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Abstract—In this paper, we present a way to obtain accurate
WLAN signal strength maps in indoor environments, without
dedicated hardware, and without a time consuming and compli-
cated training process. We need two contributions towards this
end. First, we present a novel dead-reckoning technique, to gather
accurate user motion estimates. This motion data is combined
with information about the signal strength of access points of
the wireless infrastructure. Our second contribution lies in the
efficient integration of this complementary information into a
system that allows for easy mapping and requires nothing but
a smartphone. All the required data is gathered from people
walking casually around in an area of interest while carrying a
smartphone in their pocket.

Index Terms—Spatial signal strength distribution; motion
estimation; localization; SLAM, Graph-SLAM;

I. INTRODUCTION

Today, GPS is an essential component of the global informa-
tion infrastructure. Similarly to the Internet, its applications are
affecting many aspects of modern life. Although GPS satellites
cover our globe, and current smartphones are equipped with
suitable receivers, GPS based localization still has its blind
spots, in particular if a user enters a building. Often, navigating
inside an unknown building can be just as hard (if not harder!)
than navigating outside, in free space.

WLAN signal strength based indoor localization is widely
used today. However, for such a system to work, knowledge
about the spatial signal strength distribution is required. In
this paper, we present a way to obtain accurate WLAN signal
strength maps that can be used to localize any WLAN enabled
device localization similar to GPS also in indoor environments,
without dedicated hardware, and without a time consuming
and expensive training process.

Our paper has two main contributions. The first contribution
is a novel motion estimation technique that allows us to gather
accurate user motion data in an unobtrusive way. The required
sensors, a 3-axes accelerometer and a 3-axes gyroscope, can
be found in many modern smartphones. Using these sensor
measurements, we show how the direction of the leg and
hip can be accurately estimated, independent of how the
smartphone is placed in the trouser pocket. Based on these
estimates, we can track the heading as well as the distance
of each step the user takes. This motion model is tailored to
fit the requirements of tracking users in indoor environments
and therefore does not utilize the (often unreliable) magnetic
field to determine the absolute heading. Instead, the change in
heading between steps is estimated. We evaluate the perfor-
mance of this motion model and show that despite our non-
restrictive sensor placement and the lack of absolute heading,
we still manage to get a qualitatively high motion tracking

performance. We also show how the motion model is able to
extrapolate from a single configuration parameter to work at
different walking speeds. As we will show, our motion data is
locally highly accurate, i.e. short walks with a smartphone do
exhibit a small relative positioning error.

The positioning error is growing with distance though, so
we use information about the signal strength of access points
of the wireless infrastructure to globally correct that. Our
second contribution lies in the integration of the complemen-
tary information – the locally accurate motion data and the
globally accurate signal strength data – into a system that
allows for easy mapping with nothing but a smartphone in
the pocket. More precisely, we obtain additional positioning
constraints between locations that the user has visited while
walking around in the area of interest. We use the common
(least-squares) Graph-SLAM technique to obtain corrected
positions for all the signal strength measurements that a user
recorded. Compared to the Monte-Carlo technique which is
most commonly used for such applications, the Graph-SLAM
method leads to maximum likelihood estimates of the signal
strength measurement locations. Furthermore, Monte-Carlo
approaches have to back-propagate newly gained insights after
loop closure; this is not required when using least squares
and greatly improves performance when combining data from
multiple measurement sessions or users. As a result, the system
is capable of recovering accurate relative positions of the
signal strength measurements from data that was captured by
multiple users walking through an area at different times. We
show a qualitative example for the mapping performance in a
large university building.

II. RELATED WORK

Crowd-sourcing Localization. Recent work presented by Rai
et al. [1] shows the high interest in localization solutions
relying on crowd sourced data rather than time consuming
training. The introduced system [1] can provide localization
information using only crowd-sourced information. Motion
estimates and WLAN signal strength measurements are fused
using a particle filter approach which also requires a floor
plan map. As a result, the locations of the signal strength
measurements within the floor plan can be estimated. High
localization accuracy is achieved. However, the required floor
plan map has to fulfill strict requirements in order for the
particle filter to converge to the correct WLAN signal strength
measurement locations. The probability density that has to be
estimated with a particle has four dimensions which implies
a high computational complexity on the mobile device. Our
approach does not require a map and the use of efficient sparse
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non linear solvers that are readily available, the computational
complexity is lower.

Signal Strength Mapping. The problem of acquiring signal
strength maps in an unsupervised manner has been approached
by Chintalapudi et al. [2]. The system they presented allows
WLAN signal strength based localization without annotated
training data. No motion data is used in the process. Instead,
the relative positions of WLAN Access Points and mobile node
locations are modeled as a function of the received signal
strengths. The resulting set of overdetermined geometrical
constraints is solved using a genetic algorithm. Occasional
GPS location measurements are used to obtain location infor-
mation in the global frame. However, GPS measurements are
hard to obtain in indoor environments and may be erroneous.
The received signal strengths are the only indication for
geometrical distance. Due to non-line of sight effects in indoor
environments the complexity of this relationship is beyond the
reach of the simple model used in the paper. This shortcoming
becomes evident as the localization accuracy drops if the
accurate locations of the access points are provided in the
training phase. Therefore, the model might be accurate enough
to provide localization capabilities, but the estimated map will
in reality never converge towards the accurate access point
distribution. In our approach, a person’s motion is estimated
in order to get geometrical distance information. The measured
signal strengths are only utilized to recognized previously
visited locations. Therefore, even if associations are incorrect,
our maps converge to the accurate signal strength distribution
because the increasing number of unbiased distance estima-
tions from our motion model.

Motion Estimation. The dead-reckoning method we present
in this paper is the enabling factor that allows us to create
signal strength maps. Many such methods to estimate human
motion using foot-mounted sensors have been described in
the literature [3], [4], [5], [6]. These solutions rely on the foot
being stationary when in contact with the ground. This zero-
velocity interval can be used to counteract the velocity esti-
mation drift caused by integrating the accelerometer signals.
An overview of different methods to estimate motion based
on foot-mounted sensor measurements have been compared
by Skog et al. [7]. Another approach, relying on sensors fixed
on a helmet was presented by Beauregard [8]. As our goal
is to perform mapping in an unobtrusive way, we desire to
measure user motion based on its natural location when users
are casually walking around. Therefore, all motion estimation
methods that require dedicated hardware such as bodily fixed
sensors are useless if we want to allow a wide range of users
to contribute in the mapping process. Our motion estimation
method only requires a modern smartphone being placed in a
trouser pocket which makes it tangible for many people now,
and even more so in the future. A motion estimation method
that is seemingly similar to the one presented in this paper
was described by Blanke and Schiele [9]. This method and
a selection of others that are equally nonrestrictive about the
positioning of the sensors have been experimentally compared
by Steinhoff and Schiele [10]. While the motion direction is
estimated using the available sensor measurements, the step

length was assumed to be constant and even manually set
for each track. The presented evaluation does not allow us to
quantitatively benchmark our approach because the evaluation
results are distance- and orientation error quantities for each
stride. The results are median stride length errors of more than
10cm and median orientation errors of more than 5◦ whereas
we achieve mean localization errors of below 10% of the
traveled distance. However, the argument that an estimation
error of 10cm per stride is already more than 10% of the
traveled distance is highly questionable. Partly due to measure-
ment errors in the ground truth but also because our approach
estimates not only step- heading and count but also distance.
Also our motion model can cope with different walking speeds
without requiring the stride length to be manually configured.
In addition to this, our approach does not rely on the use
of magnetic field sensors to determine the absolute heading
direction. Due to the large magnetic disturbances that may
interfere with finding the correct direction towards north,
using magnetometers in indoor environments is questionable
and may incur large and unexpected errors. As a result, our
approach is not able to estimate absolute headings for the
steps, but only the change in heading for consecutive steps.
Another system that is seemingly similar to ours, but requiring
two separate, fixed sensors to estimate motion based on the
orientation of the thigh was presented by Lee and Mase [11].

SLAM. In the robotics community, the Simultaneous Local-
ization and Mapping Problem (SLAM) has been an active
research topic for over twenty years. Bailey and Durrant-
Whyte [12], [13] summarized the most important results and
solution ideas. To apply these SLAM solutions, two comple-
mentary information sources are required. Firstly, the motion
of the measurement device has to be estimated. Secondly,
previous locations have to be recognizable if visited again.
Both requirements can be met with off-the-shelf smartphones.
The known SLAM solutions already have been applied to the
indoor mapping problem in several instances. Ferris et al. [14]
introduced a method to build signal strength maps in in-
door environments based on Gaussian Process Latent Variable
models. Motion information is integrated with signal strength
observations to estimate the signal strength distribution which
can be used for localization. While the approach is able
to reconstruct topologically correct maps, the true geometric
shape of the building could not be captured. Comparing their
reconstructed maps to ours (see Figure 6) clearly indicates the
superior mapping accuracy of our approach. Huang et al. [15]
presented an adaption of the Graph SLAM method which
uses WLAN signal strengths as observations. Pedometer and
gyroscope measurements are used to estimate the user’s mo-
tion. The results show that signal strength measurements are
sufficient to recognize previously visited locations. We follow
this approach and formulate a sparse non-linear optimization
problem based on the motion estimates and signal strength
measurements. This has the advantage that many highly ef-
ficient solvers are available and can directly be applied to
solve the mapping problem. Also this problem formulation
allows us to combine motion and observation information from
multiple walks or even users. In the publication of Huang et
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al. [15], the resulting pose distribution is only shown for a
small building that allows for many loop closure constraints.
Also, it is unclear how to crowd source the required data
as the motion estimation approach is assumed to be known.
Our motion estimation approach allows us to present results
for larger buildings with sparser loop closure opportunities.
Additionally, our approach requires only a smartphone as well
as existing wireless infrastructure.

III. MOTION

The algorithm we present to track the motion of a user
requires a 3-axes gyroscope and a 3-axes accelerometer to be
placed loosely in a trouser pocket. Modern smartphones not
only contain the required set of sensors, but are likely to be
located in a user’s trouser pocket. Additionally, the proximity-
and light-sensors can be used to determine if the phone might
be located in- or outside the pocket. The method is split
into three parts which are described in the three following
subsections. Firstly we show how the orientation changes of
the phone can be estimated using the gyroscopes only. These
orientation estimates are then used to track the motion of the
users thigh which allows us to find the exact moments in time
when the leg reaches its extreme orientations as depicted in
Figure 2. We then estimate the length and the direction of each
step based on two consecutive orientation extrema.

Orientation. In indoor environments, the earth magnetic
field is heavily disturbed by power cables, concrete rein-
forcements and such. In addition, magnetic disturbances are
caused by varying electrical currents in the sensor frame
itself. To complicate the use of these magnetic field sensors
even more, infrequent recalibration of the sensors occurred
without notification. Since these errors are hard to accurately
model, we decided to not use the magnetic field sensor to
counter the heading drift caused by the gyroscopes. We found
that the heading drift caused by the gyroscopes is nearly
time independent and can be effectively corrected with the
observation model presented later on. Therefore, we only
use the gyroscope measurements (ωx, ωy, ωz) to estimate the
orientation quaternion q which can be computed using the
Hamilton product:

qt = qt−1 · (1,
ωx

2
,
ωy

2
,
ωz

2
) (1)

This orientation estimate relates the sensor frame to an arbi-
trarily chosen coordinate frame which has an offset to the
earth coordinate frame that is governed by the gyroscope
drift. While the orientation estimate drift leads to errors in
the motion estimates, knowledge of the absolute orientation
in the earth coordinate frame is not required.

Rotation Based Step Detection. The following step detection
and estimation is based on the assumption that a smartphone
that is placed in a trouser pocket approximately follows the
motion of the thigh. We use this assumption to infer the
evolution of the orientation of the thigh and the axis around
which it rotates (the hip axis). We then use these vectors
to find orientation extrema which we use to determine step
direction and distance. The most relevant vectors that are

used in the following discussion are shown in Figure 2. In
the following discussion, all vectors are expressed in sensor
coordinates. The acceleration of the earth’s gravitational field
g is transformed into the sensor coordinate frame using the
orientation quaternion q from Equation 1. In a first step, the

φ(tmin)φ(tmax)

Fig. 2. The most important vectors used to find φ(t) are shown for a minimum
of φ(t) and a maximum of φ(t) respectively. The leg direction L is shown in
red, the hip direction H is shown in green (points out of the image), the earth
gravitational force g is shown in blue, the inclination angle φ(t) is shown in
yellow and the vector used to find the inclination L × H is drawn in black.

direction of the leg L in the sensor coordinate frame can be
estimated using a low-pass filter:

L = LC · L + (1− LC) · g

The cutoff frequency LC =
√
L · g is chosen to allow

the leg estimate to quickly converge whenever the device
orientation relative to the thigh changes. During normal use, L
is oscillating around g and the leg estimate is not significantly
converging towards g. The normalized estimate L

|L| can be
used to determine the rotation axis between the leg and the
direction of the gravitational force:

r = g × L

Based on the rotation axis r, we estimate the direction of the
hip H using a low-pass filter:

H = HC · H + (1−HC) · r (2)

The cutoff frequency HC = |sin(|r|)| is chosen to increase
the influence of the rotation axis r on the hip estimate H if the
angle between L and g grows. The reason for this is the fact,
that the rotation axis can be determined with higher accuracy if
the angle between the two vectors is larger. In case the rotation
axis is pointing into the opposite direction of the hip estimate,
the rotation axis is reversed (r = r · signum(r · H))
before applying the low-pass filter in Equation 2. The hip axis
H converges to one of the two (opposing) main rotation axes
of the leg. In the absence of absolute heading information, the
two convergence possibilities of H deliver equal estimation
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Fig. 1. A comparison of the accelerometer magnitude (left) and inclination angle φ (right) during several steps on a threadmill. The treadmill setting for the
measurements was set to 1 km

h
. Clearly the inclination φ is suitable to detect steps.

performance and results. The hip- and leg-direction estimates
are then used to find φ(t):

φ(t) = arccos ((L × H) · g) (3)

The evolution of φ(t) is used to find the points in time
where the the thigh is maximally displaced. Figure 1 visualizes
φ(t) and for comparison also shows the evolution of the
acceleration magnitude signal a(t). In phi(t) the minima and
maxima are easy to detect whereas in the accelerometer signal,
it is extremely hard to extract isolated steps. Each minimum
and maximum in φ(t) corresponds to the end of the last step
and the beginning of the next. With accelerometer based step
detection methods, counting steps gets increasingly difficult at
low walking speeds, as the foot impact gets less articulated in
the accelerometer signal. In addition to this, φ(t) allows us not
only to count steps, but also to find the orientation extrema of
the leg swing which allows us to accurately estimate the step
length and direction.

Step Estimation. The direction and length of each step is
estimated based on the smartphone orientations recorded in
the minima and maxima of φ(t). The change in orientation
between minima and maxima can be expressed as axis a
and angle α. Because absolute heading information is not
available, a can be used as the walking-direction. The angle
α can be used to estimate the step length.

s =
a

|a|
· c · sin

(α
2

)
(4)

The constant c is user dependent and has to be configured.

IV. OBSERVATION

In addition to the motion data, the smartphone is able to
record the evolution of received signal strength indicators
(RSSI) for all visible access points. In indoor environments,
inferring distance from received signal strengths is infeasible.
Non-line of sight effects and antenna imperfections lead to a
spatial signal strength distribution which cannot be captured
in a function that depends on the distance between sender
and receiver. This is why we use these signal strength mea-
surements not to infer physical distance, but to recognize
previously visited locations only. We achieve this recognition
by comparing two landmarks L1 and L2 using the following

signal space distance measure:

s(L1, L2) =
1

|M1 ∩M2|
∑

e=M1∩M2

|M1(e)−M2(e))|

+
1

|M1 \M2|
∑

e=M1\M2

|M1(e)− lmin)|

+
1

|M2 \M1|
∑

e=M2\M1

|lmin −M2(e))|.

(5)

The sets of visible access points are denoted as M1 and M2

respectively. Access points that report an RSSI lower than lmin

are neglected. In addition, access points that are only visible in
the other landmarks are considered to be received with signal
strength lmin. Two landmarks assumed to be captured in the
same location (associated) if their distance measure s(L1, L2)
is lower than a threshold sth.

V. FUSION

The complementary characteristics of the motion- and ob-
servation association constraints can be exploited to counteract
the divergence of integrating motion estimates using the ob-
servation associations. THe similar to finding the equilibrium
point of a system of springs and masses. The visited locations
correspond to the masses and are described as point in space
as well as current motion heading xi = (x, y, φ). The motion
and association constraints correspond to the springs. The
stiffness of the springs corresponds to the confidence level of
the estimates. Whereas the association constraints are modeled
as springs with equilibrium length zero and do not constrain
the heading difference, the motion constraints are modeled as
springs with equilibrium length equal to the estimated step
length that also constrain the change in heading φ between
consecutive poses.

xi = fi(xi−1, ui) + wi. (6)

The pose xi is linked to the previous pose xi−1, using the
sensor readings ui. The model uncertainty is captured in the
Gaussian noise term wi. Landmark associations are described
as follows:

0 = ||xik − xjk ||+ vk. (7)

This captures the fact that if we associate two landmarks, we
expect them to be recorded in spatially close locations. The
Gaussian noise term vk may vary depending on the association
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Fig. 3. Comparing the motion model speed output to the ground truth
(Treadmill speed setting). Clearly, the motion model output linearly depends
on the actual walking speed which means that when properly configured, the
motion model will work at different walking speeds.

quality where k addresses one specific association between
two poses xik and xjk . The optimization problem is defined
as follows:

Θ∗ = argmin
Θ

[ M∑
i=1

||fi(xi−1, ui)− xi||2Λi

+

K∑
k=1

||xik − xjk ||2Σk

]
.

(8)

For simplicity, the notation ||e||Σ = eᵀΣ−1e was used. The
solution is the set of poses Θ that minimizes the given
cost function based on the constraints obtained from the
motion- and observation model. We solve the sparse non-linear
optimization problem using iSAM [16].

Compared to a particle filter based approach, this non-
linear least squares problem allows us to overcome the lack of
absolute heading information as well as heading drift without
increasing the computational complexity. Note that a particle
filter would need to sample the joint probability function
of spatial location, heading offset and heading drift. Adding
dimensions to the probability distribution causes the number
of particles to grow exponentially.

VI. EXPERIMENTS AND RESULTS

The following experiments were carried out using a Sam-
sung Nexus S smartphone. In a first step, the motion- and
observation models are evaluated separately because the mo-
tion model will deliver user specific performance whereas the
observation model will be largely user independent.

Motion. Firstly the speed estimation is compared to the actual
walking speed. A single user was walking on a treadmill whose
speed setting was used as the ground truth walking speed.
The results shown in Figure 3 indicate a linear dependance
between actual speed and motion model estimate. This is the
desirable outcome since it indicates that the motion model
can be configured for a specific user with only one parameter
and deliver accurate speed estimates over a variety of walking
speeds. The variances shown for each treadmill speed setting
indicates a large variance of of the speed estimates even though
the treadmill- and therefore walking speed was very constant
during the experiment. The results shown in Figure 3 were
used to find the parameter c from Equation 4.
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Fig. 4. Relating the traveled distance with the resulting motion model
integration error.

The distance estimation was evaluated with eleven people
that were asked to walk down a 51 meter long straight hallway.
The motion model output had a mean of 51.7 meters and a
standard deviation of 4.4 meters. This result indicates, that
the motion model may be adapted for different users. To
evaluate the motion model accuracy in a more realistic setting
in which people were walking through hallways, doors and
bends, the same eleven people were asked to walk along four
predefined tracks with increasing lengths (51m, 81m, 120m,
154m, 195m). All the tracks ended in their starting point which
means, the localization error after each track is captured in
the distance between start- and estimated end-point. Figure 4
shows the increasing localization error caused by accumulating
motion estimation errors. As expected, the localization error
increases as the traveled distance grows. A large portion of the
error is caused by the drifting heading estimate which could
not be corrected using the magnetic field sensors. Although
the closed tracks facilitate evaluating the localization error,
note that this evaluation scheme does not capture the fact that
the motion model might systematically over- or underestimate
the step lengths for different users. However, combined with
the results shown in Figure 3 and the distance measurement
accuracy of the straight hallway experiment we conclude that
the motion model works for a variety of people walking at
different speeds only requiring to be configured at one speed,
or even only using the users body height.

Observation. Observations are associated to each other if
their mutual signal space distance is below a given threshold.
Therefore, we require the signal space distance to be low for
two spatially close fingerprints. On the other hand, comparing
spatially distant fingerprints should lead to a high signal space
distance. To evaluate how well this requirement is met by the
smartphone WLAN observations, we carried out the following
experiment. We collected a large number of fingerprints by
walking at constant speed through office building hallways.
The hallways are are forming a rectangle (50m x 10m) which
is traversed twice during the experiment. The distance measure
for all the pairs of recorded fingerprints are shown in Figure 5.
Note that the distance measure is commutative and therefore,
the distribution is symmetric. Also, elements that are close to
the diagonal indicate signal space distances of two fingerprints
that have been recorded within a short period of time. The
farther away from the diagonal, the larger the time span
between the two recorded fingerprints. Because the experiment
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Fig. 5. While walking around a set of rectangular shaped (50m x 10m) set
of hallways twice, roughly 420 fingerprints were collected. This figure shows
the fingerprint signal space distance for all pairs i, j of recorded fingerprints.

was conducted while walking at constant speed, this also
means that the time span in which two fingerprints were
recorded linearly translates to a spatial distance. Since the goal
of this experiment is to get an idea of how well our signal
space distance measure is able to distinguish fingerprints that
are far from fingerprints that are close, it is desirable to have
low distance measures along the diagonal, but high distance
measures the further away from the diagonal. In addition to the
main diagonal, two secondary diagonals which are originate
from the second round through the rectangular set of hallways.
Similar to the main diagonal, we desire low distance measures
close to the secondary diagonals but high distance measures
the further away we get. Clearly the secondary diagonals
are less clear than the main diagonal especially, the off
diagonal elements are less distinguishable from the diagonal
elements. The four by four checkerboard pattern is a result
of the rectangular track and shows that fingerprints recorded
in the two opposite long hallways have a large signal space
distance. However, within one hallway, the spatial distance
of fingerprints with small signal space distances can grow
large. Due to this shortcoming, erroneous associations have
to be expected. In addition, the similarity between fingerprints
within one hallway will impede localization performance.

Fusion. Fusing motion- and association data by non-linear
optimization leads to a map of fingerprints. The quantitative
evaluation of the map quality is difficult as long as no local-
ization scheme is used to measure localization performance
based on the generated fingerprint map. Figure 6 shows the
fingerprint distribution resulting from the fusion step for the
ETH main building. The recorded fingerprints are drawn as
blue dots. The received signal strengths for two distinct (non
overlapping) access points are indicated in blue to red colored
areas around the corresponding fingerprints. The relative fin-
gerprint positions are the result of the fusion step. The floor
plan as well as the rotation and translation between floor plan
and fingerprint distribution is not automatically obtained but
added by hand. The fingerprint locations obtained in the fusion
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Fig. 6. Fingerprint distribution for ETH Zurich main building (HG). Finger-
print locations are indicated as blue dots. Signal strengths for selected access
points are shown in blue to red colors

step resemble the true shape of the building with with few
exceptions (intersection on the right side).
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