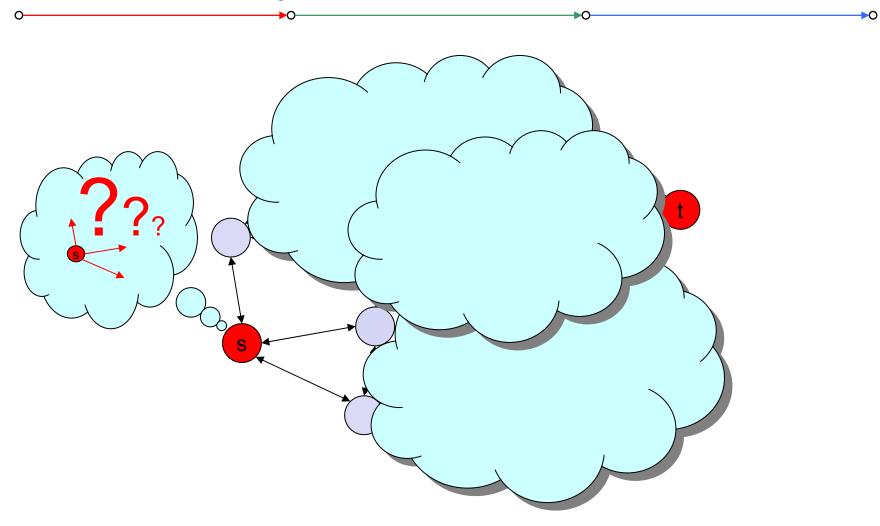
Geometric Ad-Hoc Routing: Of Theory and Practice

Fabian Kuhn Roger Wattenhofer Yan Zhang Aaron Zollinger

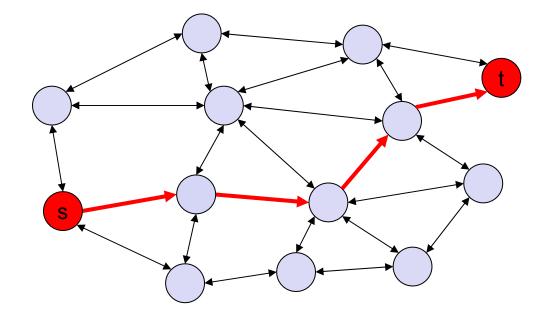
Geometric Routing



Greedy Routing

• Each node forwards message to "best" neighbor

O



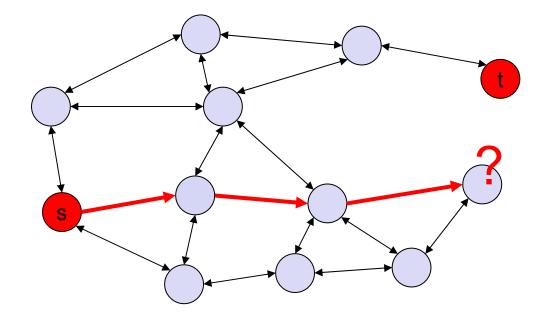
0

▶0

Greedy Routing

• Each node forwards message to "best" neighbor

C



- But greedy routing may fail: message may get stuck in a "dead end"
- Needed: Correct geometric routing algorithm

0

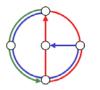
- A.k.a. location-based, position-based, geographic, etc.
- Each node knows its own position and position of neighbors
- Source knows the position of the destination
- No routing tables stored in nodes!
- Geometric routing is important:
 - GPS/Galileo, local positioning algorithm, overlay P2P network, Geocasting
 - Most importantly: Learn about general ad-hoc routing

Related Work in Geometric Routing

-0

Kleinrock et al.	Various 1975ff	MFR et al.	Geometric Routing proposed
Kranakis, Singh, Urrutia	CCCG 1999	Face Routing	First correct algorithm
Bose, Morin, Stojmenovic, Urrutia	DialM 1999	GFG	First average-case efficient algorithm (simulation but no proof)
Karp, Kung	MobiCom 2000	GPSR	A new name for GFG
Kuhn, Wattenhofer, Zollinger	DialM 2002	AFR	First worst-case analysis. Tight $\Omega(c^2)$ bound.
Kuhn, Wattenhofer, Zollinger	MobiHoc 2003	GOAFR	Worst-case optimal and average- case efficient, percolation theory
Kuhn, Wattenhofer, Zhang, Zollinger	PODC 2003	GOAFR+	Improved GOAFR for average case, analysis of cost metrics

→O-



0-

-0

- Introduction
 - What is Geometric Routing?
 - Greedy Routing
- Correct Geometric Routing: Face Routing

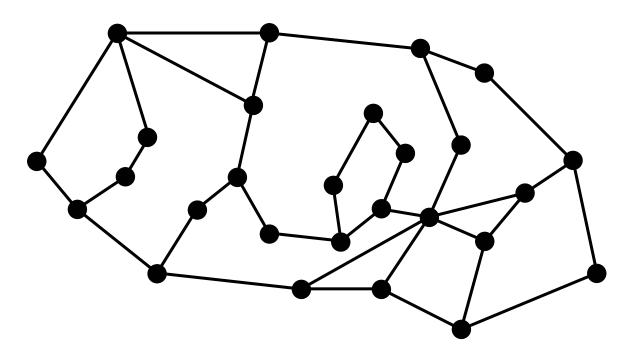
- Efficient Geometric Routing
 - Worst-Case Optimality: Adaptively Bound Searchable Area

►O

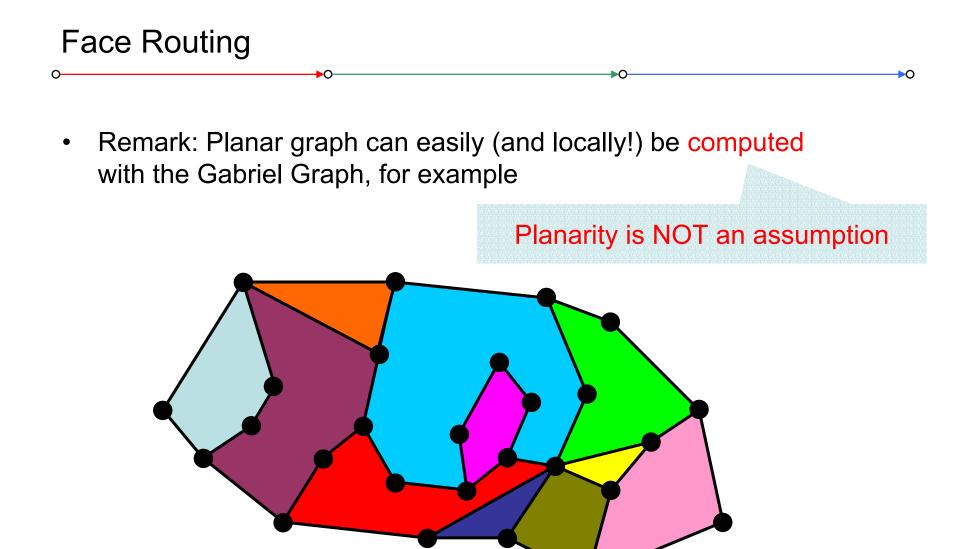
- Average-Case Efficiency: GOAFR+
- Analysis of Cost Metrics
 - Linearly Bounded vs. Super-Linear Cost Metrics
- Conclusions

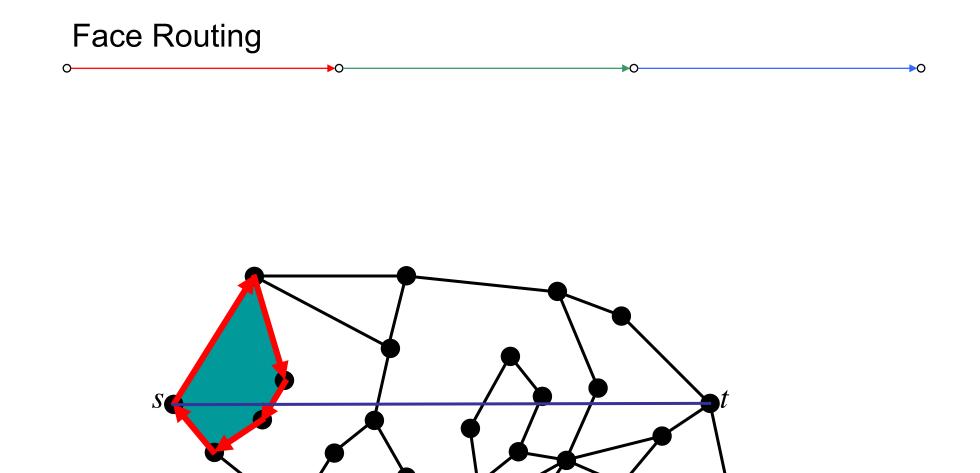
0

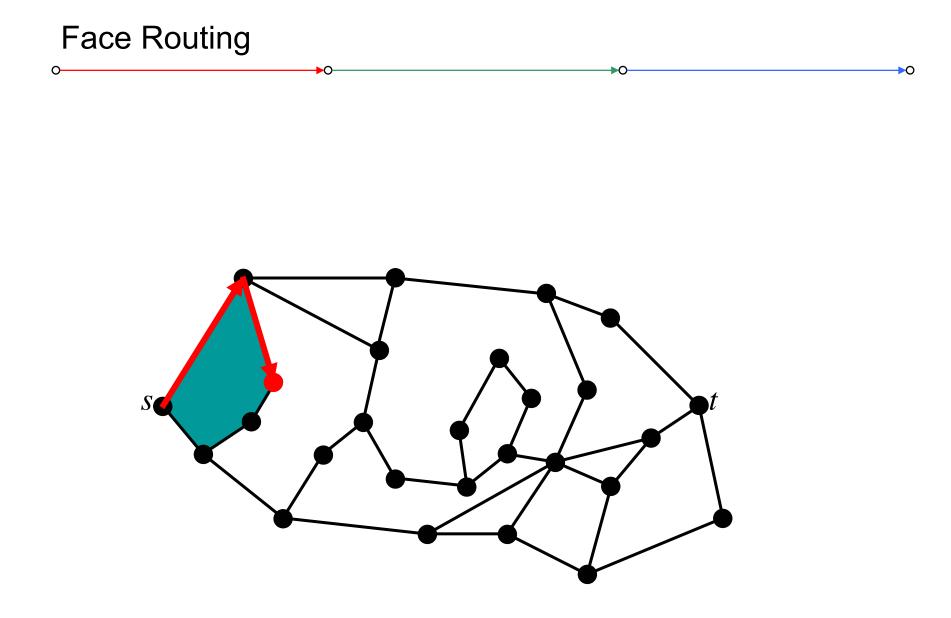
- Based on ideas by [Kranakis, Singh, Urrutia CCCG 1999]
- Here simplified (and actually improved)

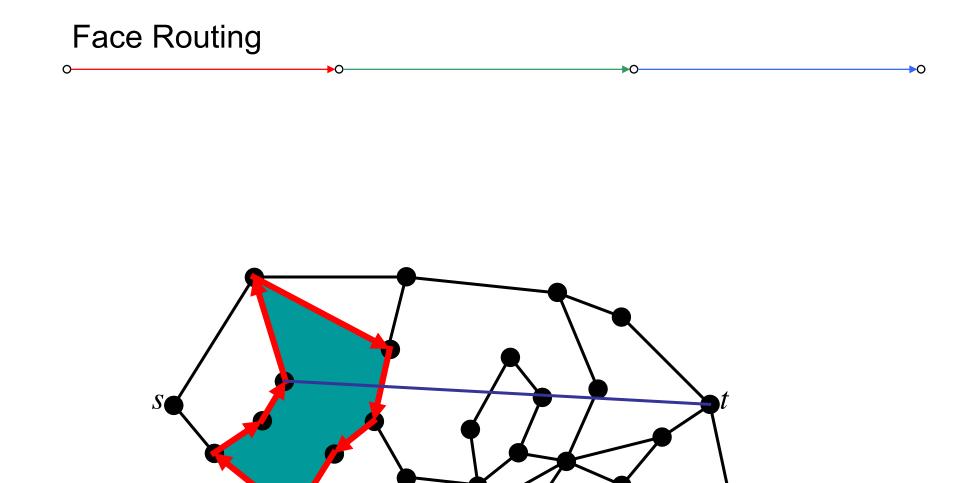


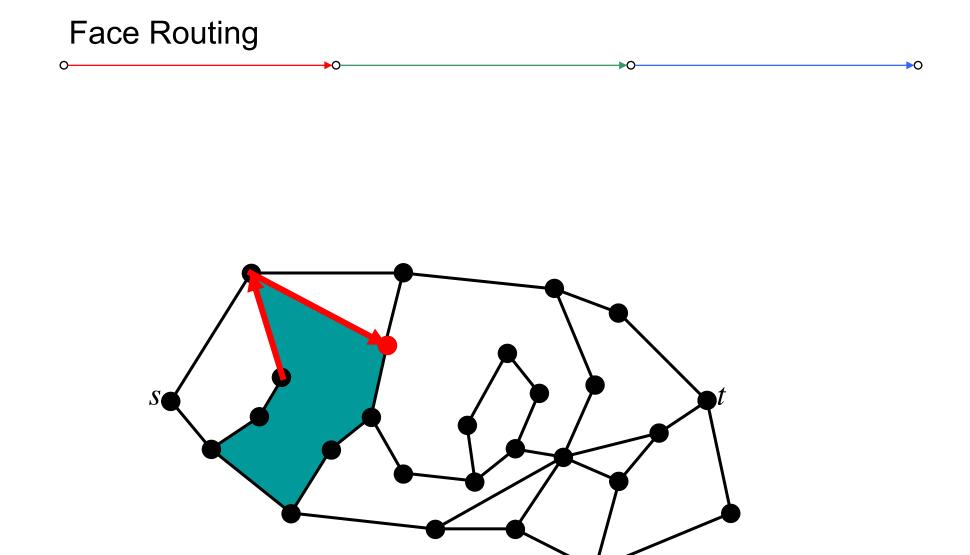
•0

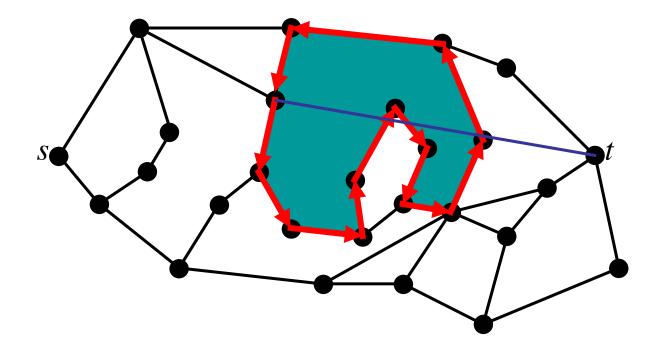


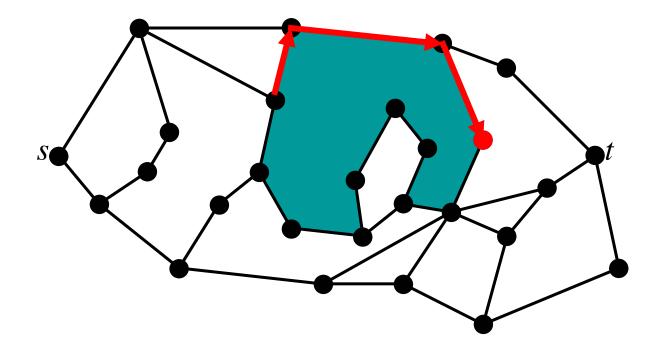


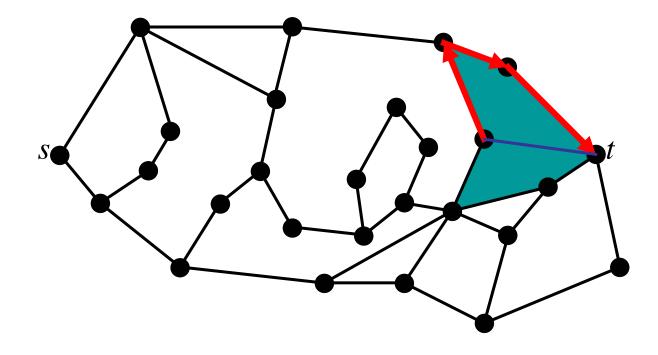






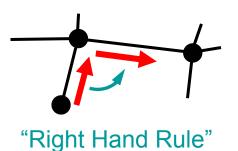






Face Routing Properties

- All necessary information is stored in the message
 - Source and destination positions
 - Point of transition to next face
- Completely local:
 - Knowledge about direct neighbors' positions sufficient
 - Faces are implicit



- Planarity of graph is computed locally (not an assumption)
 - Computation for instance with Gabriel Graph

PODC 2003

- Introduction
 - What is Geometric Routing?
 - Greedy Routing
- Correct Geometric Routing: Face Routing

- Efficient Geometric Routing
 - Worst-Case Optimality: Adaptively Bound Searchable Area

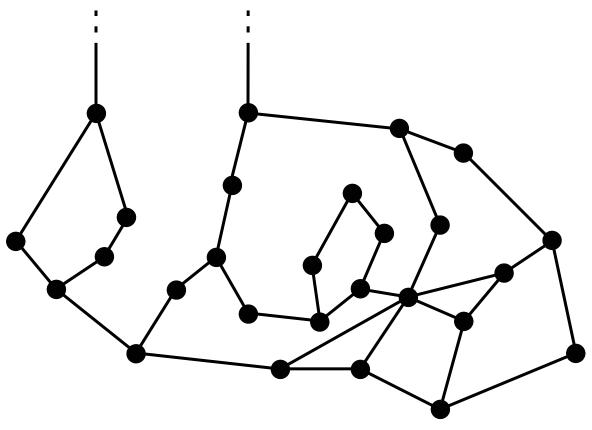
►O

- Average-Case Efficiency: GOAFR+
- Analysis of Cost Metrics
 - Linearly Bounded vs. Super-Linear Cost Metrics
- Conclusions

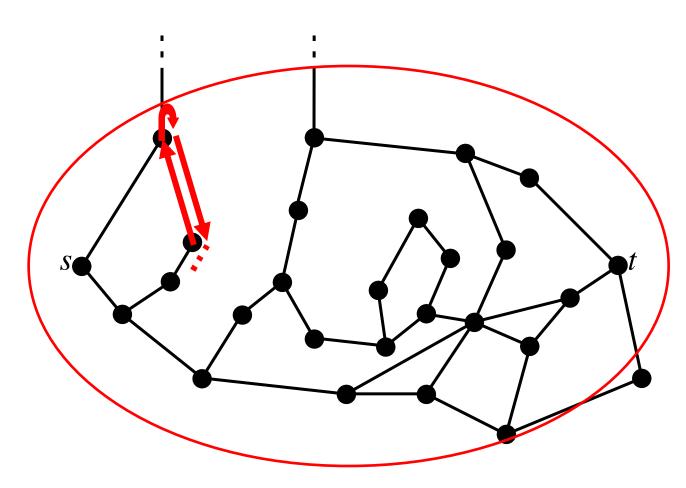
Face Routing

0

- Theorem: Face Routing reaches destination in O(n) steps
- But: Can be very bad compared to the optimal route



Bounding Searchable Area



0-

->0

What is the correct size of the bounding area?

- Start with a small searchable area
- Grow area each time you cannot reach the destination
- In other words, adapt area size whenever it is too small

 \rightarrow Adaptive Face Routing AFR

Theorem: AFR algorithm finds destination after $O(c^2)$ steps, where c is the cost of an optimal path from source to destination.

►O

Theorem: AFR algorithm is asymptotically worst-case optimal.

[Kuhn, Wattenhofer, Zollinger DIALM 2002]

PODC 2003

►O

- Introduction
 - What is Geometric Routing?
 - Greedy Routing
- Correct Geometric Routing: Face Routing

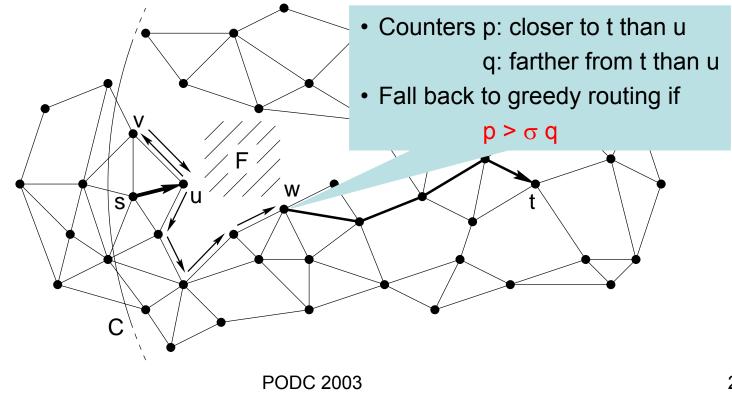
- Efficient Geometric Routing
 - Worst-Case Optimality: Adaptively Bound Searchable Area

►O

- Average-Case Efficiency: GOAFR+
- Analysis of Cost Metrics
 - Linearly Bounded vs. Super-Linear Cost Metrics
- Conclusions

GOAFR+ – Greedy Other Adaptive Face Routing

- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
 - Route greedily as long as possible
 - Overcome "dead ends" by use of face routing
 - Then route greedily again
- Similar as GFG/GPSR, but adaptive



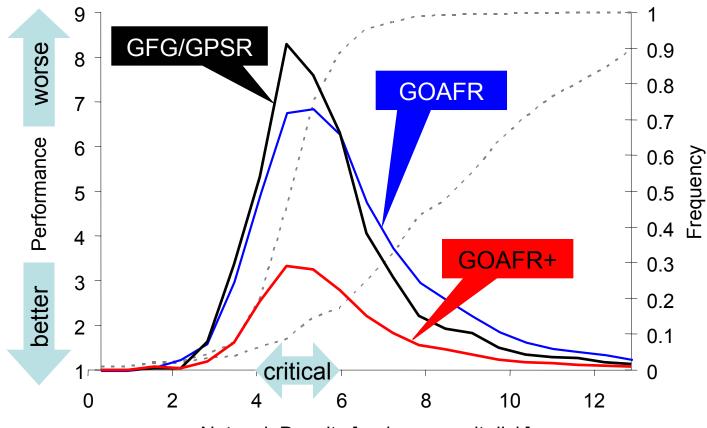
- GOAFR+
 - Early fallback technique with counters
 - Bounding searchable area with circle centered at t

Theorem: GOAFR+ is asymptotically worst-case optimal.

- Remark: GFG/GPSR is not
 - Searchable area not bounded
 - Immediate fallback to greedy routing

• GOAFR+'s average-case efficiency?

Simulation on Randomly Generated Graphs



Network Density [nodes per unit disk]

0

- Introduction
 - What is Geometric Routing?
 - Greedy Routing
- Correct Geometric Routing: Face Routing

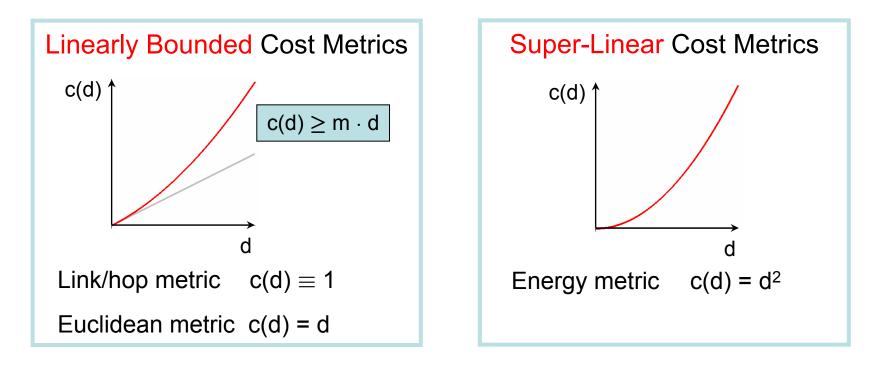
- Efficient Geometric Routing
 - Worst-Case Optimality: Adaptively Bound Searchable Area

►O

- Average-Case Efficiency: GOAFR+
- Analysis of Cost Metrics
 - Linearly Bounded vs. Super-Linear Cost Metrics
- Conclusions

Analysis of Cost Metrics

- Dropping $\Omega(1)$ -model / civilized graphs
- Cost metric: nondecreasing function c: $]0,1] \mapsto \mathbb{R}^+$



0

Linearly Bounded vs. Super-Linear Cost Metrics

Linearly bounded cost metrics

- Backbone graph constructible for general Unit Disk Graphs
- All linearly bounded cost metrics asymptotically equivalent
- Asymptotically optimal geometric routing

