On Consistent Updates in Software Defined Networks

Ratul Mahajan, Microsoft Research Roger Wattenhofer, Microsoft Research & ETH Zurich

The Blind Spot of SDNs

Current State

Future State

[Reitblatt et al., SIGCOMM 2012]

Dependencies

Version Numbers [Reitblatt et al.]

y x

- + stronger packet coherence
- version number in packets
- switches need to store both versions

Minimum SDN Updates?

Minimum Updates: Another Example

No node can improve without hurting another node

Minimum vs. Minimal

Minimal Dependency Forest

In the paper, we present an algorithm to compute such a minimal dependency forest.

Main Contribution

For a given consistency property, what is the minimal dependency possible?

Consistency Space

	None	\mathbf{Self}	Downstream	Downstream	Global
			\mathbf{subset}	all	
Eventual consistency	Always guaranteed				
Drop	Impossible	Add before			
freedom		remove			
Memory	Impossible	Remove before			
limit		add			
Loop	Impossible (Lemma 6)		Rule dep. forest	Rule dep. tree	
freedom			$(\S{2.2})$	$(\S{2.1})$	
Packet	Impossible (Lemma 7) Per-flo				Global ver.
coherence				numbers	numbers [8]
Bandwidth		Staged partial			
limit		moves $[5]$			

It's not just how to compute new rules.

It is also how to gracefully get from current to new configuration, respecting consistency.

Architecture

Update DAG

Multiple Destinations using Prefix-Based Routing

- No new "default" rule can be introduced without causing loops
- Solution: Rule-Dependency Graphs!
- Deciding if simple update schedule exists: [Vanbever et al., TON 2012]

Breaking Cycles

Breaking Cycles

Architecture

Breaking Cycles

Are Minimal Dependencies Good?

Are Minimal Dependencies Good?

Are Minimal Dependencies Good?

Architecture

Evaluation

Evaluation

Summary

	None	Self	Downstream subset	Downstream all	Global
Eventual consistency	Always guaranteed				
Drop freedom	Impossible	Add before remove			
Memory limit	Impossible	Remove before add			
Loop freedom	Impossible	(Lemma 6)	Rule dep. forest (§2.2)	Rule dep. tree $(\S2.1)$	
Packet coherence	Impossible (Lemma 7)			Per-flow ver. numbers	Global ver. numbers [8]
Bandwidth limit		Staged partial moves [5]			

At ETH Zurich, we're looking for a colleague in networking! Please ask me for details.

Thank You!

Questions & Comments?

www.disco.ethz.ch