty” skeleton wrapper which allowed the connection of YETI to an
existing TinyOS installations. This wrapper was designed for experienced
users with existing TinyOS installations who wanted to keep their individual
setups.

In the mean time the installation process of the TinyOS sources and
necessary tool chains has become much easier and more reliable. We have
therefore decided to discontinue supporting our preconfigured installations
and the current release of YETI only provides skeleton wrappers for TinyOS
1.x and 2.x.

12.4 Code Analysis

Most features such as the “Code Outline” or the spell checker require a
syntactic and semantic understanding of the application which can only be
achieved by scanning and parsing the source code. These operations need to
be executed nearly in real time since users are unwilling to wait for several
seconds before a new input is validated. At the same time the results have

12.4. CODE ANALYSIS 119

to be correct or the development environment produces false alerts, making
it mostly useless to the developer.

12.4.1 Scanner and Parser

The analysis of source code is traditionally split in three phases: lexical, syn-
tactic, and semantic analysis. In the phase of the lexical analysis the nesC
source files are tokenized. A token is defined as a sequence of logically con-
nected items building atomic structures of the programming language. This
includes keywords such as “module” or “implementation” and also strings,
numbers, and type names. Tokens are created by comparing the source code
to predefined patterns. The tool executing this lexical analysis is called Scan-
ner or Lexer.

The goal of the syntactic analysis is to group the individual tokens and
to validate their correctness according to a given grammar of a programming
language. As a result of this analysis a syntax tree is built on which the
semantic analysis is executed. In this last step unreasonable code which is
syntactically correct is identified.

YETI contains a custom scanner and parser which were realized using
JFlex [23] and jay [50], Java implementations of the well known tools Lex
and YACC. Figure 12.3 shows a schematic representation of the internal
interconnections between the parser and the visual tools of the development
environment.

For the syntactical analysis a jay specification file was written, based on
the nesC language definition found in [15]. With this specification as an input
jay was used to create a finite state machine implementing a nesC parser. As
can be expected this process was not straight forward. Starting with a YACC
specification file for ANSI C the production rules were adapted to model
the nesC programming language. Unfortunately, the resulting grammar was
highly ambiguous leading to various shift/reduce and reduce/reduce conflicts.
These problems had to be resolved by major reordering of parser rules.

Another problem arose from jay’s limitation to create only a standard
LR(1)3 parser: Due to a conflict between identifiers and typedef-names, C
and thus also its derivate nesC are not LR(n) compliant [33]. To avoid this
problem extensions to the grammar were necessary.

Finally, nesC also supports individual name spaces for configurations and
interfaces. Since these constructs are not known in pure ANSI C, the gram-
mar had to be extended to consider these additional name spaces.

3LR indicates that rules are executed from left to right. The number in brackets

specifies the number of tokens the parser can look ahead to optimize its decisions;

120 CHAPTER 12. YETI

TinyOS Environment Plugin

Project

*.nc
*.h

Makefile

Editor

Outline
View

nesC
Parser

Makefile
Parser

Make Options
View

.h
Parser

DOM

TinyOS Plugin

TinyOS Wrapper Plugin

Figure 12.3: Internal configuration of YETI’s components

12.4.2 Extending the Parser

Human readable error reports are crucial for any development environment.
A simple output saying “Syntax Error” is not really helpful to any developer.
What we want is an expressive report about the location and the nature of
the problem. Jay already produces quite precise error statements but it is
possible to further improve them. YETI provides a powerful mechanism to
extend the parser’s error messages by feeding it with specially prepared files.

To illustrate the process of adding a new error message to the parser List-
ing 12.1 shows an adapted configuration file of the Blink demo application.
This version of the file differs from the original in that on line 1 an error
message was added. Furthermore, on line 5 the character ‘>’ was removed.

This file is now processed by a special tool included in YETI and the
parser will analyze its content. The first line is stored as an error report but
otherwise the parser ignores it completely. After parsing the rest of the file
the error on line 5 is detected. The parser now stores the new custom error
message in a consistent hashtable using a combination of its current internal
state and the next expected token as a key. Next time the parser encounters
the same problem it will check the hashtable for a custom error message. If
the table contains an entry for the current parser state the stored message is

12.5. RELATED WORK 121

displayed. If there is no custom message known, the default output of jay is
shown.

1 : : : Wiring symbol ’− ’ unknown , use ’<− ’ or ’−> ’
2 configuration Blink {}
3 implementation {
4 components Main , BlinkM , SingleTimer , LedsC ;
5 Main . StdControl − SingleTimer . StdControl ;
6 Main . StdControl −> BlinkM . StdControl ;
7 BlinkM . Timer −> SingleTimer . Timer ;
8 BlinkM . Leds −> LedsC . Leds ;
9 }

Listing 12.1: Sample file teaching the parser a new error message if a ‘>’ is
missing in the wiring.

12.5 Related Work

To the best of our knowledge there are only two other, discontinued projects
aiming at providing a development environment for TinyOS. Like YETI both
of them are realized as Eclipse plug-ins but they differ in various respects.

The first tool is TinyOS IDE [57] by Richard Tynan which was the first
publicly available TinyOS development environment. TinyOS IDE provides
little advantages over using an advanced text editor and a shell. It provides
syntax highlighting for nesC files and the option to compile applications from
within Eclipse. However, to enable the compile function, it is necessary to
have a preinstalled working TinyOS installation. Also the TinyOS specific
environment variables need to be defined system wide or the tool cannot
find the compiler. Similarly to YETI, TinyOS IDE allows to compose make
calls by selecting the various options from a dialog. TinyOS IDE does not
generate this dialog automatically but simply loads the information from a
handwritten configuration file. The displayed make options are not guaran-
teed to be reasonable and if a parameter is required which is not available in
the default menu the configuration file must be adapted. TinyOS IDE does
not provide a spell checker but after building an application compiler errors
are made available in Eclipse’s error log.

The second tool is called TinyDT [46] and is developed at Vanderbilt
University. TinyDT also provides a custom perspective within Eclipse and
has an inbuilt TinyOS parser. Thus, TinyDT also provides a spell checker,
an outline of the open file, and code completion for interface members. The
parsers of TinyDT and YETI differ in one important aspect: While our
parser is optimized for fast execution at the cost of some imprecision when

122 CHAPTER 12. YETI

handling preprocessor statements, the parser of TinyDT is designed to be
completely accurate. The drawback of this solution is a slow response time
of the system. Even a change of one character in the source code takes several
seconds before the file is revalidated and potential errors are detected.

Like TinyOS IDE also TinyDT requires a preinstalled TinyOS environ-
ment. The user needs to specify where to find the compilers for the different
target platforms and the bash executable. TinyDT does not detect available
node platforms but only supports nodes of the mica family, telos, telosb, and
the tmote.

Chapter 13

Conclusion

In this thesis we investigated the development of applications for sensor net-
works with ultra-low power consumption. We thereby worked on two orthog-
onal axes of the problem. On the one hand, with Dozer, we have developed
one of the most energy efficient data aggregation systems for wireless sensor
networks.

Dozer started out as a joint venture with our industrial partner Shockfish
SA and initially we did not expect it to turn into the almost three years long
project it finally became. The first plan was to design and build a prototype
and then leave the rest of the development to Shockfish. As planned, within
a few weeks we had a first running release of the communication stack. How-
ever, we quickly learned why so many sensor network systems in the end did
not perform as expected or even failed completely once deployed in the field:
The devil was in the details. Even minor problems in the code could have
disastrous impact on the performance of the system under some specific, rare
conditions. As we believed in the potential of our algorithms we set out to
understand and fix these problems. However, unlike planned, we could not
outsource debugging to our industrial partner due to efficiency reasons.

On a personal level, to go through the full development cycle up to a
market-ready sensor network solution we also had to extend our own hori-
zon. At the beginning of the project we saw ourselves mainly as experts
for distributed systems with a focus on communication protocols. With this
background we were able to design the Dozer algorithms but for the imple-
mentation in TinyOS this background was not sufficient. For example, during
the first development phase we visually controlled the timings of the commu-
nication stack by examining different blinking patterns of the LEDs on the
sensor nodes. This primitive mode of observation worked well for timings

124 CHAPTER 13. CONCLUSION

down to a couple of tenths of a second. However, from there on we needed
new tools such as an oscilloscope to measure Dozer’s performance. Similarly,
we had to accept that for programming sensor networks it is unavoidable to
learn more about the operating system and underlying hardware. Depen-
dencies between hardware interrupts leading to unexpected side effects could
often only be understood by going through the specifications of the hardware
and the corresponding driver implementations. That is, we had to increase
our knowledge in hardware related programming to understand the behavior
of our own system.

The most important lesson we learned from this experience is that there is
a duality in requirements to build a complex sensor network system. On the
one hand a developer must have strong skills in distributed systems to foresee
bottlenecks and pitfalls in the system. On the other hand, a sound knowledge
of the employed platform and its limitations is required to write code capable
of coping with the hassles it will face under real-life conditions. With Dozer
we have proven that combining theoretical studies with thorough engineering
enables the construction of complex, yet stable sensor network applications.
It is our hope that this success will encourage and inspire further cooperation
between scientists from the systems and theory communities and result in
new exciting applications.

As a second topic of this thesis we have worked on development support
tools to speed-up the implementation of applications for sensor networks.
Development tools for wireless sensor networks are still in a very early stage
and writing programs is similar to what we used to see on personal computers
in the early nineties. That is, command line tools and simple text editors are
the main work utensils for TinyOS developers. From our experiences teaching
students how to develop applications for distributed systems in general and
wireless sensor networks in specific, we knew about the problem of how to
get started with this topic. At the beginning of this thesis a newcomer
easily needed a week to setup the development tools necessary to write an
application in TinyOS, compile the code, and flash it on a sensor node.

This experience was the main reason why we decided to start our most
ambitious project in this domain, the YETI development environment. The
project is still ongoing and during its more than one and a half years of de-
velopment the Eclipse plugin has evolved into a complex system. With the
release of TinyOS 2.x a complete overhaul of the plugin became necessary
to handle the new language options of nesC. In the course of this update
several modifications were introduced reflecting the changing requirements
of TinyOS developers. On the one hand, by now redundant features such as
the preconfigured TinyOS installations were removed from the installation
bundle. On the other hand, new convenience features such as an improved
search function or faster access to platform specific file definitions were intro-

125

duced. Furthermore, there are ongoing related projects extending YETI with
new functionality such as JTAG debugging or the integration of a TinyOS
simulator. As the different components of the IDE may also be of interest to
other projects in the domain of development tools it was recently decided to
release the sources of YETI on our website.

YETI is the most advanced IDE for TinyOS applications offering develop-
ers a more convenient and less error prone way to write their programs. We
strongly believe that tools like YETI are a key to success for sensor network
applications. By making the first contact with TinyOS more user friendly,
new developers from areas outside the current sensor network community are
attracted and with them novel application ideas will emerge, helping sensor
networks to achieve their long envisioned breakthrough.

Bibliography

[1] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi,
L. Thiele, C. Tschudin, M. Woehrle, and M. Yuecel. PermaDAQ: A
scientific instrument for precision sensing and data recovery in environ-
mental extremes. In ACM/IEEE International Conference on Informa-
tion Processing in Sensor Networks (IPSN 2009), pages 265–276, San
Francisco, CA, USA, Apr. 2009. ACM/IEEE.

[2] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and
L. Thiele. Prototyping wireless sensor network applications with BTn-
odes. In Proc. 1st European Workshop on Sensor Networks (EWSN
2004), volume 2920 of Lecture Notes in Computer Science, pages 323–
338. Springer, Berlin, Jan. 2004.

[3] T. Brooke and J. Burrell. From Ethnography to Design in a Vineyard.
In DUX ’03: Proceedings of the 2003 conference on Designing for user
experiences, pages 1–4, New York, NY, USA, 2003. ACM Press.

[4] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer. A Reactive
Soil Moisture Sensor Network: Design and Field Evaluation. Int. Jour-
nal of Distributed Sensor Networks, 1(2):149–162, 2005.

[5] Crossbow Technology. MICA2 Wireless Measurement System.
http://www.xbow.com/Products/Product pdf files/Wireless pdf/

MICA2 Datasheet.pdf.

[6] CTI/KTI. http://www.bbt.admin.ch/kti/.

[7] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and J. Schiller. Connecting
Wireless Sensornets with TCP/IP Networks, pages 583–594. Springer,
Berlin.

[8] M. Dyer, J. Beutel, L. Thiele, T. Kalt, P. Oehen, K. Martin, and
P. Blum. Deployment support network - a toolkit for the development of

127

wsns. In European Conference on Wireless Sensor Networks (EWSN),
2007.

[9] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An Ultra Low Power
MAC Protocol for Multi-hop Wireless Sensor Networks. In Int. Work-
shop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSEN-
SORS), 2004.

[10] K. Fall. NS Notes and Documentation. The VINT Project, 2000.

[11] R. Fan and N. Lynch. Gradient clock synchronization. Distrib. Comput.,
18(4):255–266, 2006.

[12] R. Flury. Routing on the Geometry of Wireless Ad Hoc Networks. In
PhD Thesis, ETH Zurich, Diss. ETH No. 18573, September 2009.

[13] J. Flynn, H. Tewari, and D. O’Mahony. Jemu: A real time emulation
system for mobile ad hoc networks. In Proceedings of the Firsit Joint
IEI/IEE Symposium on Telecommunications Systems Research, Dublin,
Ireland, November 2001.

[14] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol
for sensor networks. In SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 138–149, New
York, NY, USA, 2003. ACM.

[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded systems.
In Proc. of ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2003.

[16] M. Günes, B. Blywis, and J. Schiller. A hybrid Testbed for long-term
Wireless Sensor Netowrk Studies. In International Workshop on Sensor
Network Engineering (IWSNE’08), 2008.

[17] H. Dubois-Ferrier and R. Meier and L. Fabre and P. Metrailler. TinyN-
ode: a comprehensive platform for wireless sensor network applica-
tions. In Int. Conference on Information Processing in Sensor Networks
(IPSN), 2006.

[18] A. Heybey. The network simulator. Technical report, MIT, September
1990.

[19] B. Hohlt and E. Brewer. Network Power Scheduling for TinyOS Appli-
cations. In EEE Int. Conference on Distributed Computing in Sensor
Systems (DCOSS), 2006.

[20] B. Hohlt, L. Doherty, and E. Brewer. Flexible Power Scheduling for Sen-
sor Networks. In Int. Conference on Information Processing in Sensor
Networks (IPSN), 2004.

[21] J. W. Hui and D. E. Culler. Ip is dead, long live ip for wireless sensor
networks. In SenSys ’08: Proceedings of the 6th ACM conference on
Embedded network sensor systems, pages 15–28, New York, NY, USA,
2008. ACM.

[22] R. Kehrer. Link Layer Measurements in Wireless Sensor Networks. 2005.

[23] G. Klein. JFlex. http://jflex.de.

[24] K. Langendoen, A. Baggio, and O. Visser. Murphy Loves Potatoes: Ex-
periences from a Pilot Sensor Network Deployment in Precision Agricul-
ture. In Int. Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), 2006.

[25] C. Lenzen, T. Locher, P. Sommer, and R. Wattenhofer. Clock Synchro-
nization: Open Problems in Theory and Practice. In 36th International
Conference on Current Trends in Theory and Practice of Computer Sci-
ence (SOFSEM), Spindleruv Mlyn, Czech Republic, January 2010.

[26] C. Lenzen, T. Locher, and R. Wattenhofer. Tight Bounds for Clock
Synchronization. In 28th ACM Symposium on Principles of Distributed
Computing (PODC), Calgary, Canada, August 2009.

[27] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal Clock Synchro-
nization in Networks. In 7th ACM Conference on Embedded Networked
Sensor Systems (SenSys), Berkeley, California, USA, November 2009.

[28] G. Lu, B. Krishnamachari, and C. Raghavendra. An Adaptive Energy-
Efficient and Low-Latency MAC for Data Gathering in Sensor Networks.
In Int. Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sen-
sor Networks (WMAN), 2004.

[29] H. R. Lundgren, D. Lundberg, E. Nordstrm, and C. F. Tschudin. A
Large-scale Testbed for Reproducible Ad hoc Protocol Evaluations. In
Proceedings of IEEE WCNC, 2002.

[30] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB:
An Acquisitional Query Processing System for Sensor Networks. ACM
Trans. Database Systems, 30(1):122–173, 2005.

[31] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless Sensor Networks for Habitat Monitoring. In ACM Int. Work-
shop on Wireless Sensor Networks and Applications (WSNA), 2002.

[32] K. Martinez, P. Padhy, A. Elsaify, G. Zou, A. Riddoch, J. Hart, and
H. Ong. Deploying a Sensor Network in an Extreme Environment. In
IEEE Int. Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC), 2006.

[33] W. M. McKeeman. Resolving Typedefs in a Multipass C Compiler,
March 1991.

[34] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission
of IPv6 packets over IEEE 802.15.4 networks. In RFC 4944 (Proposed
Standard), 2007.

[35] moteiv. Tmote Sky. http://www.moteiv.com/products-tmotesky.php.

[36] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis. Koala: Ultra-low power
data retrieval in wireless sensor networks. In IPSN ’08: Proceedings
of the 7th international conference on Information processing in sensor
networks, pages 421–432, Washington, DC, USA, 2008. IEEE Computer
Society.

[37] T. Naumowicz, R. Freeman, A. Heil, M. Calsyn, E. Hellmich,
A. Brändle, T. Guilford, and J. Schiller. Autonomous monitoring of
vulnerable habitats using a wireless sensor network. In REALWSN
’08: Proceedings of the workshop on Real-world wireless sensor networks,
pages 51–55, New York, NY, USA, 2008. ACM.

[38] D. Networks. http://www.dustnetworks.com/.

[39] L. Ni and P. Zheng. EMPOWER: A Network Emulator for Wireline
and Wireless Networks, 2003.

[40] R. Panta, I. Khalil, and S. Bagchi. Stream: Low overhead wireless
reprogramming for sensor networks. In INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE, pages
928–936, May 2007.

[41] K. Pister and L. Doherty. TSMP: Time synchronized mesh protocol. In
Parallel and Distributed Computer and Systems, 2008.

[42] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for
Wireless Sensor Networks. In Int. Conference on Embedded Networked
Sensor Systems (SenSys), 2004.

[43] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors.
Commun. ACM, 43(5):51–58, 2000.

[44] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy. Pi-
coRadio Supports Ad Hoc Ultra-Low Power Wireless Networking. Com-
puter, 33(7):42–48, 2000.

[45] V. Rajendran, J. Garcia-Luna-Aceves, and K. Obraczka. Energy-
Efficient, Application-Aware Medium Access for Sensor Networks. In
IEEE Conference on Mobile Ad-hoc and Sensor Systems (MASS), 2005.

[46] J. Sallai, G. Balogh, and S. Dora. TinyDT. http://www.tinydt.net.

[47] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt. Scatterweb -
low power sensor nodes and energy aware routing. In System Sciences,
2005. HICSS ’05. Proceedings of the 38th Annual Hawaii International
Conference on, pages 286c–286c, Jan. 2005.

[48] T. Schmid, H. Dubois-Ferrière, and M. Vetterli. SensorScope: Experi-
ences with a Wireless Building Monitoring Sensor Network. In Workshop
on Real-World Wireless Sensor Networks (REALWSN), 2005.

[49] L. Schor, P. Sommer, and R. Wattenhofer. Towards a Zero-
Configuration Wireless Sensor Network Architecture for Smart Build-
ings. In First ACM Workshop On Embedded Sensing Systems For
Energy-Efficiency In Buildings (BuildSys), Berkeley, California, USA,
November 2009.

[50] A.-T. Schreiber and B. Kuehl. jay. http://www.informatik.

uni-osnabrueck.de/alumni/bernd/jay.

[51] Shockfish SA. http://www.tinynode.com.

[52] R. Simon, L. Huang, E. Farrugia, and S. Setia. Using multiple com-
munication channels for efficient data dissemination in wireless sensor
networks. In Mobile Adhoc and Sensor Systems Conference, 2005. IEEE
International Conference on, pages 10 pp.–439, Nov. 2005.

[53] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler.
An analysis of a large scale habitat monitoring application. In Sen-
Sys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 214–226, New York, NY, USA, 2004.
ACM.

[54] R. Szewczyk, J. Polastre, A. M. Mainwaring, and D. E. Culler. Lessons
from a sensor network expedition. In EWSN, pages 307–322, 2004.

[55] The Eclipse Project. http://www.eclipse.org.

[56] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
macroscope in the redwoods. In Int. Conference on Embedded Networked
Sensor Systems (SenSys), 2005.

[57] R. Tynan. TinyOS IDE. http://tinyoside.ucd.ie.

[58] T. van Dam and K. Langendoen. An Adaptive Energy-Efficient MAC
Protocol for Wireless Sensor Networks. In Int. Conference on Embedded
Networked Sensor Systems (SenSys), 2003.

[59] P. von Rickenbach and R. Wattenhofer. Decoding Code on a Sensor
Node. In 4th International Conference on Distributed Computing in
Sensor Systems (DCOSS), Santorini Island, Greece, June 2008.

[60] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a wire-
less sensor network testbed. In IPSN ’05: Proceedings of the 4th in-
ternational symposium on Information processing in sensor networks,
page 68, Piscataway, NJ, USA, 2005. IEEE Press.

[61] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui,
P. Dutta, and D. Culler. Marionette: using rpc for interactive develop-
ment and debugging of wireless embedded networks. In IPSN ’06: Pro-
ceedings of the 5th international conference on Information processing
in sensor networks, pages 416–423, New York, NY, USA, 2006. ACM.

[62] Wireless HART. http://www.hartcomm2.org.

[63] W. Ye, J. S. Heidemann, and D. Estrin. An Energy-Efficient MAC
Protocol for Wireless Sensor Networks. In Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), 2002.

[64] W. Ye, F. Silva, and J. S. Heidemann. Ultra-Low Duty Cycle MAC with
Scheduled Channel Polling. In Int. Conference on Embedded Networked
Sensor Systems (SenSys), 2006.

[65] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A Library for Parallel
Simulation of Large-Scale Wireless Networks. In Workshop on Parallel
and Distributed Simulation, pages 154–161, 1998.

Curriculum Vitae

May 2, 1978 Born in Basel, Switzerland

1985–1997 Primary and high schools in Basel, Switzerland

1997–2004 Studies in computer science, ETH Zurich, Switzerland

April 2004 Diploma in computer science, ETH Zurich, Switzerland

2004–2010 Ph.D. student, research and teaching assistant, Distributed
Computing Group, Prof. Roger Wattenhofer, ETH Zurich,
Switzerland

April 2010 PhD degree, Distributed Computing Group, ETH Zurich,
Switzerland
Advisor: Prof. Roger Wattenhofer
Co-examiner: Prof. Jochen Schiller, FU Berlin, Germany

