
Slotted Programming for Sensor Networks

Roland Flury
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland
rflury@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

ABSTRACT
We advocate a novel programming approach we call slotted
programming that not only addresses the specific hard-
ware capabilities of sensor nodes, but also facilitates coding
through a truly modular design. The approach is based on
the temporal decoupling of the different tasks of a sensor
node such that at any time at most one task is active. In
contrast to traditional sensor network programming, slotted
programming guarantees that each of these tasks can be
implemented as an independent software module, simpli-
fying not only the coding and testing phase, but also the
code reuse in a different context. In addition, we believe
that the proposed approach is highly qualified for energy
efficient and real time applications. To substantiate our
claims, we have implemented slotos, an extension to TinyOS
that supports slotted programming. Within this framework,
we demonstrate the advantages of the slotted programming
paradigm.

Categories and Subject Descriptors
D.1.0 [Software]: Programming Techniques General

General Terms
Design, Performance, Reliability

Keywords
modularity, context-free programming, time slicing

1. INTRODUCTION
Programming applications for networked systems can be

painful. Software for distributed systems tends to be heavy,
consisting of several components and layers that interact
with each other in a non-trivial way to cope with various
transient or permanent failures and most likely also some
kind of dynamics. On top of that there is the whole process
of software development, e.g. issues such as debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

between remote nodes. But programming embedded sys-
tems is not easy either. Embedded systems ask for light
software that does not waste resources such as memory,
processing power, or energy. In addition, the systems often
need to meet tight run-time requirements and guarantee a
predictable execution. Again the software development cycle
is tedious, as the programmer does not have direct access to
the hardware, but must go through cross-compilation and
cross-debugging.

Wireless sensor networks clearly inherit all the prob-
lems from networked distributed systems as well as em-
bedded systems. To make matters worse, running heavy
distributed systems software on light embedded systems
hardware sounds like an contradiction at first. However,
sensor networks can be done, but the work to build such
energy efficient protocols and applications shall not be
underestimated. Current energy efficient implementations
need to be optimized across the entire application. This
comes at the price of a non-modular design, adding further
functionality may require drastic changes in code, and even
small adaptations to parameters or changes of the environ-
ment may trigger a serious investment in re-testing.

Not surprisingly, there is a trend towards simplifying the
programming environment. Some proposals abandon the
idea of energy efficient hardware altogether, and instead
advocate a Linux or Java VM framework [2, 11, 19]. Some
other proposals [12] envision an IP layer hiding a general
purpose low-power networking stack. These efforts simplify
the programming task tremendously. But at the same time,
they introduce abstractions that hide alternative usages of
the underlying hardware which may be even more energy
efficient. In addition, the abstractions hide the complexity of
the underlying implementation. This is dangerous especially
for time sensitive tasks, where hardware devices such as
the CPU or the radio must be available exactly at a given
time. It is thereby not important to accomplish a task as
fast as possible, but exactly at the desired time without
being delayed. But today’s best-effort operating systems
cannot guarantee the necessary precision as they abstract
away execution time [13].

In this work we outline the slotted programming paradigm
which supports both modularity and energy-efficiency in
a well-defined time model. This programming approach
is not orthogonal to the current trend of providing high
level abstractions. It rather extends the abstractions with
a predictable execution scheme, giving back full control
to the application developer. Our concept is simple: We
consider the different tasks of a sensor node such as clock

synchronization, routing, topology control, sensing, or code
updates. Each of these tasks is given time slots during which
it performs its operations in parallel on all nodes. The time
slots need to be assigned in a non-overlapping way such that
at any time, at most one task executes its code. If a job has
not terminated at the end of its assigned time slot, it must
be suspended and may only continue its execution during
its next time slot. Thus, tasks do not interfere with each
other, and they do not interrupt each other. Therefore, each
task can be implemented as an independent module which
can be exchanged easily. Indeed, alternative modules for
the same task can be tested and compared within the same
application.

2. RELATED WORK
The most prominent OS for sensor networks is TinyOS [22],

which is a purely event driven framework supporting many
hardware platforms. Over time, TinyOS was extended
with new features to ease application development and
reduce programming errors. Most recently, a safe type-
system [4] and support for multi-threaded programming [17]
were added. However, the quest for an optimal programming
environment was not only led by TinyOS. For instance, the
MANTIS OS [1] supported preemptive multi-threading well
before TinyOS did, and Contiki [5] is based on lightweight
protothreads [6]. The notion of virtual memory was intro-
duced in the t-kernel [9] to protect the operating system
from being corrupted by the user application, and SOS [10]
supports the dynamic loading of modules, avoiding the static
linking at compile time.

Closest to our programming model is Nano-RK [8], a
reservation-based real-time OS, and the pixie OS [15], which
allows for a dynamic resource allocation at runtime, pre-
dicting the energy draw of the operations in an online
fashion. Both, Nano-RK and pixie operate on a deadline-
based scheduling policy which executes the tasks within a
certain time window. With the slotted programming model,
however, we guarantee the execution of a code fragment
precisely at a given time, e.g. to wake up the radio module
of two nodes in parallel, without requiring any guard time.
This is not possible with a real-time OS with deadlines where
a task is executed before a given time. Slotted programs are
much simpler, as they operate on a static schedule. But
in return, they regain full control over the application and
can provide execution guarantees (such as the execution of
a task precisely at a given time) that cannot be given by the
thread scheduler, which needs to solve an online allocation
problem.

To reduce the learning curve and simplify the development
of sensor network applications, TinyOS and other operating
systems support multi-threaded programs. Furthermore,
low power listening protocols can be used to provide a basic
MAC layer to the application developer [7, 18, 21] . In
fact, Hui and Culler [12] envision an IPv6 stack on top
of such a MAC layer to hide the underlying networking to
the application developer. We embrace this trend towards
a standardized communication framework and believe it
to be perfect for prototyping sensor network applications.
However, when it comes to the development of project
specific optimizations, these programming techniques and
abstractions can be obstructive. Firstly, the execution of a
multi-threaded application is hard to predict. As a result,
the development and also debugging is much more involved

as some errors may occur only sporadically under a specific
preemption. Similarly, the introduction of a networking
abstraction such as a low power listening MAC introduces a
rather unpredictable use of the CPU and the radio device,
possibly delaying other tasks. Thus, the developer does not
have complete control over the application, which makes it
harder to ensure a bug-free program. Last but not least,
we believe that special purpose communication protocols
can increase considerably the energy efficiency of many
applications. For instance, the task of collecting a message
from every node once a minute causes a duty-cycle of 0.65%
with the IPv6 network stack of [12]. In Dozer [3], a data
gathering protocol with a dedicated MAC layer, a message
was collected every 30 seconds. The duty-cycle for this task
was reported to be only 0.167%, reducing the overhead by
a factor of 8. However, this improvement comes at the
price of a higher latency and a completely asynchronous
application that is hard to maintain. For comparison, our
slotted clock synchronization algorithm receives and sends
one message every 32 seconds and requires an average duty-
cycle of only 0.06%. Of course, these numbers cannot be
compared directly as they stem from different applications,
but they indicate that there is still a lot of potential for
saving energy. With the slotted programming paradigm,
we demonstrate that it is indeed possible to write modular
applications that are also energy efficient.

3. BACKGROUND
Access to the different hardware components such as the

radio module, timers, flash chip, or the sensors is often
done through software arbitration or the explicit knowledge
that no other code fragment is using the desired component.
Clearly, the latter approach is not only prone to undetected
conflicts, but also renders code reuse very difficult. But
software arbitration alone is not enough to write modular
applications as we outline in the following points.

Real time applications.
The load of the CPU is hard to predict, as other pieces

of the application may require computational complex tasks
at any time. As a result, tasks and synchronous events may
execute with a non-negligible delay, which poses problems to
the implementation of time critical applications where some
actions should happen exactly at the prescribed time. This
is in sharp contrast to classic real time systems, where the
tasks should execute within a larger time window before
a given deadline. For instance, even the simple task of
enabling the radio on two neighboring nodes at exactly the
same time is hard to achieve, as any of the nodes may be
occupied with other tasks and therefore delay the power-on
command. A common approach to suppress this problem is
to use a guard-time and enable the radio a bit earlier than
arranged. Apart from the fact that it is hard to predict
good guard-times, such applications use more energy than
necessary and also gain in complexity. Alternatively, the
radios could be powered on in an asynchronous code block,
ensuring instantaneous execution if no other asynchronous
event interferes. However, implementations which rely on
preemptive code execution (e.g.[3]) are quite hard to main-
tain, as any modification or extension may affect any other
part of the system. As such asynchronous systems are
often very complex and even the slightest anomaly in the
code can lead to misbehavior such as memory corruption

or even a deadlock, we believe that this approach should
be avoided whenever possible. Multi-threaded operating
systems are not improving the situation either, as they even
explicitly permit preemption of tasks, delaying operations
even further. Prioritization does not resolve the problem as
the thread with the lower priority still experiences a delay.

Modularity.
In most sensor network scenarios, each network node

needs to fulfill several tasks, e.g. clock synchronization,
sense the environment, process the measurements, and dis-
seminate the sensed data. To obtain a highly optimized
application that uses as little energy as possible, the usual
approach is to combine the required tasks as well as pos-
sible. In our example, this could mean that the messages
required for the clock synchronization are piggybacked onto
the data gathering messages or vice versa. Whereas such
an implementation can be very energy efficient, it is also
highly specific to the given problem instance. Therefore,
any modification or extension needs to take into account
the entire application, and partial code reuse in a different
application is cumbersome.

Incomplete algorithm design.
We have already argued that any two tasks running in

parallel may interfere by reducing the responsiveness of the
node. Similarly, the software arbitration may temporarily
block the access to a hardware resource such as the radio
module while another task is using it. Also, if two hardware
components happen to be connected to the CPU through
a shared bus, at most one of them may be accessed at
any time. This is the desired behavior, but it is often
difficult or even impossible to predict such conflict patterns.
Therefore, algorithms for sensor nodes are normally designed
under the simplifying assumption of immediate access to the
hardware, ignoring the fact that another task may run in
parallel competing for the same resources. Adapting these
algorithms to the existing hardware constrains is often a
challenge, especially for time critical applications. Even if
a delay may be tolerable, the unpredictable timing may
introduce new side effects which must be verified to not
break the original algorithm.

Configuration conflicts.
A wrongly configured hardware device not only provokes

unpredictable responses but may even hang a sensor node.
If several tasks require conflicting configurations, the ap-
plication must be careful to always load the appropriate
configuration. If a task interrupts the execution of another
task due to asynchronous execution or multi-threading, this
may not be possible at all.

4. SLOTTED PROGRAMMING
The above mentioned issues arise because several tasks of

a sensor node may execute simultaneously. With the slotted
programming paradigm, we introduce a temporal arbitra-
tion between the tasks to resolve the described problems,
and at the same time, slotted programming fosters code
modularity.

The slotted programming approach decouples the different
tasks of a sensor node to render them as independent as
possible such that each task can be implemented as a self-
contained software module. The decoupling is achieved
through temporal separation of the different tasks, assigning

time

S CS S S S S S CSP D CSP D S

time

S S S S S S S

P DCS

D/CS

P P P

D D

CS

CS CS

CS CS

CS

Figure 1: A slot assignment on a sensor node with 4
tasks (top): Periodically sample a sensor [S], process
the sensor data [P], disseminate the processed data
[D], and run a clock synchronization algorithm [CS].
In an uncoordinated execution model where tasks
are not temporarily decoupled, several collision pat-
terns may occur (bottom).

each module a time slot during which it may have exclusive
access to all resources. Figure 1 shows a possible slot
assignment on a sensor node with 4 distinct tasks. This
is in sharp contrast to an uncoordinated execution model,
where tasks may collide and experience unpredictable side
effects.

4.1 The Basics
The slotted programming paradigm builds on a syn-

chronous execution model. It requires that all nodes have
a global notion of time, i.e. they need to run some kind
of clock synchronization algorithm. This network time is
used to schedule the execution of the software modules, such
that the same software module executes simultaneously on
all nodes.

Each task of a sensor node is implemented as an indepen-
dent software module providing the desired functionality.
E.g. there may be a clock synchronization module, a data
gathering module, a sampling module, and a data processing
module. To obtain the temporal decoupling with other
software modules, each software module must ensure that
its code executes only within an assigned time slot and that
it causes no side effects outside this slot.

The software modules are integrated into the slotted sys-
tem by allocating time slots for each of them. Whereas
arbitrary complex schedules can be built, simple periodic
schedules similar to the one shown on top in Figure 1 are
already sufficient for most applications. The only restriction
for the overall schedule is that there may be no region where
slots overlap, otherwise the temporal decoupling would be
broken. Depending on the scheduling complexity, this prop-
erty can already be tested at compile time. Alternatively, a
run-time check may be applied.

The basic support for slotted programs is provided by
two components: A clock synchronization module and a
scheduler module. The latter executes the desired schedule
by signaling each module the start and end of its time slots.
Figure 2 illustrates a schematic view of a slotted system.

4.2 Discussion
With the slotted programming paradigm, we foster mod-

ular programs for sensor nodes. The key component is the
temporal decoupling of modules which guarantees that at
any time, at most one module is running its code without
being preempted. This decoupling lays the basis for the
following properties of slotted programming:

Slot Scheduler

Clock

Sync

Module

M1 M2 Mi M3 . . .

Figure 2: Schematic view of a slotted system: The
slot scheduler starts and stops the software modules,
the clock synchronization module is responsible for
obtaining the network time.

• During the time slot of a module, full access to all
hardware resources is granted to the module, it is
neither blocked nor delayed by other tasks. This also
includes the hardware configuration which is guaran-
teed to be consistent during the entire slot. Overall,
the programmer of the module can count on the timely
availability of the hardware, which allows for simpler
and more efficient implementations using less energy.

• Each module can be implemented and tested indepen-
dently as there are no side effects from other tasks.
This greatly supports the software development, as it
is much easier to code and test several small pieces
instead of writing and testing an entire application
altogether.

• The reuse of a module in a different applications is
straightforward as each module is supposed to work
independently of the context. The only thing that may
need to be adjusted is the scheduling of the time slots.

• Last but not least, the modularity reduces the software
complexity, which makes it easier to collaborate or
continue on a given project. For instance, we have
had several students working with our slotted pro-
gramming environment during the past year and we
believe that their success can also be traced back to
the slotted approach.

4.3 Limitations
Whereas the above properties are desirable for all appli-

cations, the slotted programming paradigm has its limits.
For instance, if a sensor node must constantly perform some
action, e.g. sample a sensor at 100Hz, other modules cannot
be scheduled without conflicting with the sensing task. In
fact, there is no clean solution to this fundamental problem
as a complete decoupling of the modules is impossible.
Similarly, if a node needs to react to external events which
may arrive at any time, e.g. triggered through an interrupt,
the node should delay its actions until a dedicated time slot
to handle the event is scheduled. This may not be acceptable
for some applications where a rapid reaction is required.
We believe, however, that in the case of such scenarios, the
slotted programming is still useful. On the one hand, the
application developer may be more aware of the existing
conflicts, which helps to predict possible side effects. On
the other hand, the conflicting modules can be designed to
reduce their actions during foreign time slots to a minimum,
shifting the non-time-critical operations to their assigned

Time

0

128 [s]

256

348 512

Figure 3: The slot scheduler repeats a partial sched-
ule generating a periodic execution of the allocated
time slots.

time slots. In addition, the sequential execution of the slots
may require more CPU time than an optimally scheduled
task list which runs non-conflicting tasks, e.g. radio and
sensor accesses, in parallel.

5. SLOTOS
To demonstrate the potential of slotted programming in

practice, we developed slotos, an operating system that
supports slotted programming. In general, any operating
system can be adapted to provide this functionality. For
our reference implementation, we chose to extend TinyOS
2.1. Being single-threaded in its default version, TinyOS is
a perfect candidate for applying the slotted programming
paradigm.

In slotos, the slot scheduler is responsible to invoke the
execution of the software modules according to their time
slot reservations. To simplify the scheduling of periodic time
slots, slotos provides a periodic slot management with an
allocation window of 128 seconds. Each module allocates its
time slots within this allocation window which is repeated
periodically by the slot scheduler to obtain the overall
schedule, see Figure 3 for an example. With this scheduling
approach, slotos facilitates the allocation of periodic time
slots which we believe to be sufficient for most applications.
The number of allocated slots as well as the length of the
different slots has no influence on the overall performance
of the application as the scheduling overhead consists only
in setting a timer to start and eventually stop each of the
slots. The size of the allocation window is currently set
to 128 seconds, but it may be set to whatever fits best
the application needs. For more sophisticated schedules,
the dynamic time slot reservation of slotos may be used to
reorganize the schedule at run-time.

Interface 1 sketches the events and commands provided
by the slot scheduler. During the init() event, which is
called upon booting the node, each module allocates its time
slots. addTimeSlot() is used to reserve an additional time
slot, and modifyTimeSlot() reschedules an existing time
slot. Whenever a time slot starts, the startSlot() event is
signaled on the corresponding module indicating an estimate
of the current synchronization quality. Finally, the end of
the slot is signaled by the stopSlot() event.

5.1 Policy Enforcement
The temporal decoupling of the modules is the key of

slotted programming. Whereas a static schedule can be
checked at compile-time to have no overlapping regions,
dynamically generated schedules can only be verified at run-
time. slotos detects overlapping time slots and refrains from
scheduling them simultaneously. Instead, it provides a best-
effort service delaying the start of the later time slot until

Interface 1: Slot scheduler interface
events

void init()
void startSlot(slotID, slotCmd, syncQuality, syncStatus)
void stopSlot(slotID)

commands
slotID addTimeSlot(startTime, length, slotCmd)
void modifyTimeSlot(slotID, startTime, length, slotCmd)
bool testSchedule()

void stopScheduling()
void continueScheduling()
...

the end of the active time slot. It is important to note that
this error handling approach should not be exploited as a
feature of the slot scheduler. It is rather a last resort to
guarantee a continuous execution of all reserved time slots,
based on the assumption that the broken schedule is only of
temporal nature.

The temporal decoupling requires that the software mod-
ules operate only during their assigned time slots. This prop-
erty, however, is much harder to verify or even enforce, as
the modules should be allowed to execute arbitrary actions
within their time slots. For instance, a module may set a
timer to fire outside its time slot or initiate a split phase
command whose callback returns only after the time slot
terminates. Whereas the timer issue can be addressed by
canceling timers that are set outside the current time slot,
callbacks from the hardware are device specific and often
hard to predict. The current implementation of slotos does
not try to detect or avoid activity outside the assigned time
slots and requires the module developer to adhere strictly
to the time constraints. Thus, slotos does not enforce
slotted programming but only provides a suitable execution
environment.

5.2 Timers
It is often the case that two neighboring nodes wish to

wake up simultaneously to exchange messages or perform
other operations. Slotted programs support such interac-
tions as the software modules are scheduled simultaneously
on all nodes. Thus, it is sufficient for a module to set a timer
to be waken up at the arranged time. To obtain a truly
decoupled system, the modules should respect the following
guidelines when setting timers:

• Most importantly, timers may only be set to fire within
the current time slot. If a timer should fire during a
later time slot, the module should remember this and
start the timer only at the beginning of the desired
time slot. Thanks to this restriction, timers never need
to be updated to reflect a modified network time be-
cause no timer is active when the clock synchronization
module adjusts the network time.

• Whenever possible, timers should be started relative
to the start time of the current time slot. This
results in a more precise timing than when using offset
timers, as their fire time depends on the time when
they are set. In TinyOS, this can be done using the
startOneShotAt() method of the Timer interface.

• To account for fluctuations of the clock synchroniza-
tion, a module may apply guard times to ensure that
it does not miss an arranged meeting. In the case of
a scheduled message transmission, the receiver wakes
up a bit earlier and the sender sends the message a
bit later to ensure that the two meet. The estimation
of the clock synchronization passed on in the start-

Slot() event may be used to adaptively set the guard
times.

5.3 Clock Synchronization
The clock synchronization module and the slot scheduler

are tightly coupled: Whereas the slot scheduler depends
on the network time to schedule the modules, the clock
synchronization module itself is scheduled by the slot sched-
uler. This circular dependency is no problem as soon as the
node is roughly synchronized, but special care needs to be
taken while a node is not synchronized. slotos supports two
approaches to break this circular dependency.

(A) The clock synchronization module may temporarily
turn off the slot scheduler. During this time, no
other module is scheduled to execute and the syn-
chronization module is free to access the radio for
an extended time to receive synchronization messages.
Once an approximate synchronization is available, the
slot scheduler can be turned on again.

(B) It is often undesirable to completely shut down the slot
scheduler as this also stops any other activity on the
sensor node, including the sensing tasks for which it
was deployed. But if the clock synchronization module
can only access the radio during its assigned time
slots, it may never receive synchronization messages
if the neighboring nodes have a different notion of
time. To accommodate such scenarios, slotos explicitly
permits the clock synchronization module to break
the temporal modularity and listen on the radio also
outside its assigned time slot. But this violation of the
slotted programming paradigm needs to be taken into
account by all modules that are scheduled during this
time. In particular, other modules should refrain from
using the radio or turning it off. For that purpose, the
startSlot() command informs the modules about the
current state of the synchronization. Fortunately, this
restriction does not really limit the functionality of the
node any further, as communication with neighboring
nodes is likely to fail anyways while it is not synchro-
nized.

The choice between the two approaches depends on
whether the sampling or the synchronization is more mission
critical. Clearly, the second approach is not as clean as
we would like, but it is as modular as possible for the
given application requirements. In either case, the clock
synchronization module must provide the interface shown
in Interface 2. Whenever the network time is modified,
timeChanged() needs to be called such that the slot sched-
uler can adapt the schedule. Additionally, several meth-
ods to convert between hardware and network time and a
method to query the current synchronization quality should
be provided.

Interface 2: Clock synchronization interface

event
void timeChanged()

commands
time hardwareToNetworkTime(hwTime)
time networkToHardwareTime(netTime)
time networkIntervalToHardwareInterval(netDT)

quality getSynchronizationQuality()

6. SLOTTED CLOCK SYNCHRONIZATION
As clock synchronization is a central part of slotos and

slotted programming in general, we now describe in more
detail the clock synchronization module that comes with
slotos. Being implemented itself as a software module,
we use this synchronization module to demonstrate the
advantages of the slotted programming paradigm.

We chose to implement the recent PulseSync protocol [14],
which was shown to be asymptotically optimal. In contrast
to the often used FTSP algorithm [16] where the time signal
traverses the network quite slowly, the PulseSync algorithm
ensures that the time signal traverses the entire network in
a pulse, providing all nodes with a fresh timestamp within a
short time interval. As each node forwards the time signal
shortly after receiving it, the degradation of the time signal
due to local clock skew on the forwarding node can be
reduced considerably.

The synchronization protocol is quite simple: A dedicated
root node dictates its time to the remaining nodes. Nodes
in the immediate neighborhood of the root node learn the
network time directly from the root node. Once a node
is synchronized, it disseminates synchronization messages
itself such that nodes not directly connected to the root syn-
chronize indirectly. Each node selects a single parent node
to which it synchronizes, resulting in a tree algorithm. The
secret of the PulseSync protocol is that a node should syn-
chronize its children shortly after receiving a synchronization
message from its parent. To avoid message collisions, each
child waits for some random amount of time before sending
out its own synchronization message. In each transmitted
message, the sender includes the seed value of the random
number generator that will be used to send forthcoming
sync messages. From this information, the receiving child
can predict when its parent sends the next sync message
and enable its radio just for the required time period. The
child can even predict the arrival of a sync message when
it has missed several messages in between. This is possible
as we use a circular random number generator where the
generated number is used as the seed for the following
draw. In the following, we show that the implementation
of such a scheme is actually quite natural with the slotted
programming approach.

6.1 Pipelined Synchronization
slotos offers a time window of 128 seconds to schedule

the execution of the software modules. Our clock syn-
chronization module reserves 4 time slots of 1 second in
regular intervals such that the module is launched every 32
seconds, see Figure 4. Within these assigned time slots, the
module may perform any actions as the slotted programming
guarantees that no other task interferes. In our case, a
synchronization pulse is sent through the entire network in

t

0 12832 64 96

38 37 39 40 41

0 1 2 3 4 5 6 7

Figure 4: The default clock synchronization module
of slotos allocates a slots of 1 second every 32 sec-
onds. The remaining time can be used arbitrarily
by other software modules. The synchronization
module divides its time slot into k logical cells (in
our case, k = 8). The root node broadcasts its sync
message in the first cell with ID 0. A node that is
h hops away from the root receives a sync message
from its parent in the cell (h − 1) mod k and sends
its sync message in the cell (h mod k).

each of these assigned slots. I.e. each node receives one sync
message from its parent and broadcast a sync message to its
children.

As we have already outlined above, we apply a simple
pipelining scheme to schedule the transmissions along the
synchronization tree. The synchronization module achieves
this by dividing its time slot into k cells of equal length
(see Figure 4) and restricting the transmission of the sync
message to one specific cell. This cell assignment is based on
the number of hops the node is away from the root node (on
the synchronization tree). Note that nodes with a distance
of k or more hops to the root reuse cells already assigned to
nodes much closer to the root.

The choice of k is driven mainly by two constraints. On
the one hand, k should be chosen as small as possible such
that the sync messages can be spread over a longer cell,
reducing the probability of collisions. On the other hand,
if a node is i · k hops away from the root (with i ∈ N+),
the node sends its sync message in the cell with ID 0, but
receives the sync message from its parent only in the last cell
with ID k − 1, not achieving the desired pipelining. Thus,
the larger k is, the fewer nodes break the pipelining. In
the current implementation of slotos, we have set k = 8 to
ensure a perfect pipelining for our sample networks.

6.2 Experiments
We have logged the performance of our clock synchroniza-

tion algorithm while testing our alarming system described
in Section 7. During the 168 hours of the experiment, a
total of 18900 synchronization rounds were performed. To
measure the quality, a node determines its clock offset to
its parent whenever it receives a sync message. Throughout
the experiment, we measured an average offset of 1.45 time
units with a variance of 1.21. This is equivalent to an average
offset of 44µs as our hardware clock runs at 32768Hz.

The energy consumption of the clock synchronization is
dominated by the energy used to send and receive messages.
To get a first approximation on the usage, each node logged
how long the radio module was enabled for each synchroniza-
tion round. The cumulated up-time of the nodes is plotted
in Figure 5. Note that the root node has a much smaller
slope than the remaining nodes as it does not receive sync

0 24 48 72 96 120 144 1680

50

100

150

200

250

300

350

400

450

Time [h]

C
um

ul
at

ed
 ra

di
o

up
-ti

m
e

pe
r n

od
e

[s
]

0.05%

0.06%

0.07%

0.08%

0.09%

0.1%

D
ut

y
C

yc
le

max duty cycle
avg duty cycle

Figure 5: The nearly straight lines show the cumu-
lated radio up-time of the 19 nodes using the left
scale. The single line at half the rate belongs to
the root node which does not need to listen for sync
messages. The two horizontal curves indicate the
temporal change of the duty cycle using the right
scale.

messages. It is also interesting to note that the lines of
the non-root nodes diverge the longer the experiment runs.
The varying slopes are due to our synchronization algorithm
which tries to keep the guard time for receiving the sync
messages as short as possible. Nodes that tend to loose
packets adapt a larger guard time, slightly increasing their
up-time. For instance node 12 (see also Figure 10) has the
steepest slope. During the experiment, this node changed
its parent several times, sometimes even synchronizing to
node 7 across the building. The peaks in Figure 6 indicate
when node 12 was looking for a new parent.

On average, the non-root nodes required an overall duty
cycle of 0.06% for the synchronization, node 12 has the
highest duty cycle of 0.07%. The temporal progress of
the duty cycle is shown in Figure 5. The curves show
the average (maximum) duty-cycle for the preceding 200
synchronization rounds. Again, the peaks fall together with
parent elections.

6.3 Discussion
We sketched the implementation of a clock synchroniza-

tion algorithm with the slotted programming approach,
leaving out quite some details. For instance, the choice of
a reliable parent is intrinsically difficult as the quality of a
parent may change over time. Our goal was to demonstrate
that it is indeed possible to write a modular clock synchro-
nization that can be replaced by any other synchronization
module without consequences for the remaining application.
Furthermore, we would like to point out that even a simple
implementation as the one described above can be quite
energy efficient.

7. SLOTTED ALARMING
We now sketch the implementation of an alarm system in

which any node of the network can alarm the entire network.
Again, we will not describe all technical details of the
alarming technique, but rather focus on the overall structure
of the software to demonstrate how the slotted programming

0 24 48 72 96 120 144 1680

20

40

60

80

100

120

Time [h]

R
ad

io
 u

p-
tim

e
of

 n
od

e
12

 [m
s]

Figure 6: Node 12 has the highest duty cycle as
it repeatedly loses its synchronization parent. This
plot shows the up-time of node 12 for each synchro-
nization round. The peaks occur when node 12 is
looking for a new parent.

helps. In particular, we will compare two techniques to
detect an alarm and compare the two approaches. Having
a slotted environment, this boils down to switching between
two different alarming modules and measure their success
rate.

Our goal is to build an alarm system that is reliable,
has low latency, and uses as little energy as possible. We
thereby focus on the wake-up phase of the alarm system,
leaving out the verification phase that should be executed
before relaying an alarm to the upper layers. The end-to-
end delay of the alarm can be minimized by pipelining the
transmissions of the nodes. But as any node of the network
may initiate an alarm, the pipelining would need to provide
an any-to-all support. To overcome this complex task, we
reduce the problem to the following two pipelinings: any-to-
root and root-to-all, where the root is a dedicated node, e.g.
a sink node or the node leading the clock synchronization.
This results in a 2-phase approach, where the initiating node
first signals the root node about the alarm (any-to-root) and
the root then signals the alarm to the entire network (root-
to-all).

The classic approach to both pipelinings is to build a
BFS tree from the root node. When sending messages to
transmit the alarm, however, care has to be taken to not
cause interference. In the root-to-all phase, the root node
first broadcasts its message to all its direct children in the
tree. Upon receiving the message, the children should be
coordinated to not forward the message at the same instant.
The same problem exists in the any-to-root phase, where
several children of a parent may wish to signal an alarm, or
an alarm is propagated on several branches of the BFS tree.
This issue can be solved by either using a global schedule or
by applying randomization techniques. But both solutions
are not satisfactory as they increase the end-to-end delay.
Furthermore, the overhead to maintain a global schedule
may be considerable.

7.1 Signaling of Binary States
As we are interested only in binary states (e.g. alarm

ON, alarm OFF), a much simpler solution is possible. For
instance, the value ON may be encoded by sending a mes-
sage and the value OFF by being quiet. In the any-to-root

 root

1 hop

2 hops

3 hops RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

t

any-to-root root-to-all

Figure 7: Alarms are disseminated in two steps. In
the any-to-root step, any subset of nodes can signal
the root node. The root in turn then relays the
alarm to everybody in the following root-to-all step.

case, each parent only needs to detect whether any of its
children sends a message, and depending on the outcome,
send a message itself or not. To do so, the parent only needs
to detect the activity on the radio channel, e.g. through
an RSSI sniff, eliminating the interference problem. There-
fore, several children may send their message simultaneously
without causing any reception problems. The same holds
for the root-to-all case where all children of a parent may
send their message simultaneously. As a result, we can
apply a tight pipelining which schedules the reception and
transmission solely based on the hop count to the root node
as depicted in Figure 7. Such a tight pipelining minimizes
the end-to-end delay as well as the energy consumption, as
any node only needs to receive and send twice, independent
of the number of its children.

In the above example, the proposed encoding requires that
the ON state strictly dominates the OFF state. I.e. when-
ever at least one node signals the dominant ON state, the
ON state should be disseminated to the entire network. Only
when no node of the entire network requires the dominant
state, the subordinate OFF state is applied. This implicit
conflict resolution between the two states is a natural choice
for many application scenarios such as alarms (the alarm
state is dominant), or any other form of wake-up signaling
where a single node should be able to signal the root (using
only the any-to-root pipeline) or all nodes of the network.
Indeed, the proposed signaling approach may be useful in
other context than alarms. For instance, it may be used to
enable or disable entire software modules, e.g. a debugging
or configuration module that needs not to run most of the
time.

7.2 RSSI vs Waves
Many MAC protocols sample the radio channel prior to

sending a message. If activity is detected, the transmission
is delayed to avoid a collision with the ongoing transmission.
This sampling is called clear channel assessment (CCA) and
is often performed by an RSSI module on the radio chip
which indicates the received signal strength. If the value
is above a given threshold, the channel is assumed to be
occupied. We propose to use exactly this tool to circumvent
interference problems while signaling an alarm. Indeed, the
approach works surprisingly well - as long as all nodes are
deployed indoors. But as soon as we placed nodes on the roof
of our building, the RSSI module started to intercept foreign
signals, leading to roughly 30% false positives, i.e. the RSSI

wave

RSSI

enable

radio

enable

radio

2ms 5ms 8.5ms

sample wave send wave

2ms 5ms

send RSSI packet sample RSSI

Figure 8: When a node is scheduled within the
pipeline, it enables its radio, samples the RSSI or
the wave, and depending on the outcome, transmits
itself an RSSI packet or a wave, respectively.

module indicates activity on the channel even though none
of the nodes is sending.

To overcome this problem, we suggest the following ap-
proach: Instead of sending an arbitrary message which is
detected through the RSSI module, a node that wishes
to communicate an alarm sends an unmodulated wave of
constant frequency which is detected at the receiving nodes.
With this wave based approach, we can reduce the prob-
ability to misinterpret noise as an alarm, as the receiver
expects a clearly predefined signal. It is important to
note that several nodes may send an alarm in parallel, as
the superposition of several waves results in a wave of the
same frequency. Fortunately, the probability for a complete
attenuation is extremely low, and our experiments indicate
that the number of false negatives is in the range of 0.1%
and comparable to the RSSI approach (See Table 1).

7.3 Slotted Signaling
In the remainder of this section we outline the implemen-

tation of a test application to compare the RSSI and the
wave approach for the signaling task.

7.3.1 Signaling Module
The task of the signaling module is to run an any-to-

root sweep to detect requests to change a state, followed
by a root-to-all sweep to disseminate a potential request
to the entire network. Both sweeps are implemented in a
pipelined fashion as described in Section 7.1. As the timings
for the RSSI as well as the wave approach are similar, we
can use the same pipelining for the comparison, see Figure 8.
The time to enable the radio is approximately 2ms and the
time to send an RSSI message is 4.5ms. The RSSI value is
sampled three times in a row, indicating a signal only if all
three measurements show high activity on the radio channel.
We hoped to reduce the number of false positives with this
approach, but the experiments did not show a significant
improvement compared to a single RSSI sniff, indicating a
high correlation of the RSSI measurements. The sampling
time for the wave is set to 5ms yielding 378 samples, and
the transmission time for a wave is set to a total of 8.5ms to
account for synchronization fluctuations.

The signaling module allocates itself a time slot of 1
second. The first 500ms is reserved for the any-to-root
pipeline and the second 500ms for the root-to-all pipeline.
As the overlap of the sender and receiver is only 7ms in each
pipeline step, the depth of the pipelines may be up to 60
hops (leaving some time gap at the beginning and the end
of the time slot). Thus, the current settings theoretically

C

S

RC W R W R W R W R W R W R W R W R F

9 10 11 12 13 14 15 16

32 64

C

S

RC W R W R W R W R W R W R W R W R

17 18 19

64 96

C

S

RC W R W R W R W R W R W R W R W R F

random subset

96 128

C

S

RC W R W R W R W R W R W R W R W R

1 2 3 4 5 6 7 8

0 32

Figure 9: The test application to compare the wave
signaling and the RSSI signaling allocates a total
of 74 time slots within the scheduling window of
128 seconds. The following abbreviations are used
for the modules: CS - Clock Synchronization, RC
- Remote Control, F - Feedback composition, W
- wave signaling, and R - RSSI signaling. The
numbers above the time slots indicate the ID of the
node which triggers an alarm.

allow for large networks with a diameter up to 120 hops if
the root node is chosen in the center.

Whenever startSlot() is called, the signaling module
retrieves the node’s hop-count to the root from the clock
synchronization module and determines its start-time in the
any-to-root and the root-to-all pipeline. An adaptation of
this hop-count is however necessary, as the links used by the
synchronization tree may be unidirectional. This adaptation
is implemented by a simple online search that is launched
whenever the root-to-all sweep does not reflect a request sent
on the any-to-root sweep.

7.4 Test Application
The integration of the signaling module into an applica-

tion, in our case a test application to compare the RSSI and
the wave signaling, is straight forward. All we need to do
is to assign time slots to each module such as to obtain a
non-overlapping schedule. In our test application, we utilize
the following software modules:

• Clock synchronization module

• RSSI signaling module

• Wave signaling module

• Remote control module

• Feedback composition module

The remote control module is used for collecting the logs
of an ongoing experiment and for debugging the applica-
tion. The module supports multi-hop message forwarding
to deliver log messages at a base station such that we can

track the progress of an ongoing experiment. In addition,
it can also route command messages from the base station
to any given node in the network, which was convenient
to debug the application in its initial phase. The feedback
composition module collects and preprocesses the local data
from the experiment and feeds the remote control module
with the log messages. Both of these modules support our
experiments, but they do not influence the synchronization
and signaling tasks in any way as they are temporally
decoupled. Therefore, they could be removed from the
application without consequences for the other modules.

The test application uses an allocation window of 128
seconds within which it schedules its modules, see Figure 9.
The clock synchronization module is scheduled every 32 sec-
onds, followed by the remote control module that gathers the
log messages. Every 64 seconds, the feedback composition
module prepares the log messages which are sent in the
forthcoming remote control time slot. The RSSI signaling
module and the wave signaling module are assigned a total of
64 time slots within the remaining allocation window to test
as many signaling rounds as possible. The two approaches
are tested in an alternating fashion such that they undergo
similar external influences.

Please note how simple the composition of our test ap-
plication is. All we need to do is to schedule the desired
modules. Thanks to the temporal separation, we know that
there will be no interference between the different time slots.
Consequently, the results obtained from our test with many
signaling slots are also valid if the signaling slot is scheduled
less often or in a different context. And that is exactly where
the strength of the slotted programming lies: After testing
a given module, the module can be reused in other con-
texts without requiring further test cases. With traditional
programming approaches, however, any new composition of
software modules needs to be retested from scratch to ensure
that the modules do not interfere or produce undesirable side
effects.

7.5 Deployment and Experiment Setup
We performed our experiments with the TinyNode 584 [20].

This sensor node features an MSP430 CPU with 10kB RAM
and 48kB program space and works with the Xemics XE1205
radio which applies an FSK modulation. For receiving data
packets, the radio is configured in a buffered mode with a
built-in bit synchronizer and a pattern detector. As the bit
synchronizer requires at least some bit transitions every now
and then to operate correctly, we cannot use the buffered
mode for detecting alarms, as they consist of a wave of a
given frequency. We therefore use the continuous mode of
the radio which skips the bit synchronization and pattern
recognition and outputs the raw bit sequence on a data pin.
Our application samples this stream during 5ms to obtain
the described sampling. Whereas we could transmit waves
in the buffered mode by sending a message with every bit
set to 1 (or 0), this requires quite some modification on the
radio stack. In continuous mode, the transmission of a wave
is straight forward, as the radio sends the pattern that is
applied to a given pin. Keeping the pin at 1 (or 0) results
in the desired wave. For our experiment, we have deployed
a total of 19 nodes, 6 of them are outside the building, see
Figure 10. Node 1 acts as base station and as root for the
clock synchronization. The goal of the experiment is to test
the reliability of the proposed wave signaling and compare

�

� �
�

�

��

�

�

	
�

��

�
��

��

�� ��

�	
��

��

�����

����

Figure 10: The nodes 5, 15, 16, 17, 18, and 19
are placed outside the building and are powered by
battery. Whereas the nodes 15, 18, and 19 are on
the roof, the nodes 5, 16, and 17 are placed on the
facade along the four floors to the roof to establish a
radio connection with the nodes on the roof. Node
1 is configured to be the root for the clock synchro-
nization and the signaling. The dashed lines show an
instance of the dynamic clock synchronization tree.

it to the RSSI approach. In particular, we are interested in
the following two errors: A false negative signaling happens
when a node fails to detect a signal sent by a neighboring
node. This type of error is especially undesirable in alarm
systems where the system should immediately react to a
new situation. A false positive signaling occurs when a node
detects a signal even though no node is transmitting. This
fault is often called a false alarm.

To test for these errors, the following scenario is run
through in each window of the slot scheduler, Figure 9
depicts the setup.

• Exactly one node triggers an alarm in the first 38 time
slots. Each node is assigned a time slot pair (consisting
of a time slot for the wave signaling and one for the
RSSI signaling) during which it triggers an alarm. This
is done by sending a wave or an message, respectively,
at the assigned time within the any-to-root pipeline.

• None of the nodes triggers an alarm during the follow-
ing 16 time slots.

• A randomly chosen subset of the nodes triggers an
alarm in the remaining 5 time slot pairs. This last
test case is used to explicitly examine the decoding
resistance when several nodes signal synchronously.

For each of these time slots, we decide whether the signal-
ing was successful or not. As the signaling module described
in Section 7.3.1 performs an any-to-root sweep followed by
a root-to-all sweep, all nodes are supposed to have the same
state at the end of the signaling time slot. Therefore, if one
or several nodes fail to detect the signal in the root-to-all
sweep, we count the time slot as false negative. Similarly, if
one or several nodes detect a signal in one of the 16 silent
time slots, we count the time slot as false positive. Please
note that we test the overall signaling procedure rather than
each individual signal decoding as the latter is prone to
report subsequent errors.

0 24 48 72 96 120 144 1680

2000

4000

6000

8000

10000

12000

C
um

ul
at

ed
 #

 o
f R

SS
I f

al
se

 a
la

rm
s

Time [h]

10%

20%

30%

40%

50%

%
 o

f f
al

se
 a

la
rm

s

Figure 11: The solid line shows the cumulated
number of false positives when using RSSI sniffs
(left scale). The bumpy curve depicts the temporal
variability of the error probability (using the right
scale).

7.6 Results
We have run the above experiment for 168 hours. Dur-

ing this time, the schedule of Figure 9 was repeated 4725
times, generating 113400 rounds in which at least one node
triggered an alarm and 37800 silent rounds without alarm.
Table 1 summarizes the overall outcome of the experiment.
On average, the RSSI had false alarms in 31% of the silent
rounds, compared to only 0.8% of the wave approach. The
probability for a dropped alarm (false negative) is compara-
ble for both the wave and RSSI approach.

Table 1: Quality of the wave and the RSSI signaling.
Wave RSSI Number
signaling signaling of tests

False positives 304 (0.8%) 11815 (31%) 37800
False negatives 94 (0.08%) 132 (0.11%) 113400

Figure 11 depicts the cumulated number of RSSI false
alarms, and the horizontal curve shows how the error prob-
ability changes over time. Whereas RSSI suffers from false
alarms in 31% on average, the curve shows that the error
probability is sometimes as low as 10% for an extended
period of time. This fact can also be observed on the cumu-
lative curve, where the slope flattens temporarily during the
early afternoon of the first and last day of the experiment.
(Please note that all plots start at midnight.) We belive that
this improvement could be related to the weather, as only
the first and last day of the experiment was sunny.

8. CONCLUSION
The advantages of the slotted programming paradigm are

not only in the facilitated software development, just as
important are the modularity and temporal separation of
the different tasks which allow for a predictable execution
of the application. This predictability is a basic require-
ment to build systems for which certain properties can be
guaranteed. In fact, the development of provably correct
software is very hard in general. The core difficulty lies in

the fact that it is hard to compare the application (written in
a programming language) and the specification (written in a
descriptive language). The slotted programming paradigm
cannot solve this problem, but it shortens the gap between
the two worlds by reducing the complexity of the software
implementation, rendering the comparison easier. Most
importantly, the slotted programming achieves this by tem-
porally decoupling independent tasks such that the different
components can be checked separately. In addition, the tem-
poral decoupling renders unnecessary many asynchronous
code blocks as timely execution is ensured implicitly by the
slotted execution model. Such synchronous code is much
easier to analyze as there are much fewer execution patterns
to be considered and the simplified code itself reduces the
risk of bugs.

As of now, slotos does not enforce the modules to perform
their operations within the assigned time slots. In future
work, we wish to extend slotos such that modules cannot
execute code outside their assigned slots such that we can
guarantee a smooth operation even in the presence of a
misbehaving module.

9. ACKNOWLEDGMENTS
We would like to thank Jan Beutel, Nicolas Burri, Roman

Lim, Philipp Sommer, and Pascal von Rickenbach for shar-
ing with us their insights in the programming of wireless
sensor networks. Also, we would like thank our reviewers
for their comments that helped to improve this paper.

10. REFERENCES

[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose,
A. Sheth, B. Shucker, J. Deng, and R. Han. MANTIS:
System Support for Multimodal Networks of In-Situ
Sensors. In WSNA, 2003.

[2] N. Brouwers, P. Corke, and K. Langendoen. A Java
Compatible Virtual Machine for Wireless Sensor
Nodes. In SenSys, 2008.

[3] N. Burri, P. von Rickenbach, and R. Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor
Networks. In IPSN, April 2007.

[4] N. Cooprider, W. Archer, E. Eide, D. Gay, and
J. Regehr. Efficient Memory Safety for TinyOS. In
SenSys, 2007.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Emnets, 2004.

[6] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.
Protothreads: Simplifying Event-Driven Programming
of Memory-Constrained Embedded Systems. In
SenSys, 2006.

[7] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An
Ultra Low Power MAC Protocol for the Downlink of
Infrastructure Wireless Sensor Networks. In
Computers and Communications, 2004.

[8] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK:
An Energy-Aware Resource-Centric RTOS for Sensor
Networks. In RTSS, 2005.

[9] L. Gu and J. A. Stankovic. t-kernel: Providing
Reliable OS Support to Wireless Sensor Networks. In
SenSys, 2006.

[10] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and
M. Srivastava. A Dynamic Operating System for
Sensor Nodes. In MobiSys, 2005.

[11] T. Harbaum. NanoVM.
http://www.harbaum.org/till/nanovm, March 2009.

[12] J. W. Hui and D. E. Culler. IP is Dead, Long Live IP
for Wireless Sensor Networks. In SenSys, 2008.

[13] E. Lee. Computing Needs Time. Communications of
the ACM, 52(5):70–79, 2009.

[14] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal
Clock Synchronization in Networks. In SenSys,
November 2009.

[15] K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen,
and M. Welsh. Resource Aware Programming in the
Pixie OS. In SenSys, 2008.

[16] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The
Flooding Time Synchronization Protocol. In SenSys,
2004.

[17] W. P. McCartney and N. Sridhar. Abstractions for
Safe Concurrent Programming in Networked
Embedded Systems. In SenSys, 2006.

[18] J. Polastre, J. Hill, and D. Culler. Versatile Low
Power Media Access for Wireless Sensor Networks. In
SenSys, 2004.

[19] Sentilla. Sentilla Perk. http://sentilla.com/perk,
July 2009.

[20] Shockfish SA. TinyNode. http://www.tinynode.com,
November 2008.

[21] Y. Sun, O. Gurewitz, and D. B. Johnson. RI-MAC: a
Receiver-Initiated Asynchronous Duty Cycle MAC
Protocol for Dynamic Traffic Loads in Wireless Sensor
Networks. In SenSys, 2008.

[22] TinyOS Alliance. TinyOS. http://www.tinyos.net,
July 2009.

