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Metric Matching 
Cheap or Stable … or Fast?
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Weighted Perfect Matching

Weighted complete graph G = (V ,V ⇥ V ,w)
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Minimum-Cost Perfect Matching

Perfect matching M ✓ V ⇥ V
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Minimum-Cost Perfect Matching

Minimum-cost perfect matching M

⇤ ✓ V ⇥ V
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Stable Matching

↵-unstable edge e /2 M
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Stable Matching

Example: 2-unstable edge e /2 M
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Stable Matching

↵-stable matching: without ↵-unstable edge
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Stable vs. Cheap
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Stable vs. Cheap

min-cost matching M
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Stable vs. Cheap

↵-stable matching M
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Metric Graphs
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Stable Matchings
Can Be Expensive



Graph Construction
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Graph Construction
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Graph Construction
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Graph Construction
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Finding Cheap
Stable Matchings



Greedy Algorithm



Greedy Algorithm

Start with a minimum-cost matching



Greedy Algorithm

can be e�ciently calculated by algorithm of Lovasz &
Plummer (1986) based on Edmonds’ work (1965)



Greedy Algorithm

Consider edges /2 M ordered by ascending weights



Greedy Algorithm

If edge is unstable . . .



Greedy Algorithm

. . .flip it!



Greedy Algorithm

Consider next edge



Greedy Algorithm

Edge is unstable . . .



Greedy Algorithm

. . .flip again!



Greedy Algorithm

Repeat for remaining edges



Greedy Algorithm

Repeat for remaining edges



Greedy Algorithm

Repeat for remaining edges



Greedy Algorithm

Repeat for remaining edges



Greedy Algorithm

Return stable matching



Tight Trade-O↵

Theorem (Upper Bound)

Let M↵ be the matching returned by Greedy for some ↵ � 1. Then,
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Theorem (Lower Bound)

For every ↵ � 1, there exists a metric graph such that for any
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“Game Theory”



$100B Revenue

¾ Online



Match Players Fast 
Waiting is Boooooring

Match Players Well 
Similar Rating, Location, etc.

Online Two Player Games



Min-Cost Perfect Matching With Delays (MPMD)



MPMD Example
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Haste Makes Waste!
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MPMD Example

time

rating 
(space)

algorithm cost

optimal cost



Online Matching Literature

I Bipartite graph, left side is known, right side revealed online
I Maximum cardinality matching

[KVV1990, BM2008, GM2008, DJK2013, M2014, NW2015]
I Maximum vertex weighted matching

[AGKM2011, DJK2013, NW2015]
I Maximum capacitated assignment (the AdWords problem)

[MSVV2005, BJN2007, GM2008, AGKM2011, NW2015]
I Metric maximum weight matching

[KP1993, KMV1994]
I Metric minimum cost perfect matching

[KP1993, MNP2006, BBGN2014]
I Metric minimum capacitated assignment (transportation)

[KP2000]

I MPMD: known graph, both sides revealed online



MPMD Results

I Finite metric space M = (V , �)
I n = |V |
I � = maxx 6=y2V �(x,y)

minx 6=y2V �(x,y)

I O(log2 n + log�)-competitive randomized algorithm
[Emek, Kutten, W 2016]

I O(log n)-competitive (almost) deterministic algorithm
Lower bound of ⌦(

p
log n)

[Azar, Chiplunkar, Kaplan 2017]

I O(log n)-competitive (almost) det. bipartite algorithm
⌦(

p
log n/ log log n) lower bound for bipartite

⌦(log n/ log log n) lower bound for non-bipartite
[Wang et al., in submission]



The 𝑂(log 𝑛) Algorithm



Approximate Metric by Tree

Leaves = Nodes in Metric Space

[Fakcharoenphol, Rao, Talwar 2004], [Bansal, Buchbinder, Gupta, Naor 2015]

Height = 𝑂(log 𝑛)
E[Distortion] = 𝑂(log 𝑛)

𝑤
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Proof

Total space cost = σ



Proof



Proof



Proof

For each pair at least one timer running

Total time cost ≤ 2σ



Total Algorithm Cost = 𝑂(σ )



What about OPT?
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Done?



Just One Little Thing…
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OPT has an easy time…



… but only every other phase!



Total OPT Cost = 𝛺(σ )



Where is the log 𝑛 coming from?

Height = 𝑂(log 𝑛) for time
E[Distortion] = 𝑂(log 𝑛) for space



Summary

Matching in Metric Spaces

Good or FastCheap or Stable



Thank You!
Questions & Comments?

www.disco.ethz.ch

Thanks to my co-authors
ESA 2015: Yuval Emek, Tobias Langner
STOC 2016: Yuval Emek, Shay Kutten
In Submission: Yuyi Wang



Abstract: My talk is about matchings in a metric space. In the first part, we connect two classic 
approaches in matching, (i) a global optimization angle à la Edmonds, and (ii) a local selfish 
angle à la Gale and Shapley. We analyze the price of anarchy of metric matching when 
combining the two. The second part of the talk deals with an online version of metric matching. 
Consider an online gaming platform supporting two-player games such as Chess or Street 
Fighter 4. The platform tries to find a suitable opponent for each player, minimizing two 
criteria: (i) matching similar players, so that the game is challenging for both players; and (ii) the 
waiting time until a player is matched and can start playing since waiting is boring. It turns out 
that these two minimization criteria are often conflicting. To cope with this challenge, we must 
allow the platform to delay its service in a rent-or-buy manner.

The first part of my talk is based on an ESA 2015 paper with Yuval Emek and Tobias Langner. 
The second part is based on an STOC 2016 paper with Yuval Emek and Shay Kutten, and on 
unpublished work with Yuyi Wang and others.
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