A Note on Uniform Power Connectivity in the SINR Model

Chen Avin Zvi Lotker Francesco Pasquale Yvonne-Anne Pignolet

Ben-Gurion University of the Negev

Interference in Wireless Networks

Interference:

Concurrent transmissions disturb each other

- Cumulative
- Continuous
- Fading with distance

Yvonne Anne Pignolet @ ALGOSENSORS 2009

Interference:

Cumulative, continuous, fading with distance

SINR (Physical Model):

v receives from *u* if Signal-to-Noise+Interference Ratio $\geq \beta$

Yvonne Anne Pignolet @ ALGOSENSORS 2009

Connectivity in Wireless Networks

Interference:

 \cap

Concurrent transmissions disturb each other

O

time slots until strongly connected communication graph

time slots until strongly connected communication graph

time slots until strongly connected communication graph

colors until strongly connected communication graph

[Moscibroda and Wattenhofer, Infocom 06]

- Without power control:
 Ω(n) in worst case
- With power control: O(log⁴n) in worst case

Complexity with uniform density and power?

SINR (Physical Model):

v receives from *u* if Signal-to-Noise+Interference Ratio $\geq \beta$

Yvonne Anne Pignolet @ ALGOSENSORS 2009

Connectivity with Uniform Power and Density

• 2D grid

$$\alpha > 2$$
: constant number of colors

$$\alpha = 2$$
: O (log *n*) colors
 $\Omega(\log n / \log \log n)$ colors

α < 2 : θ (n², ∝ ')

uniformly distributed 1D

$$\alpha = 2$$
: O(log n) colors
 $\Omega(\log \log n)$ colors

Yvonne Anne Pignolet @ ALGOSENSORS 2009

(√n, √n)

10

⊳0

n

2D Grids: Upper bounds

regular k^2 – coloring:

- Partition into k² sets
- Shortest distance between same color nodes is k

Interference at (0,1):

$$I(0,1) < \frac{3}{(k/2)^{\alpha}} \sum_{i=1}^{\sqrt{n}} \frac{1}{i^{\alpha-1}}$$
Riemann-Zeta
Function:
Constant for $\alpha > 2$
Logarithmic for $\alpha = 2$
 $O(n^{2/\alpha - 1})$ for $\alpha < 2$

(√n, √n) • • • • • • • • • • • • • • • • • • •

O

Yvonne Anne Pignolet @ ALGOSENSORS 2009

(0,0)

Bound interference at (0,0) with 3 colors:

- 1 color with at least n/3 nodes
- Divide grid intro 4 parts
- Pick square with > n/12 nodes

 \cap

Yvonne Anne Pignolet @ ALGOSENSORS 2009

2D Grids: Lower bound α = 2

Bound interference at (0,0) with 3 colors:

- 1 color with at least n/3 nodes
- Divide grid intro 4 parts
- Pick square with > n/12 nodes
- I(0,0) > 1/8
- O(log n) recursions
 I(0,0) > Ω(log n) 1/8

 \cap

Yvonne Anne Pignolet @ ALGOSENSORS 2009

Bound interference at (0,0) with 3 colors:

- 1 color with at least n/3 nodes
- Divide grid intro 4 parts
- Pick square with > n/12 nodes
- I(0,0) > 1/8
- O(log n) recursions
 I(0,0) > Ω(log n) 1/8

Generalize for k colors:

- Ω(log n/ (k log k)) interference
- Interference is constant for k in Ω(log n / log log n)

Yvonne Anne Pignolet @ ALGOSENSORS 2009

• Grids:

Complexity of connectivity is bounded in uniform power grids

►O

Phase transition for $\alpha = 2$

• 1D uniform distribution, $\alpha = 2$:

Regular coloring needs O(log n) colors General $\Omega(\log \log n)$ lower bound

Many open questions

in 2D uniform distribution, communication graph needs to be determined as well...

►O

0

Thanks! Questions?

Yvonne Anne Pignolet @ ALGOSENSORS 2009

⊳0