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Abstract In this paper, we study an algorithmic model

for wireless ad hoc and sensor networks that aims to be

sufficiently close to reality as to represent practical real-

world networks while at the same time being concise

enough to promote strong theoretical results. The quasi unit

disk graph model contains all edges shorter than a

parameter d between 0 and 1 and no edges longer than 1.

We show that—in comparison to the cost known for unit

disk graphs—the complexity results of geographic routing

in this model contain the additional factor 1/d2. We prove

that in quasi unit disk graphs flooding is an asymptotically

message-optimal routing technique, we provide a geo-

graphic routing algorithm being most efficient in dense

networks, and we show that classic geographic routing is

possible with the same asymptotic performance guarantees

as for unit disk graphs if d � 1=
ffiffiffi

2
p

.

Keywords Algorithmic analysis � Cost metrics �
Geographic routing � Network models � Wireless ad hoc

networks

1 Introduction

One manifestation of the currently observed and continuing

miniaturization of electronics in general and wireless

communication technology in particular is mobile ad hoc

networks. Ad hoc networks are formed by mobile devices

consisting of, among other components, a processor, some

memory, a radio communication unit, and a power source,

due to physical constraints commonly a weak battery or a

small solar cell.

Typically, wireless ad hoc networks are intended to be

employed where no communication infrastructure is

present before the deployment of the ad hoc network or

where reliance on previously available infrastructure is not

desired or not possible. Common scenarios for ad hoc

networks include communication among rescue teams,

police squads, or during fire fighting or other disaster relief

actions. Another often mentioned scenario involves cars

forming an ad hoc network for professional, entertainment,

or informational purposes. Car-mounted radio broadcast

warning systems automatically alerting approaching auto-

mobiles of accidents or other unexpected traffic events are

frequently envisioned. Also for meetings or conferences ad

hoc networks may have their value. Furthermore, ad hoc

networks may find their application for security

and—inevitably—for military purposes.1

Sensor networks can be considered a specialization of ad

hoc networks in which nodes are equipped with sensors

measuring certain physical values, such as humidity,

brightness, temperature, acceleration, or vibration. Usually,

the sensor nodes are designed to report measured infor-

mation to a data sink node. Among the most common
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scenarios for sensor networks are environmental monitor-

ing tasks, for instance to warn of imminent natural disasters

or for the purpose of biological or other scientific obser-

vations. Typically, sensor networks will be deployed in

areas difficult to access or, more generally, where human

presence or stationary monitoring infrastructure is unde-

sired or impossible.

A widely employed model for the study of ad hoc and

sensor networks is the so-called unit disk graph (UDG)

model: Nodes are located in the Euclidean plane and are

assumed to have identical (unit) transmission radii. Con-

sequently an edge between two nodes—representing that

they are in mutual transmission range—exists if and only if

their Euclidean distance is not greater than one. Accord-

ingly, a unit disk graph models a flat environment with

network devices equipped with wireless radio, all having

equal transmission ranges. Edges in the UDG correspond to

radio devices positioned in direct mutual communication

range. On the one hand, clearly, this is a glaring simplifi-

cation of reality, since, even if all network nodes are

homogeneous, this model does not account for the presence

of obstacles, such as walls, buildings, mountains—or also

weather conditions—which might obstruct signal propa-

gation. On the other hand, unit disk graphs are simple

enough to allow of strong theoretical results (see Sect. 2).

In this paper we study a graph model, originally intro-

duced in [5], which is considerably closer to reality. We

maintain the assumption that all mobile nodes are placed in

the plane (that is, they have coordinates in R
2). In a quasi

unit disk graph, two nodes are connected by an edge if their

distance is at most d, d being a parameter between 0 and 1.

Furthermore, if the distance between two nodes is greater

than 1, no edge exists between them. In the range between

d and 1, the existence of an edge is not specified.

In contrast to unit disk graphs, the quasi unit disk graph

model aims to account for the possible presence of obsta-

cles to radio signal propagation: Nodes having a distance

larger than d but at most 1 can or cannot be connected by

an edge, depending on how unhinderedly the signals

propagate between the two nodes. This model however

does not account explicitly for such obstacles; it is basi-

cally a formalization of the fact that a given node can

communicate with sufficiently close nodes while it cannot

do so with distant nodes, where ‘‘close’’ and ‘‘distant’’ are

characterized in a more general way than with the unit disk

graph’s single sharp threshold value of exactly one unit of

length. In other words, the quasi unit disk graph relies on

two guarantees: Edges of length at most d are always

present; edges of length greater than 1 never exist.

We are aware that the quasi unit disk graph model is a

static communication model that does not take into con-

sideration interference among transmitting nodes. Recent

work shows that explicit consideration of interference

among nodes leads to a considerably different class of

algorithmic problems (see Sect. 2). This paper in contrast

focuses on and confines itself to the study of a general-

ization of the unit disk graph model that is at the same time

also a closer representation of reality.

We first establish a constructive lower bound for quasi

unit disk graphs showing that basically any algorithm

without routing tables requires sending of XððcdÞ
2Þ mes-

sages to route from a source s to a destination t, where c is

the length of the shortest path between s and t. We show

that, with the aid of a topology control graph structure, a

restricted flooding algorithm is guaranteed not to perform

worse and that this technique is consequently asymptoti-

cally message-optimal.

A more subtle approach than flooding of the network is

possible if we additionally make the basic assumptions of

geographic routing—that is attributing the network nodes

with information about their own and their neighbors’

positions and assuming that the message source knows the

position of the destination. We present a combination of

greedy routing and restricted flooding. This yields a routing

algorithm that is still asymptotically optimal in the worst

case but also efficient in the average case, as previous work

on average-case efficiency of geographic ad hoc routing

algorithms suggests [10, 44, 47]. Finally we show that, if

we assume d to be at least 1=
ffiffiffi

2
p

, it is possible to locally

introduce virtual edges and perform the classic variations

of geographic routing while preserving performance guar-

antees known from unit disk graphs.

After discussing related work in the following section,

we state the model and provide definitions in Sect. 3. In

Sect. 4, we establish a lower bound for the message com-

plexity of so-called volatile memory routing algorithms.

Section 5 contains the description of the topology control

structure forming the basis for the subsequent algorithms.

Section 6 provides the analysis of flooding algorithms with

respect to message and time complexity. Section 7 dis-

cusses the combination of flooding with a greedy approach

for geographic routing, whereas Sect. 8 shows that for

large enough d, classic geographic routing can be

employed. Section 9 draws the conclusions of the paper.

2 Related work

So far, the most popular network structure to model mobile

ad hoc networks has been the unit disk graph. The under-

lying assumption of this model is that the nodes are placed

in the plane, all of them having the same transmission

range—normalized to a radius of one unit of length. In the

unit disk graph model a considerable number of theoretical

results have been found with respect to aspects of wireless

ad hoc and sensor networks as diverse as topology control
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[11, 20, 70, 72, 73], the construction of dominating sets [2,

22, 23, 26, 28, 37, 43, 71], network initialization [40, 55,

56] and deployment [54], geographic routing [44, 45, 47],

or positioning [60].

A more general model is provided by disk graphs. In

contrast to unit disk graphs, disk graphs allow nodes to

have different transmission ranges. Besides unit disk

graphs, also disk graphs have been widely used to model

wireless networks. However, while for unit disk graphs a

large number of theoretical results have been achieved,

most of the knowledge on disk graphs is based on simu-

lations, [52] being the exception that proves the rule. If disk

graphs provide a simple method to analyze unidirectional

links, it is however not possible to model any kind of

obstacles using this model.

Another example of a more general modeling of wire-

less networks are growth-bounded graphs [36, 38, 42],

basically capturing and generalizing the observation that a

wireless network node usually cannot have an arbitrary

number of non-neighboring neighbors.

Yet another approach to the modeling of wireless net-

works explicitly considers interference among nodes.

While some work tries to characterize interference by static

UDG-based models [11, 20, 57, 70], other researchers

focus on the interplay of scheduling and transmission

power based on a realistic physical signal propagation

model [13, 15, 16, 24, 27, 34, 53, 58, 59]. A more general

and thorough analysis and comparison of different

approaches to algorithmic modeling of wireless ad hoc and

sensor networks can be found in [66].

In this paper, we go beyond unit disk graphs by allowing

that certain sufficiently long edges may or may not exist in

the considered network graph. A model has been described

in [5] which is—up to scaling—identical to our quasi unit

disk graph model. The authors of [5] focused on geo-

graphic routing with guaranteed message delivery for cer-

tain instances of the quasi unit disk graph model. In [46]

and this paper—in particular in Sect. 8—we generalize and

extend these results towards algorithm efficiency. The

quasi unit disk graph model was later studied in the context

of network deployment [39] and graph embedding [41].

In this paper, we give different complexity results con-

cerning the quasi-UDG model. We show how to construct a

subgraph of the network graph G which enables cost-

optimal flooding and we show how the flooding overhead

can be reduced (in practice) by using geographic routing

for d � 1=
ffiffiffi

2
p

and a combination of geographic routing and

flooding for arbitrary d. Constructing a sub-structure G¢ of

G such that G¢ features some desirable properties is often

termed topology control. Topology control is used to

reduce the number of nodes and the number of edges

involved in protocols such as routing. An important issue

of such precomputation is the reduction of interference

effects, message complexity, or energy consumption.

Sometimes, algorithms need network graphs with special

properties; for example all face-routing based geographic

routing algorithms [10, 30, 35, 44, 45, 47] need a planar

graph to operate correctly. For unit disk graphs, a number

of different ideas in order to reduce the complexity of the

network topology have been proposed. Many of them are

based on dominating sets [2, 22, 23, 26, 28, 37, 43, 71],

angle of arrival [73], or geographic clustering [19]. For

finding planar subgraphs of unit disk graphs, various con-

structions of different quality and complexity have been

conceived [7, 21, 23, 51, 68]. Other proposals strive to

combine more and more beneficial complexity-reducing

properties [72], while yet others focus on interference

reduction [11, 20, 70] in unit disk graphs. Surveys on

topology control algorithms for ad hoc networks in general

can be found in [64] and [65].

Flooding—an essential ingredient of many ad hoc

routing algorithms, such as DSR [29] or AODV [63]—is

one of the main techniques employed in this paper. It is

therefore crucial to reduce the number of messages sent in

this process. One way to reduce the cost of flooding is to

lower the complexity of the network by using appropriate

topology control mechanisms, the approach chosen in this

paper. Apart from this, there are other approaches which

try to optimize flooding performance by using geographic

information about the destination [6, 33]. These algorithms

differ from the greedy routing/flooding approach presented

in this paper in that they only try to flood into the right

direction without actually applying geographic routing

whenever possible.

Geographic routing (also known as location-based,

position-based, or geometric routing) has also mainly been

studied in unit disk graphs. Greedy routing algorithms have

been studied in [17, 25, 35, 67] (an early approach com-

bining greedy routing and flooding techniques being stud-

ied in [17]). Greedy routing behaves well in practice, but

no guarantee can be given about the arrival of messages.

The first algorithm with guaranteed delivery was Face

Routing in [35] (called Compass Routing II there). Face

Routing walks along faces of planar graphs and proceeds

along the line connecting the source and the destination.

Besides guaranteeing to reach the destination, this algo-

rithm does so with O(n) messages, where n is the number

of network nodes. However, this is unsatisfactory, since

also a simple flooding algorithm will reach the destination

with O(n) messages. Additionally, it would be desirable to

see the algorithm cost depend on the distance between the

source and the destination. There have been later sugges-

tions for algorithms with guaranteed message delivery [10,

14]; at least in the worst case, however, none of them

outperforms the original Face Routing. Yet other geo-

graphic routing algorithms have been shown to reach the

Wireless Netw (2008) 14:715–729 717

123



destination in special planar graphs without any or

restricted runtime guarantees [8, 9, 23]. A more detailed

overview of geographic routing can be found in [69].

The first geographic routing algorithm whose cost is

bounded by a function of the cost c of an optimal path is

Adaptive Face Routing (AFR) as introduced in [45]. It was

also shown that this is the worst-case optimal result any

geographic routing algorithm can achieve. Face Routing and

also AFR are however not applicable for practical purposes

due to their strict employment of face traversal. There have

been proposals for practical purposes to combine greedy

routing with face routing [10, 14, 30], however without

competitive worst-case guarantees. The GOAFR algorithm

(Greedy Other Adaptive Face Routing) introduced in [47]

was the first algorithm to combine greedy and face routing in

a worst-case optimal way; the GOAFR+ algorithm [44]

remains asymptotically worst-case optimal while improving

GOAFR’s efficiency in average-case networks.

Lately, first experiences with geographic and in partic-

ular face routing in practical networks have been made [31,

32]. More specifically, problems in connection with graph

planarization that can occur in practice were observed,

documented, and tackled. Another strand of research

approaches these issues by allowing the routing algorithm

to store certain limited information in the network nodes

[48, 49].

Geographic routing is based on two assumptions: First,

that every network node knows its own and its direct

neighbors’ current positions, and second, that the source of

a message is informed about the current location of the

destination. Above all the second assumption is algorith-

mically interesting and has been conceptually realized and

analyzed in the context of so-called location services.

Among the most prominent examples of location services

are the GLS Grid Location System [50], which describes a

hierarchical system of location information servers allow-

ing for efficient position lookup in many cases, the

Locality-Aware Location Service LLS [1], which extends

this concept to worst-case considerations, and the MLS

location service [18], which additionally takes into account

node mobility. A more detailed discussion of the basic

assumptions of geographic routing can be found in [74,

Chapter 11].

3 Model

This section provides definitions of the model employed in

this paper. We first give a formal definition of our ad hoc

network model:

Definition 3.1 (Quasi Unit Disk Graph) Let V be a set of

nodes in the 2-dimensional plane R
2 and d 2[0, 1] be a

parameter. The symmetric Euclidean graph (V, E), such

that for any pair of nodes u,v 2V

– (u,v) 2E if |u v| £ d and

– ðu; vÞ 62 E if |u v| > 1,

where |u v| is the Euclidean distance between the nodes u

and v, is called a quasi unit disk graph (quasi-UDG) with

parameter d.

In the subsequent section, we establish a lower bound

for the message complexity of so-called volatile memory

routing algorithms. With this model nodes are attributed

with a short-term memory in which for each message a

constant number of bits may be stored temporarily.

Definition 3.2. (Volatile memory routing algorithm) The

task of a volatile memory routing algorithm is to transmit a

message from a source s to a destination t in a graph, where

each node of the graph holds a memory in which O(log n)

bits may be stored as long as the message is en route, where

n is the number of network nodes.

In particular this model allows the nodes to store mes-

sage identifiers—having a bit length logarithmic in the

number of nodes—for flooding (cf. Sect. 6).

The second important algorithm model discussed in this

paper is geographic routing [45, 74]:

Definition 3.3. (Geographic Routing Algorithm) The task

of a geographic routing algorithm is to transmit a message

from a source s to a destination t in a graph while observing

the following rules:

– Every node is informed about its own and all of its

neighbors’ positions.

– The source of a message knows the position of the

message destination.

– A message may contain control information about at

most O(1) nodes.

– A node is only allowed to temporarily store a message

before retransmission; no other memory is available.

As stated above, in original geographic routing a node is

allowed to store messages only temporarily before relaying

them. In order to enable an algorithm to employ flooding,

this restriction has to be relaxed:

Definition 3.4. (Geographic Volatile Memory Routing

Algorithm) A geographic volatile memory routing algo-

rithm is a volatile memory routing algorithm additionally

observing the first three rules of the definition of geo-

graphic routing algorithms.

In the following, we provide a concise overview of basic

concepts of distributed computing vital for the under-

standing of this paper. More detailed descriptions can be

found in textbooks, such as in [61].
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At certain points of the paper, we have to distinguish

between the synchronous and the asynchronous model of

distributed computation. In the synchronous model, com-

munication delays are assumed to be bounded. As a con-

sequence it can also be assumed that all processes running

on different network nodes perform their message sending

and receiving operations in simultaneous and globally

clocked rounds. In the asynchronous model, message

delays are unbounded. No assumptions can be made on the

duration of single process operations.

Two fundamental measures in distributed computing are

message and time complexity. The message complexity of a

distributed algorithm is the total number of messages sent

during its execution. The definition of time complexity

depends on the synchrony model: In the synchronous

model, time complexity is the total number of rounds

elapsed between algorithm start and algorithm termination.

In the asynchronous model such a simple time model cannot

naturally be obtained, since the transmission delay of a

message is unbounded. The common solution to this is the

assumption that the message delay is at most one time unit.

Finally, since we consider message complexities in this

paper, we define the cost of a path according to the link

distance metric, that is, the cost of a path is the number of

edges on the path. Similarly, we consider spanner graphs

with respect to the link distance metric: A graph G¢ = (V,

E¢) is a spanner of a graph G = (V, E) with stretch factor k

if and only if for any pair of nodes (u,v) the cost of the

shortest path in G¢ is at most k times the cost of the shortest

path in G.

4 A lower bound in quasi unit disk graphs

Before discussing particular routing algorithms, we present

in this section a lower bound on the message complexity of

any volatile memory routing algorithm. This result is

established constructing a family of graphs.

Theorem 4.1. Let c be the cost of a shortest path from s

to t. There exist graphs in which any (randomized) volatile

memory routing algorithm has (expected) message com-

plexity XððcdÞ
2Þ.

Proof We provide a constructive proof by describing a

class of graphs for which the theorem holds.

The basic element used for the construction of these

graphs is formed by k nodes (k to be determined later)

equidistantly placed on a line, such that the distance

between two adjacent nodes is d þ e for a small e[0 (cf.

vertical chains in Fig. 1). There exists an edge between

every pair of nodes (u,v), such that ðd1de � 1Þ d\juvj � 1,

that is, the nodes are connected by all the edges with

maximum Euclidean length not greater than 1. In addition

there is a head node having an edge to each one of the first

d1de � 1 nodes on the line (the head node is located such

that all additional edges have length at most 1). As shown

in Fig. 1, k such vertical chains are placed side by side with

distance d þ e such that the nodes form a matrix. The head

nodes of these chains are interconnected in a way that they

have the same chain structure among themselves (upper-

most row in Fig. 1) with their head node (of second order)

denoted by s. The node t—located near the bottom right

corner of the node matrix—is connected to one of the end

nodes of exactly one of the vertical chains by a simple

chain of nodes. Note that the constructed graph is a quasi

unit disk graph.

The main property posing a problem for a routing

algorithm is that a matrix column consists of d1de � 1

interleaved chains which are only connected via the head

node. (The same also holds for the first matrix row.)

Consequently only one of the neighbors of s leads to h, the

head node of the column connected to t, and only one of the

neighbors of h leads to the bottom node connected to t.

Since a volatile memory routing algorithm has no a priori

information about the graph structure, a deterministic

algorithm has to explore every matrix node before finding

the path to t. (For a randomized algorithm, t can be con-

nected to the matrix such that the algorithm has to explore

roughly half of the matrix nodes in expectation.) A volatile

memory routing algorithm therefore has to send XðnÞ
messages, where n is the total number of nodes. The

optimal path on the other hand—almost exclusively using

edges of length nearly 1—has cost about 2k � d, which—

together with k �
ffiffiffi

n
p

—establishes the theorem. h

Fig. 1 Message-complexity lower bound for volatile memory routing

algorithms in quasi unit disk graphs
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5 Topology control

In the previous section we introduced a lower bound graph

class in which any volatile memory routing algorithm

cannot find the destination with message complexity less

than XððcdÞ
2Þ. In this section we now describe how to obtain

a subgraph of a given quasi unit disk graph which forms the

basis for our algorithms matching the lower bound. This

Backbone Graph features two important properties

exploited for routing: (1) It contains in a given area A at

most OðA
d2Þ nodes and (2) it is a Oðlogð1dÞÞ-spanner.

Given a quasi unit disk graph G, the Backbone Graph is

constructed in three steps. Steps 1 and 2 can be performed

by a standard distributed algorithm (as described in [2]) by

having the nodes send dominator and connector mes-

sages. The details of this algorithm are omitted, as such

discussion would go beyond the scope of this paper.

In particular, the Backbone Graph is constructed in the

following steps:

1. The first step consists of a clustering process. We

construct a Maximal Independent Set MIS of nodes in

G. Note that since MIS is an independent set in G, any

two nodes in MIS have distance greater than d and

consequently a given area A contains at most OðA
d2Þ

nodes in MIS. For the purpose of routing, the nodes in

MIS will later become cluster heads: Since the nodes in

MIS also form a Dominating Set, any node in G will

have at least one node from MIS within its neighbor-

hood and will choose one of these as its cluster head.

2. In a second step the cluster heads are linked together

by connector nodes, connecting all pairs of nodes in

MIS that are at most three hops apart in G. This results

in the Dense Backbone Graph GDBG. Since MIS is a

Dominating Set, the cluster heads can be connected by

bridges consisting of at most two nodes. Furthermore,

GDBG is a constant-stretch spanner of G.

3. GDBG can contain XðA
d4Þ nodes in a given area A, which

exceeds the lower bound by a factor of 1
d2. The size of MIS

alone matching the lower bound, the third step now

reduces the number of connecting bridges between

cluster heads. Let G
ðvÞ
DBG denote the graph with node set

MIS and (virtual) edges between all nodes connected by

bridges in GDBG. Our objective is now to construct a

subgraph G
ðvÞ
BG of G

ðvÞ
DBG with OðA

d2Þ (virtual) edges within

the area A. It eventually follows that the final Backbone

Graph GBG—where the (virtual) edges in GBG
(v) have again

been replaced by connector nodes and their adjacent

edges—contains at most OðA
d2Þ nodes within the area A.

In order to obtain a graph GBG
(v) with the desired property,

the plane is divided by a grid into square cells of side

length 6. In each cell z all nodes and edges completely

contained within z temporarily form a local network.

(Note that we assume for this operation that the nodes

are informed about their positions.) The number of

nodes contained within z is at most Oð 1
d2Þ. We now apply

an algorithm constructing a sparse spanner [3, 61, 62] to

reduce the number of edges contained in z to Oð 1
d2Þ.2

This procedure is repeated three times on grids with

their origin shifted by (3,0), (0,3), and (3,3), respec-

tively, relative to the origin of the first grid (cf. Fig. 2).

Note that these are local operations since the subgraphs

are of bounded size. The edge set of graph GBG
(v) is finally

formed by the union of all edges resulting from the edge

reduction steps on all four grids.

The following lemma proves the first essential property

of this subgraph of the given quasi unit disk graph.

Lemma 5.1 In a given area A (with constant extension in

each direction) the number of nodes and the number of

edges in the Backbone Graph are both bounded by OðA
d2Þ.

Proof The grids employed for the edge reduction steps are

chosen to have two properties: (1) Every edge in GDBG
(v) is

completely contained in at least one cell and (2) any region

(with constant extension in each direction) is intersected by

at most a constant number of grid cells (for instance a square

of side length 3 can be intersected in total by at most nine grid

cells). Property (1) guarantees that every edge is considered

at least with one of the four grids: Together with the fact that

the edge reduction step does not alter the number of com-

ponents in a cell subgraph, it follows that the number of

components in the complete graph is not altered either. Since

each resulting subgraph contains at most Oð 1
d2Þ edges and

together with Property (2), it follows that also the union of all

remaining edges—that is the number of edges in GBG
(v) —is not

Fig. 2 Grid structure employed in the construction of a sparse

spanner

2 The mentioned algorithm constructs for a constant j � 1 an OðjÞ
-spanner with at most n1þ1=j edges. Setting j ¼ log n and since n ¼ 1

d2

holds, we obtain a graph with the required properties.
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greater than Oð 1
d2Þ for a constant region. The fact that each

edge in GBG
(v) corresponds to at most two nodes and three

edges in GBG and GBG
(v) having at most OðA

d2Þ nodes for an area

A (the nodes in MIS) finally leads to the lemma. h

The second essential property of GBG is shown in the

following lemma.

Lemma 5.2 The Backbone Graph GBG is a spanner of

GDBG with stretch factor Oðlogð1dÞÞ.

Proof Every edge in GDBG
(v) is contained in at least one

grid cell and consequently also considered in at least one of

the respective subgraphs. Since the edges retained in each

subgraph form a Oðlogð1dÞÞ -spanner (on the subgraph), this

property also holds for the union of all subgraphs, GBG
(v) .

Finally, each edge in GBG
(v) resulting in at most three edges

in GBG, the lemma follows. h

In distributed computing, a distinction is made between

the one-hop broadcast model and the point-to-point com-

munication model: In the one-hop broadcast model a node

can simultaneously send a message to all its neighbors,

whereas in the point-to-point communication model, a

message is sent over an edge to one distinct neighbor. The

algorithms described in the remaining sections are assumed

to execute on GBG. Since in this graph the number of nodes

and the number of edges are asymptotically equal in a

given area, the two models can be employed interchange-

ably—depending on whether we argue over the number of

nodes or edges in the graph—with respect to both

asymptotic time and asymptotic message complexity.

When routing a message m from a source s¢ to a desti-

nation t¢, the nodes s¢ and t¢ will in general not be cluster

heads. The complete process of routing therefore consists of

1. s¢ sending m to its associated cluster head s,

2. routing m from s to t, the cluster head associated to t¢,
and

3. t sending m to t¢.

Since steps 1 and 3 incur only constant cost with respect

to both message and time complexity, we exclusively

consider step 2 in the remaining part of the paper. When-

ever mentioning a source s or a destination t, we therefore

assume that s and t are cluster heads.

6 Message-optimal flooding

In this section, we discuss the message and time com-

plexities of the Echo algorithm in quasi unit disk graphs.

For succinctness, we only give a short outline of the

algorithm execution; more detailed information can be

found for instance in [12, 61]. The Echo algorithm consist

of a flooding phase and an echo phase.

– The flooding phase is initiated by the source s by sending a

flooding message—containing a time-to-live (TTL) coun-

ter s—to all its neighbors. Each node receiving the flooding

message for the first time decrements the TTL counter by

one and retransmits the message to all its neighbors (with

the exception of the neighbor it received the message

from). In the synchronous model, this flooding phase

constructs a Breadth First Search (BFS) tree.

– From the leaves of this tree—the nodes where the s
counter reaches zero—echo messages are sent back to the

source along the BFS tree constructed during the flooding

phase. An inner node in the BFS tree can decide locally

when to send an echo message to its parent in the tree by

awaiting receipt of echo messages from all of its children.

By initiating the first flooding phase with s set to 1 and

relaunching a flooding phase with doubled s whenever the

echo messages indicate that the destination has not yet been

reached, both time and message complexities can be

bounded:

Theorem 6.1 Employed on GBG in the synchronous

model, the Echo algorithm reaches the destination with

message complexity OððcdÞ
2Þ and time complexity

Oðc � logð1dÞÞ, where c is the cost of a shortest path between

s and t. This is asymptotically optimal with respect to

message complexity.

Proof The Echo algorithm floods the complete network

with message complexity O(m) and time complexity

O(D), where m is the number of edges in the network and

D is the diameter of the network. Since no edge in GBG is

longer than 1, all nodes reached with a certain s lie within

the circle centered at s with radius s. The number of

edges within this circle is bounded by OððsdÞ
2Þ. Note that

the destination is reached at the latest for the maximal s
less than 2�c. Since s is doubled after each failure, the

total number of visited edges is formed by a geometric

series and consequently asymptotically dominated by the

number of edges in the circle with maximum s, from

which the message complexity follows. Asymptotic

optimality is a consequence of the lower bound estab-

lished in Sect. 4.

The time complexity follows from the fact that the BFS

tree constructed during the flooding phase contains a

shortest path from s to t. Since GBG is a logð1dÞ -spanner of

G, the shortest path in GBG, on which the algorithm is

executed, is c � logð1dÞ. The time complexity of a single

flooding-echo round being proportional to s and again the

total time complexity being asymptotically dominated by

the maximum s used, the time complexity follows. h

In the asynchronous model, the synchronizer construc-

tion introduced in [4] can be employed.

Wireless Netw (2008) 14:715–729 721

123



Theorem 6.2 When employed on GBG in the asynchro-

nous model, the Echo algorithm reaches the destination

with message complexity OððcdÞ
2 � log3ðcdÞÞ and time com-

plexity Oðc � logð1dÞ � log3ðcdÞÞ, where c is the cost of the

shortest path between s and t.

Proof The synchronizer construction introduced in [4]

incurs an additional cost factor of Oðlog3ð1dÞÞ, where n is

the number of involved network nodes, with respect to both

message and time complexity. As in our case the number of

involved nodes is in OððcdÞ
2Þ, this cost factor is in

Oðlog3ðcdÞÞ. Plugging in the above Echo algorithm for the

synchronous model yields the lemma. h

For geographic routing as discussed in the following

section, a variant of Echo can be defined by replacing the

time-to-live counter by a geometric argument: The flooding

message is retransmitted only by nodes located within a

circle centered at s with a certain radius r.

Lemma 6.3 The geographic Echo algorithm reaches t

with message and time complexity OððcdÞ
2Þ, where c is the

link cost of the shortest path. This holds for both the syn-

chronous and the asynchronous model and is asymptoti-

cally optimal with respect to message complexity.

Proof In contrast to the above Echo algorithm using TTL,

all nodes located within the restricting circle centered at s

with radius r participate in the execution of the geographic

algorithm (except for nodes that are not connected to the

source by any path entirely contained in this circle). This

circle containing at most OððrdÞ
2Þ nodes, the message

complexity follows, where the remaining reasoning is

analogous to the one in the proof of Theorem 6.1. The time

complexity follows from the fact that time complexity

cannot be greater than message complexity. h

7 Greedy Echo routing

Although asymptotically message-optimal, a flooding-based

algorithm is prohibitively expensive in most networks for

practical purposes. Previous work showed how this problem

can be tackled by combining a correct routing algorithm

(which is guaranteed to find the destination) with a greedy

routing scheme [10, 47, 74]. In this section we follow this

example by describing a geographic volatile memory routing

algorithm that tries to leverage the advantages of a greedy

routing approach with respect to both conceptual simplicity

and message-efficiency: In order to route a message, a node

simply forwards it to its neighbor closest to the destination.

Greedy routing can however run into a local minimum with

respect to the distance to the destination, that is a node

without any neighbors closer to t. In the algorithm described

below, such a local minimum is overcome by employment of

restricted flooding, in particular by the aid of the geographic

Echo algorithm as described in the previous section. In this

section we therefore refer by Echo to the geographic Echo

algorithm. We denote by Echor the subalgorithm of geo-

graphic Echo consisting of the flooding and the corre-

sponding echo phase for the radius r.

Our algorithm GEcho combines both greedy routing and

flooding in two modes: Generally the message is forwarded

in greedy mode as long as possible. Whenever running into a

local minimum, the algorithm switches to echo mode. In

order to keep the cost of flooding-based echo low, the

algorithm tries to fall back to greedy mode as early as pos-

sible. The fallback criterion is chosen such that the combined

routing algorithm is asymptotically optimal with respect to

message complexity. In particular, the Echo algorithm does

not terminate only when finding t, but already when finding a

node v which is significantly closer to t than the local mini-

mum, as described in step 2 of the GEcho algorithm:

GEcho The value q is a constant parameter chosen prior

to algorithm execution such that 0 < q £ 1.

0. Start at s.

1. (Greedy Mode) Forward the message to the neighbor

in G closest to t. If t is reached, terminate. If a local

minimum is reached, continue with step 2, otherwise

repeat step 1 at the next node.

2. (Echo Mode) Execute algorithm Echo starting at the

local minimum u (with an initial flooding radius of 1)

until either reaching t—in which case the algorithm

terminates—or finding a node v, such that |u t| – |v t| ‡
q�r, where r is the currently chosen radius in Echor, the

subalgorithm of Echo using radius r. Proceed to v and

continue with step 1.

In the following, we obtain a statement on the asymp-

totic complexity of the algorithm. We first show that the

number of messages sent in greedy mode is bounded:

Lemma 7.1 The number of messages sent in greedy mode

is bounded by OððcdÞ
2Þ.

Proof Let us exclusively consider the sequence U of

nodes sending messages in greedy mode or receiving

messages sent in greedy mode during the execution of the

algorithm. Note that the distance to t is strictly decreasing

within U. Since the algorithm stays in greedy mode until

reaching a local minimum, U is partitioned into subse-

quences U1;U2; . . . ;Uk; k � 1 of nodes by the occurrence

of local minima: A local minimum only receives a greedy

message without being able to send it to a subsequent node

in greedy mode. Within a subsequence Ui ¼ u1; u2; . . . ; u‘i
,

‘i � 2 any two nodes uj; ujþ2; 1 � j � ‘i � 2 have distance

greater than d (otherwise uj would have sent the greedy
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message directly to ujþ2). On the other hand also the dis-

tance between a local minimum u‘i
and the first node in the

following subsequence Uiþ1 have distance greater than d

(otherwise u‘i
would not be a local minimum). Together

with the fact that all nodes in U are located within the circle

C centered at t with radius jstj, the number of nodes in the

total sequence U is therefore bounded by twice the maxi-

mum number of nodes with relative distance greater than

d—or likewise the maximum number of nonintersecting

disks of radius d/2—that can be placed within C. With

jstj � c, the lemma follows. h

We now confine ourselves to the number of messages

sent in echo mode. Note that after each round, defined to be

one execution of step 1 or step 2, the algorithm is strictly

closer to t than before that round.

Lemma 7.2 For a given r, the subalgorithm Echor is

executed at most djstj
qr � 1e times.

Proof According to the criterion described in step 2, an

echo round initiated at node u terminates—unless arriving

at t—only if it finds a node v such that jutj � jvtj � q � r.

For any r (also if at a particular node Echor fails and r is

doubled) such progress can be made at most djstj
qr � 1e

times, since after each round the algorithm is strictly closer

to t than before. h

With this property we can obtain the total number of

messages sent in echo mode during algorithm execution.

Lemma 7.3 The total number of messages sent in echo

mode is at most OððcdÞ
2Þ.

Proof We obtain the total number of messages sent in

echo mode by summing up over all nodes ever contained in

a circle bounding Echor. Since the number of nodes con-

tained in a given circular area is asymptotically propor-

tional to the size of the area, it is sufficient to compute the

total area covered by all Echor bounding circles. Let

ri ¼ 2i; i ¼ 1; 2; 3; . . . denote the radii of the echo-bound-

ing circles. The maximum ri can be found by the obser-

vation that (1) all echo-restricting circles have their centers

at a node not farther from t than s and (2) the circle cen-

tered at any node not farther from t than s having radius 2 c

completely contains the shortest path. Since the value of r

in Echor is obtained by doubling, the maximum ri used

overall is less than 4 c; the maximum i reached is conse-

quently dlogð4cÞe. With Ri being the total number of

bounding circles used with radius ri, we obtain

A ¼
X

dlogð4cÞe

i¼0

Ri � pr2
i

for the total covered area A. Using Lemma 7.2, we obtain

A � p �
X

dlogð4cÞe

i¼0

djstj
qri
� 1e � r2

i

\ p �
X

dlogð4cÞe

i¼0

jstj
q
� ri �
ðjstj�cÞ

pc

q
�
X

dlogð4cÞe

i¼0

2i

¼ pc

q
�
�

2dlogð4cÞeþ1 � 1
�

2 Oðc2Þ:

The Area A containing at most OðA
d2Þ nodes (cf. Sect. 5),

the lemma follows. h

In total, the complexity of the GEcho algorithm can be

bounded as follows:

Lemma 7.4 The algorithm GEcho finds the destination

with both message and time complexity OððcdÞ
2Þ, where c is

the link cost of the shortest path.

Proof The message complexity bound follows directly

from the previous two lemmas. The time complexity bound

follows from the fact that time complexity cannot be

greater than message complexity. h

Theorem 7.5 The algorithm GEcho is asymptotically

optimal with respect to message complexity.

Proof Follows from Lemma 7.4 and Sect. 4. h

8 Large d-values

This section treats the special case where the parameter d of

the quasi unit disk graph G is d � 1=
ffiffiffi

2
p

. This case was

already considered by Barrière et al. [5]. It is shown there that

for d � 1=
ffiffiffi

2
p

standard geographic routing is possible. Here

we extend these results and present a geographic routing

algorithm which is asymptotically optimal, that is, whose cost

is quadratic in the cost of an optimal path (cf. [45]).

The structural difference between quasi-UDGs for

d\1=
ffiffiffi

2
p

and quasi-UDGs for d � 1=
ffiffiffi

2
p

lies in the local

environment of intersecting edges. If d � 1=
ffiffiffi

2
p

, all inter-

sections can be detected locally. This is shown by the

following two lemmas.

Lemma 8.1 Let e ¼ ðu; vÞ be an edge and w be a node

which is in the disk with diameter (u,v). In this configu-

ration w has an edge to at least one of the nodes u or v.

Proof The following proof is illustrated by Fig. 3.

Because juvj � 1, the regions of the points whose distances

to u and v are greater than 1=
ffiffiffi

2
p

(shaded areas in Fig. 3) do

not intersect inside C, the disk with diameter (u, v). Thus

juwj � 1=
ffiffiffi

2
p

and/or jvwj � 1=
ffiffiffi

2
p

. In the figure, this holds
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for u and w, implying that G contains an edge between

these two nodes. h

Lemma 8.2 Let e1 ¼ ðu1; v1Þ and e2 ¼ ðu2; v2Þ be two

intersecting edges in a quasi-UDG G with parameter

d � 1=
ffiffiffi

2
p

. Then at least one of the edges ðu1; u2Þ, ðu1; v2Þ,
ðv1; u2Þ, or ðv1; v2Þ exists in G.

Proof We have to show that one of the four sides of the

quadrangle ðu1; u2; v1; v2Þ is shorter than 1=
ffiffiffi

2
p

. Because

the sum of the interior angles of the quadrangle is 2p, at

least one of the angles has to be greater or equal to p=2.

Assuming without loss of generality that this is the angle at

node u2, u2 lies in the disk with diameter ðu1; v1Þ, and the

lemma follows from Lemma 8.1. h

We will now give an overview of the results of [5]. The

presented algorithm consists of three steps. In a first step,

the quasi-UDG G is extended by adding virtual edges.

Whenever there is an edge (u, v) and a node w which is

inside the circle with diameter (u, v), for at least one of the

nodes u and v—without loss of generality let it be u—the

distance to w is smaller than or equal to 1=
ffiffiffi

2
p

(Lemma

8.1.), and therefore u has a connection to w. If there is no

edge between v and w, a virtual edge is added. Sending a

message over this virtual edge is done by sending the

message via node u. This process is done recursively, that is,

also if (u, v) is a virtual edge. The graph obtained by adding

the virtual edges to G is called the super-graph S(G). Bar-

rière et al. prove that on S(G) the Gabriel Graph GG(S(G))

can be constructed yielding a planar subgraph of S(G). In

the Gabriel Graph construction, an edge (u, v) is removed if

and only if there is a node w in the disk with diameter (u, v)

[21]. Then any geographic routing algorithm guaranteed to

reach the destination is applied on GG(S(G)).

In order to obtain an optimal geographic routing algo-

rithm, we have to change the algorithm of [5] in two ways:

(i) The planar graph which we need for geographic routing

should be a constant-stretch spanner and the number of

nodes in a given area A should not exceed O(A). (ii) We

have to replace the geographic routing algorithm by a more

elaborate variant such as AFR [45] or one of its successors

GOAFR [47] and GOAFRþ [44]. These algorithms apply

area doubling strategies—similar to the GEcho algo-

rithm—together with graph planarization and face routing

techniques.

One of the bounding factors for the spanning property is

given by the recursive depth of the virtual edge construc-

tion, that is the length of paths corresponding to virtual

edges. From [5], we have the following result.

Lemma 8.3 Let k be the minimum Euclidean distance

between any two nodes. If d � 1=
ffiffiffi

2
p

, the length of the

route in G corresponding to a virtual edge in S(G) is at

most 1þ 1
2k2.

Proof The lemma follows directly from Property 1 in

Sect. 5 of [5]. h

As shown later in the section, the assumption that there

is a minimum Euclidean distance k between any two nodes

is sufficient to allow for the formulation of asymptotically

optimal geographic routing algorithms. However, even

without this assumption, but employing the Backbone

Graph GBG (cf. Sect. 5), we obtain a quasi-UDG with

bounded degree, a property which we will prove to be

equivalent to the minimum distance assumption.

Specifically, we start by constructing GBG. This gives us

a set of dominator nodes D = MIS and a set of connector

nodes C. We transform GBG into a quasi-UDG

G0BG ¼ ðV 0;E0Þ by setting V 0 ¼ D [ C and by including all

possible edges of E in E0 (all edges between nodes of V 0).3

Lemma 8.4 The degree of each node in the quasi-UDG

G0BG is bounded by a constant.

Proof Because the dominator nodes D have distance at

least 1=
ffiffiffi

2
p

from each other, the number of dominators

which are within three hops from a node v 2 V 0 is bounded

by a constant. Only these dominators can add connector

nodes which are neighbors of v. Each of them can only add

a constant number of connector nodes; therefore, the

degree of node v has to be constant. A more detailed proof

can be done analogously to the proof for the same lemma

for unit disk graphs [2, 71]. h

Fig. 3 For d � 1=
ffiffiffi

2
p

, w is connected by an edge to u and/or to v (cf.

proof of Lemma 8.1)

3 Note that G0BG can contain more edges than GDBG introduced in

Sect. 5, as G0BG contains all edges between nodes in V 0.
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G0BG is now used for the Gabriel Graph construction.

First, virtual edges are added as in the algorithm of [5],

resulting in a super-graph SðG0BGÞ. Then GGðSðG0BGÞÞ is

constructed. In analogy to Lemma 8.3, we can state a

bound on the maximum route length for any virtual edge.

Lemma 8.5 Let G ¼ ðV ;EÞ be a quasi-UDG with maxi-

mum node degree D. If d � 1=
ffiffiffi

2
p

, the length of the route in

G corresponding to a virtual edge in S(G) is at most OðD2Þ.

Proof Let ðu; vÞ 2 E be an edge of G. Further let

w1; . . . ;wk be a sequence of nodes which recursively force

the creation of new virtual edges ei for which the corre-

sponding route contains (u, v). Let ‘0 :¼ juvj and ‘i be the

Euclidean length of the virtual edge ei (see Fig. 4 as an

illustration). ki is the length of the edge which together

with ei�1 provides the route for ei (ki � d). For the length ‘i

of the ith virtual edge ei we obtain

‘i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘2
i�1 � k2

i

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

‘2
i�1

s

� ‘i�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

� ‘i�1:

The last inequality follows from ‘i�1 � 1. We therefore

have

‘k �
Y

k

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

� ‘0 �
Y

k

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

: ð1Þ

We define k :¼ 1=k
Pk

i¼1 ki to be the average length of

the edges corresponding to the ki. As we will show in

Lemma 8.6, the expression of Eq. 1 can be upper-bounded

by replacing each ki by k:

‘k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p� �k

¼ 1� k2
� �k=2

: ð2Þ

In a quasi-UDG all nodes in a disk with radius d/2 are direct

neighbors. Therefore, when starting at a node u, after at most

Dþ 1 hops, a cycle-free path must leave the disk with radius

d/2 around u. Thus, the sum of the lengths of Dþ 1 successive

edges on a cycle-free path is greater than d/2; in particular, for

d � 1=
ffiffiffi

2
p

this is a constant. The average edge length of any

cycle-free path is thus at least Xð1=DÞ. As illustrated in Fig. 4,

the ki form two paths. Therefore, the average ki must be on the

order of k 2 Xð1=DÞ. As ð1� 1=nÞn � 1=e, we can set

k ¼ 2=k2 2 OðD2Þ in (2) and obtain

‘k � ð1� k2Þ1=k
2

� 1=e � 1=
ffiffiffi

2
p

:

According to the definition of a virtual edge, the length

of such an edge ek is at least ‘k � 1=
ffiffiffi

2
p

. Accordingly, k

cannot be chosen greater than in O(D2), which concludes

the proof. h

In Eq. 2 we used that ‘k can be upper-bounded by

replacing each ki by the average edge length k. This is

proved in the following lemma:

Lemma 8.6 Given k real numbers k1; . . . ; kk with

jkij � 1,

Y

k

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p� �k

holds, where k :¼ 1=k
Pk

i¼1 ki.

Proof To prove this lemma, it is sufficient to show that

the inequality holds for replacement of two values ki and kj

by their average. It then follows that replacing kmin :¼ minki

and kmax :¼ maxki by kavg :¼ ðkmin þ kmaxÞ=2 does not

make the product
Qk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

smaller. Repeated appli-

cation of this substitution of kavg for kmin and kmax to the

newly obtained set of ki values results in a chain of

inequalities in which kmin and kmax (in every respectively

updated set of ki values) converge to k (defined to be the

average of all initial ki values) and at the end of which stands

. . . �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p� �k

.

We will first show that
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
j

q

� 1� k
02
ij ; ð3Þ

where k
0
ij :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2
i þ k2

j Þ=2
q

. In other words—setting

xi :¼ k2
i and xj :¼ k2

j —we show that
ffiffiffiffiffiffiffiffiffiffiffiffi

1� xi

p ffiffiffiffiffiffiffiffiffiffiffiffi

1� xj

p

� 1� ðxi þ xjÞ=2. Squaring this equation

and subtracting the left hand side from the right hand side,

we obtain

0 � x2
i

4
� xixj

2
þ

x2
j

4
¼ ðxi � xjÞ2

4
;

which holds for any real xi and xj and therefore implies the

correctness of Eq. 3.

Defining kij :¼ ðki þ kjÞ=2, subtraction of k
2

ij from k
02
ij

leads to

k
02
ij � k

2

ij ¼
k2

i

4
� kikj

2
þ

k2
j

4
¼ ðki � kjÞ2

4
� 0;Fig. 4 Recursive depth of virtual edges in S(G) (cf. proof of Lemma

8.5)
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the last inequality holding again for all real ki and kj,

which implies k
2

ij � k
02
ij . Together with Eq. 3,

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
j

q

� 1� k
02
ij � 1� k

2

ij

holds, which proves that the product
Qk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
i

q

does

not become smaller after replacement of both ki and kj by

kij. Consequently, this also holds for kmin, kmax, and kavg,

which—together with the observation made at the begin-

ning of the proof—establishes the lemma. h

Having thus completely proved the correctness of

Lemma 8.5, we can now employ it to show that shortest

paths are longer on GGðSðG0BGÞÞ than on G by at most a

constant factor.

Lemma 8.7 The Gabriel Graph GGðSðG0BGÞÞ is a con-

stant-stretch spanner for the quasi-UDG G.

Proof From Lemma 8.5, we see that the virtual edges

only impose a constant factor on the cost of a path. We can

therefore proceed as if all virtual edges were normal edges

of G. Further, it is well known that the Gabriel Graph

construction retains an energy-optimal path (if the edge

cost corresponds to the square of the Euclidean edge

length, see for instance [45]). As the average edge length of

SðG0BGÞ is a constant (cf. proof of Lemma 8.5), the number

of hops and the energy cost of a path only differ by a

constant factor. Therefore, the minimum energy path is

only by a constant factor longer than the shortest path

connecting two nodes. For further details, we refer to the

analysis for unit disk graphs [44]. h

We can now state the main result of this section.

Theorem 8.8 Let G be a quasi unit disk graph with

d � 1=
ffiffiffi

2
p

. Applying AFR [45], GOAFR [47], or GOAFRþ

[44] on GGðSðG0BGÞÞ yields a geographic routing algorithm

whose cost is in Oðc2Þ, where c is the cost of an optimal

path. This is asymptotically optimal.

Proof As G can be the unit disk graph—setting

d :¼ 1—the lower bound follows from the lower bound for

unit disk graphs in [45]. The number of nodes as well as the

number of edges of GGðSðG0BGÞÞ in a given area A is

proportional to A; therefore the Oðc2Þ cost also directly

follows from the respective analyses in [44, 45, 47].h

8.1 Alternative construction

We conclude the section on quasi unit disk graphs for

d � 1=
ffiffiffi

2
p

with the description of an alternative construc-

tion of a planar graph which can be used to perform geo-

graphic routing. By Lemma 8.2, all edge intersections of a

quasi-UDG with d � 1=
ffiffiffi

2
p

can be detected locally (in one

communication round). Instead of the virtual edges/Gabriel

Graph construction, we can define virtual nodes at all

intersections of two edges. These virtual nodes are man-

aged by the endpoints of the intersecting edges; sending a

message from or to a virtual node means sending a message

from or to a (non-virtual) neighbor of the virtual node. If

this is applied on G0BG, we obtain a planar graph (by defi-

nition!) with only OðAÞ nodes in any given area A. Because

this planar graph is a spanner, we obtain a geographic

routing algorithm with cost Oðc2Þ by applying AFR,

GOAFR, or GOAFRþ [44, 45, 47].

9 Conclusion

What is the benefit of oversimplified models about which

interesting properties can be proved, that however have

barely anything in common with reality? But what if we

adjust our model to imitate reality to the least detail and

obtain nothing but a system far too complex for stringent

reasoning? These are the two extremes for which we

studied a potential way out in the field of wireless ad hoc

and sensor network modeling: a model capturing the

essence of ad hoc networks, yet concise enough to permit

rigorous theoretical results.

We consider the quasi unit disk graph—having edges

between all nodes with distance at most d, d lying between

0 and 1, and no edge of length greater than 1—a good

example of such a model residing between pure theory and

pure practice. For this model we constructed in this paper a

message-complexity lower bound for any volatile memory

routing algorithm. We furthermore showed that a flooding

algorithm matches this lower bound and is consequently

asymptotically optimal with respect to message complex-

ity. We described a geographic routing algorithm com-

bining greedy routing and geographic flooding, resulting in

a message-optimal algorithm in the worst case—with

nodes distributed in any configuration in the plane—and

message-efficient algorithm in the average case—with

nodes distributed randomly in the plane. We finally showed

that classic geographic routing algorithms can be employed

with the same performance guarantees as for unit disk

graphs if d is at least 1=
ffiffiffi

2
p

.
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López-Ortiz, A., Morin, P., & Munro, J. (2000). Online routing in

convex subdivisions. In International Symposium on Algorithms
and Computation (ISAAC), vol. 1969 of Lecture Notes in Com-
puter Science (pp. 47–59). Springer.

9. Bose, P., & Morin, P. (1999). Online routing in triangulations. In

Proceedings of 10th International Symposium on Algorithms and
Computation (ISAAC), Vol. 1741 of Springer LNCS, pp. 113–122.

10. Bose, P., Morin, P., Stojmenovic, I., & Urrutia, J. (1999). Routing

with guaranteed delivery in ad hoc wireless networks. In Pro-
ceedings of the 3rd International Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and communications
(DIAL-M), pp. 48–55.

11. Burkhart, M., von Rickenbach, P., Wattenhofer, R., & Zollinger,

A. (2004). Does topology control reduce interference? In Pro-
ceedings of the 5th ACM International Symposium on Mobile Ad-
Hoc Networking and Computing (MobiHoc), pp. 9–19.

12. Chang, E. (1982). Echo algorithms: Depth parallel operations on

general graphs. IEEE Transactions on Software Engineering, 8,

391–401

13. Cruz, R., & Santhanam, A. (2003). Optimal routing, link sched-

uling, and power control in multi-hop wireless networks. In

Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies INFOCOM).

14. Datta, S., Stojmenovic, I., & Wu, J. (2002). Internal node and

shortcut based routing with guaranteed delivery in wireless net-

works. In Cluster computing 5 (pp. 169–178). Kluwer Academic

Publishers.

15. ElBatt, T., & Ephremides, A. (2002). Joint scheduling and power

control for wireless ad-hoc networks. In Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM).

16. Ephremides, A., & Truong, T. (1990). Scheduling broadcasts in

multihop radio networks. IEEE Transactions on Communica-
tions, 38, 456–460.

17. Finn, G. (1987). Routing and addressing problems in large

metropolitan-scale internetworks. Technical Report ISI/RR-87-

180, USC/ISI, March 1987.

18. Flury, R., & Wattenhofer, R. (2006). MLS: An efficient location

service for mobile ad hoc networks. In 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), Florence, Italy, May.

19. Frey, H. (2005). Geographical cluster based multihop ad hoc

network routing with guaranteed delivery. In 2nd IEEE Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems
(MASS), Washington, DC, USA, November.

20. Fussen, M., Wattenhofer, R., & Zollinger, A. (2005). Interference

arises at the receiver. In International Conference on Wireless
Networks, Communications, and Mobile Computing (WIRE-
LESSCOM), Maui, Hawaii, USA, June.

21. Gabriel, K., & Sokal, R. (1969). A new statistical approach to

geographic variation analysis. Systematic Zoology, 8, 259–278.

22. Gao, J., Guibas, L., Hershberger, J., Zhang, L., & Zhu, A. (2001).

Discrete mobile centers. In Proceedings 17th Annual Symposium
on Computational Geometry (SCG) (pp. 188–196). Medford,

MA, USA: ACM Press.

23. Gao, J., Guibas, L., Hershberger, J., Zhang, L., & Zhu, A. (2001).

Geometric spanner for routing in mobile networks. In Proceed-
ings of the 2nd ACM International Symposium on Mobile Ad Hoc
Networking & Computing (pp 45–55). Long Beach, CA, USA:

ACM Press.

24. Grönkvist, J. (2005). Interference-based scheduling in spatial
Reuse TDMA. PhD thesis, Royal Institute of Technology,

Stockholm, Sweden.

25. Hou, T., & Li, V. (1986). Transmission range control in multihop

packet radio networks. IEEE Transactions on Communications,
34(1), 38–44.

26. Huang, H., Richa, A. W., & Segal, M. (2002). Approximation

algorithms for the mobile piercing set problem with applications

to clustering in ad-hoc networks. In Proceedings of the 6th
International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications (DIAL-M), Atlanta,
Georgia, USA, pp. 52–61.

27. Jain, K., Padhye, J., Padmanabhan, V., & Qiu, L. (2003). Impact

of interference on multi-hop wireless network performance. In

Proceedings of the 9th Annual International Conference on
Mobile Computing and Networking (MOBICOM).

28. Jia L., Rajaraman R., & Suel R. (2001). An efficient distributed

algorithm for constructing small dominating sets. In Proceedings
of the 20th ACM Symposium on Principles of Distributed Com-
puting (PODC), 2001, pp 33–42.

29. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing

in ad hoc wireless networks. In Imielinski & Korth (Eds.), Mobile
computing, Vol. 353. Kluwer Academic Publishers.

30. Karp, B., & Kung, H. (2000). GPSR: Greedy perimeter stateless

routing for wireless networks. In Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking
(MOBICOM), pp. 243–254.

31. Kim, Y. -J., Govindan, R., Karp, B., & Shenker, S. (2005).

Geographic routing made practical. In Proceedings of the Sec-
ond USENIX/ACM Symposium on Networked System Design
and Implementation (NSDI 2005), Boston, Massachusetts, USA,

May.

32. Kim, Y. -J., Govindan, R., Karp, B., & Shenker, S. (2005). On the

pitfalls of geographic face routing. In Proceedings of the ACM
Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC), Cologne, Germany, September.

33. Ko, Y. -B., & Vaidya, N. (1998). Location-aided routing (LAR)

in mobile a hoc networks. In Proceedings of the 4th Annual
International Conference on Mobile Computing and Networking
(MOBICOM), pp. 66–75.

34. Kothapalli, K., Scheideler, C., Onus, M., & Richa, A. (2005).

Constant density spanners for wireless ad-hoc networks. In Pro-
ceedings of the 17th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

35. Kranakis, E., Singh, H., & Urrutia, J. (1999). Compass routing on

geometric networks. In Proceedings 11th Canadian Conference
on Computational Geometry, Vancouver, August, pp. 51–54.

Wireless Netw (2008) 14:715–729 727

123



36. Kuhn, F., Moscibroda, T., Nieberg, T., & Wattenhofer, R. (2005).

Fast deterministic distributed maximal independent set compu-

tation on growth-bounded graphs. In 9th International Sympo-
sium on Distributed Computing (DISC), Cracow, Poland,

September.

37. Kuhn, F., Moscibroda, T., Nieberg, T., & Wattenhofer, R. (2005).

Local approximation schemes for ad hoc and sensor networks. In

Proceedings of the 3rd ACM Joint Workshop on Foundations of
Mobile Computing (DIALM-POMC), Cologne, Germany,

September.

38. Kuhn, F., Moscibroda, T., Nieberg, T., & Wattenhofer, R. (2005).

Local approximation schemes for ad hoc and sensor networks. In

3rd ACM Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), Cologne, Germany, September.

39. Kuhn, F., Moscibroda, T., & Wattenhofer, R. (2004). Initializing

newly deployed ad hoc and sensor networks. In 10th Annual
International Conference on Mobile Computing and Networking
(MOBICOM), Philadelphia, Pennsylvania, USA, September.

40. Kuhn, F., Moscibroda, T., & Wattenhofer, R. (2004). Radio

network clustering from scratch. In Proceedings of the 12th
Annual European Symposium on Algorithms (ESA), Bergen,

Norway, September.

41. Kuhn, F., Moscibroda, T., & Wattenhofer, R. (2004). Unit disk

graph approximation. In 2nd ACM Joint Workshop on Founda-
tions of Mobile Computing (DIALM-POMC), Philadelphia,

Pennsylvania, USA, October.

42. Kuhn, F., Moscibroda, T., & Wattenhofer, R. (2005). On the

locality of bounded growth. In 24th ACM Symposium on the
Principles of Distributed Computing (PODC), Las Vegas,

Nevada, USA, July.

43. Kuhn, F., & Wattenhofer, R. (2003). Constant-time distributed

dominating set approximation. In Proceedings of the 22nd ACM
Symposium on the Principles of Distributed Computing (PODC),
Boston, Massachusetts, USA.

44. Kuhn, F., Wattenhofer, R., Zhang, Y., & Zollinger, A. (2003).

Geometric routing: Of theory and practice. In Proceedings of the
22nd ACM Symposium on the Principles of Distributed Com-
puting (PODC), Boston, Massachusetts, USA.

45. Kuhn, F., Wattenhofer, R., & Zollinger, A. (2002). Asymptoti-

cally optimal geometric mobile ad-hoc routing. In Proceedings of
the 6th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications (DIAL-M)
(pp 24–33). Atlanta, GA, USA: ACM Press.

46. Kuhn, F., Wattenhofer, R., & Zollinger, A. (2003). Ad-Hoc

networks beyond unit disk graphs. In 1st ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), San Diego,

California, USA, September.

47. Kuhn, F., Wattenhofer, R., & Zollinger, A. (2003). Worst-case

optimal and average-case efficient geometric ad-hoc routing. In

Proceedings of the 4th ACM Int. Symposium on Mobile Ad-Hoc
Networking and Computing (MOBIHOC), Annapolis, Maryland,

USA.

48. Leong, B., Liskov, B., & Morris, R. (2006). Geographic routing

without planarization. In 3rd Symposium on Networked Systems
Design & Implementation (NSDI), San Jose, California, USA,

May.

49. Leong, B., Mitra, S., & Liskov, B. (2005). Path vector face

routing: Geographic routing with local face information. In 13th
IEEE International Conference on Network Protocols (ICNP),
Boston, Massachusetts, USA, November.

50. Li, J., Jannotti, J., De Couto, D., Karger, D., & Morris, R. (2000).

A scalable location service for geographic ad hoc routing. In

Proceedings of the 6th ACM International Conference on Mobile
Computing and Networking (MobiCom), pp. 120–130, Aug.

51. Li X.-Y., Calinescu G., & Wan P.-J. (2002). Distributed con-

struction of planar spanner and routing for ad hoc wireless

networks. In Proceedings of the 21st Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
New York, NY, USA.

52. Li, X. -Y., Song, W. -Z., & Wang, Y. (2004). Localized topology

control for heterogenous wireless ad hoc networks. In Proceed-
ings of the 1st IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS), Fort Lauderdale, Florida, USA,

October.

53. Moscibroda, T., Oswald, Y. A., & Wattenhofer, R. (2007). How

optimal are wireless scheduling protocols? In Proceedings of the
26th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), Anchorage, Alaska, USA,

May.

54. Moscibroda T., von Rickenbach P., & Wattenhofer R. (2006).

Analyzing the energy-latency trade-off during the deployment of

sensor networks. In Proceedings of the 25th Annual Joint Con-
ference of the IEEE Computer and Communications Societies
(INFOCOM), Barcelona, Spain, April.

55. Moscibroda, T., & Wattenhofer, R. (2005). Coloring unstructured

radio networks. In Proceedings of the 17th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), Las Vegas,

Nevada, USA, July.

56. Moscibroda, T., & Wattenhofer, R. (2005). Maximal independent

sets in radio networks. In Proceedings of the 24th ACM Sympo-
sium on the Principles of Distributed Computing (PODC), Las

Vegas, Nevada, USA, July.

57. Moscibroda, T., & Wattenhofer, R. (2005). Minimizing inter-

ference in ad hoc and sensor networks. In Proceedings of the
International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications (DIALM), pp. 24–33.

58. Moscibroda, T., & Wattenhofer, R. (2006). The complexity of

connectivity in wireless networks. In Proceedings of the 25th
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM), Barcelona, Spain, April.

59. Moscibroda, T., Wattenhofer, R., & Zollinger A. (2006). Topol-

ogy control meets SINR: The scheduling complexity of arbitrary

topologies. In 7th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), Florence, Italy,

May.

60. O’Dell, R., & Wattenhofer, R. (2005). Theoretical aspects of

connectivity-based multi-hop positioning. Theoretical Computer
Science, 344(1), 47–68, November.

61. Peleg, D. (2000). Distributed computing, a locality-sensitive
approach. Philadelphia, PA, USA: Society for Industrial and

Applied Mathematics.
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