Think Global – Act Local

Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch

THINK GLOBAL ACT LOCAL

Town Planning Patrick Geddes

Architecture Buckminster Fuller

Computer Architecture Caching

space (addresses)

Robot Gathering

-

-

1111

e.g., [Degener et al., 2011]

0,0

Natural Algorithms

+

++

[Bernard Chazelle, 2009]

T

AR

game theory

Algorithmic Trading

Think Global – Act Local

... is there a theory?

Complexity Theory

Can a Computer Solve Problem *P* in Time *t*?

(Think Global - Act Local) Distributed Complexity Theory Can a Computer Solve Problem *P* in Time *t*?

Distributed (Message-Passing) Algorithms

 Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

Distributed (Message-Passing) Algorithms

 Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

• Distributed (Time) Complexity: How many rounds does problem take?

An Example

With a simple flooding/echo process, a network can find the number of nodes in time O(D), where D is the diameter (size) of the network.

• **Distance** between two nodes = Number of hops of shortest path

• **Distance** between two nodes = Number of hops of shortest path

- **Distance** between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of rows connected neither left nor right? Communication complexity: Transmit $\Theta(n^2)$ information over O(n) edges $\rightarrow \Omega(n)$ time!

[Frischknecht, Holzer, W, 2012]

What about a "local" task?

Example: Minimum Vertex Cover (MVC)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC

Example: Minimum Vertex Cover (MVC)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC

Example: Minimum Vertex Cover (MVC)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC

On MVC

- Find an MVC that is "close" to minimum (approximation)
- Trade-off between time complexity and approximation ratio

- MVC: Various simple (non-distributed) 2-approximations exist!
- What about distributed algorithms?!?

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...

Lower Bound: Results

• We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least

$$\Omega\left(n^{\frac{1/4-\varepsilon}{t^2}}\right) \quad and \quad \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

Lower Bound: Results

• We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least

$$\Omega\left(n^{\frac{1/4-\varepsilon}{t^2}}\right) \quad and \quad \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

Lower Bound: Reductions

• Many "local looking" problems need non-trivial *t*, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

Lower Bound: Reductions

• Many "local looking" problems need non-trivial *t*, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

Olympics!

Distributed Complexity Classification

Distributed Complexity Classification

Locality

Locality is Everywhere!

Locality is Everywhere!

[Afek, Alon, Barad, et al., 2011]

each round: every node: 1. send msgs 2. rcv msgs 3. compute

[Afek, Alon, Barad, et al., 2011]

each round: every node: 1. send msgs 2. rcv msgs 3. compute

Maximal Independent Set (MIS)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes

Maximal Independent Set (MIS)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes

Maximal Independent Set (MIS)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes


```
given: id, degree
synchronized while (true) {
    p = 1 /(2*degree);
    if (random value between 0 and 1 < p) {
        transmit "(degree, id)";
        ...</pre>
```



```
given: id, degree
synchronized while (true) {
    p = 1 /(2*degree);
    if (random value between 0 and 1 < p) {
        transmit "(degree, id)";
        ...</pre>
```


Distributed Computing Without Computing!

Nano-Magnetic Computing

 ~ 1

Stone Age Distributed Computing

nFSM: networked Finite State Machine

- Every node is the same finite state machine, e.g. no IDs
- Apart from their state, nodes cannot store anything
- Nodes know nothing about the network, including e.g. their degree
- Nodes cannot explicitly send messages to selected neighbors, i.e. nodes can only implicitly communicate by changing their state
- Operation is asynchronous
- Randomized next state okay, as long as constant number
- Nodes cannot compute, e.g. cannot count

One, Two, Many Principle Piraha Walpiri

One, Two, Many Principle

- Not okay
 - while (k < log n) {</p>
 - At least half of neighbors in state s?
 - More neighbors in state *s* than in state *t*?
- Okay
 - No neighbor in state s?
 - Some neighbor in state s?
 - At most two neighbors in state s?

nFSM solves MIS whp in time $O(\log^2 n)$

[Emek, Smula, W, in submission]

Overview

General Graph

Growth-Bounded Graph

Bounded Degree Graph

Diameter

WA)-ABX 0(1)-APX, planar triangle-free 7 bg*-time 2-7012 0(1) - time (hounded trae-w.) some forbilden ind. subgr. planar COVEr Series-Parallal proj. Sparse plane Splanar Some NO forbidden VENIM sparse, no ks dom. P. d1, d2, d3 no K313 claw-free prounded arb. trees line graph f(n)-reg. d-regular growthsparse bounded -) bounded degree dr, dq O(1)-APX bounded log* -time 96+ diam. Sparse cliques

Overview

Summary

Thank You!

Questions & Comments?

Thanks to my co-authors Yuval Emek Silvio Frischknecht Stephan Holzer Fabian Kuhn Thomas Moscibroda Jasmin Smula

www.disco.ethz.ch