Think Global - Act Local

Roger Wattenhofer

Think global

Town Planning Patrick Geddes

Architecture Buckminster Fuller

Computer Architecture Caching

space (addresses)

Natural Algorithms

game theory

Algorithmic Trading

Think Global - Act Local

...is there a theory?

Complexity Theory

Can a Computer Solve Problem P in Time t ?

(Think Global - Act Local)
Distributed
${ }^{\star}$ Complexity Theory
Network
Can a-Computer Solve Problem P in Time t ?

Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

- Distributed (Time) Complexity: How many rounds does problem take?

An Example

each round: every node:

1. send msgs
2. rcv msgs
3. compute

How Many Nodes in Network?

each round: every node: 1. send msgs 2. rcv msgs 3. compute

How Many Nodes in Network?

each round: every node: 1. send msgs
2. rcv msgs
3. compute

How Many Nodes in Network?

each round: every node: 1. send msgs
2. rcv msgs
3. compute

How Many Nodes in Network?

How Many Nodes in Network?

With a simple flooding/echo process, a network can find the number of nodes in time $O(D)$, where D is the diameter (size) of the network.

Diameter of Network?

- Distance between two nodes $=$ Number of hops of shortest path

Diameter of Network?

- Distance between two nodes $=$ Number of hops of shortest path

Diameter of Network?

- Distance between two nodes $=$ Number of hops of shortest path
- Diameter of network = Maximum distance, between any two nodes

Diameter of Network?

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of rows connected neither left nor right? Communication complexity: Transmit $\Theta\left(n^{2}\right)$ information over $O(n)$ edges $\rightarrow \Omega(n)$ time!
[Frischknecht, Holzer, W, 2012]

What about a "local" task?

Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
- a minimum set of nodes such that all edges are adjacent to node in MVC

Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
- a minimum set of nodes such that all edges are adjacent to node in MVC

Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
- a minimum set of nodes such that all edges are adjacent to node in MVC

On MVC

- Find an MVC that is "close" to minimum (approximation)
- Trade-off between time complexity and approximation ratio

- MVC: Various simple (non-distributed) 2-approximations exist!
- What about distributed algorithms?!?

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $\left|S_{0}\right|=\delta\left|S_{1}\right|$
- The MVC is just all the nodes in S_{1}
- Distributed Algorithm...

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $\left|S_{0}\right|=\delta\left|S_{1}\right|$
- The MVC is just all the nodes in S_{1}
- Distributed Algorithm...

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $\left|S_{0}\right|=\delta\left|S_{1}\right|$
- The MVC is just all the nodes in S_{1}
- Distributed Algorithm...

Graph is "symmetric", yet highly non-regular!

Lower Bound: Results

- We can show that for $\epsilon>0$, in t time, the approximation ratio is at least

$$
\Omega\left(n^{\frac{1 / 4-\varepsilon}{t^{2}}}\right) \text { and } \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)
$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.
[Kuhn, Moscibroda, W, journal version in submission]

Lower Bound: Results

- We can show that for $\epsilon>0$, in t time, the approximation ratio is at least
tight for MVC

$$
\Omega\left(n^{\frac{1 / 4-\varepsilon}{t^{2}}}\right) \text { and } \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)
$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.
[Kuhn, Moscibroda, W, journal version in submission]

Lower Bound: Reductions

- Many "local looking" problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

[Kuhn, Moscibroda, W, journal version in submission]

Lower Bound: Reductions

- Many "local looking" problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

[Kuhn, Moscibroda, W, journal version in submission]

Olympics!

Distributed Complexity Classification

Distributed Complexity Classification

Locality

Locality is Everywhere!

Locality is Everywhere!

Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

given: id, degree
synchronized while (true) \{
p = $1 /\left(2^{*}\right.$ degree $) ;$
if (random value between 0 and $1<p$) \{ transmit "(degree, id)";
given: id, degree
synchronized while (true) \{
p = $1 /\left(2^{*}\right.$ degree $) ;$
if (random value between 0 and $1<p$) \{ transmit "(degree, id)";

Distributed Computing Without Computing!

nFSM: networked Finite State Machine

- Every node is the same finite state machine, e.g. no IDs
- Apart from their state, nodes cannot store anything
- Nodes know nothing about the network, including e.g. their degree
- Nodes cannot explicitly send messages to selected neighbors, i.e. nodes can only implicitly communicate by changing their state
- Operation is asynchronous
- Randomized next state okay, as long as constant number
- Nodes cannot compute, e.g. cannot count

One, Two, Many Principle

- Not okay
- while $(k<\log n)\{$
- At least half of neighbors in state s ?
- More neighbors in state s than in state t ?
- Okay
- No neighbor in state s ?
- Some neighbor in state s ?
- At most two neighbors in state s ?

Primitive cultures develop Sesame Street.

nFSM solves MIS whp in time $O\left(\log ^{2} n\right)$

[Emek, Smula, W, in submission]

Overview

Overview

Summary

Thank You!
 Questions \& Comments?

Thanks to my co-authors Yuval Emek
Silvio Frischknecht
Stephan Holzer
Fabian Kuhn
Thomas Moscibroda Jasmin Smula

