
ETH Zurich – Distributed Computing Group

Roger Wattenhofer

Metric Matching
Cheap or Stable … or Fast?

PODC

SODA

STOC
FOCS

ICALP
SPAA

EC

SenSys
OSDI

Mobicom

Multimedia

Ubicomp

SIGCOMM

HotNets

Disclaimer

Matchings

Matchings

Matchings

Matchings

Matchings

9

4

1

3

Matchings

9

4

1

3

Cost: 7

Matchings

9

4

1

3 Cost: 10

Matchings

9

4

1

3

Cost: 7

Cost: 10

Matchings

9

4

1

3

Matchings

9

4

1

3

Matchings

Weighted Perfect Matching

Weighted complete graph G = (V ,V ⇥ V ,w)

9

4

1

3

5 3

v

2

v

3

v

1

v

4

Minimum-Cost Perfect Matching

Perfect matching M ✓ V ⇥ V

9

4

1

3

5 3

v

2

v

3

M

c(M) = 1 + 9 = 10

v

1

v

4

Minimum-Cost Perfect Matching

Minimum-cost perfect matching M

⇤ ✓ V ⇥ V

9

4

1

3

5 3

v

2

v

3

c(M⇤) = 3 + 4 = 7

M

⇤

v

1

v

4

Stable Matching

↵-unstable edge e /2 M

w(e) < 1

↵ ·min{w(e
1

),w(e
2

)}

e

1

e

2

e

Stable Matching

Example: 2-unstable edge e /2 M

e

1

e

2

e

w(e) < 1

2

·min{w(e
1

),w(e
2

)}

Stable Matching

↵-stable matching: without ↵-unstable edge

M

Stable vs. Cheap

1

1

"

1

1 1

Stable vs. Cheap

min-cost matching M

⇤

M

⇤

1

1

"

1

1 1

c(M⇤) = 2

Stable vs. Cheap

↵-stable matching M

M

1

1

"

1

1 1

c(M) = 1

Metric Graphs

v

1

v

2

v

3

v

4

d(v
1

, v
4

)

Points in metric

d(v
1

, v
2

)

vi ⇠ xi

)

w = d(v
1

, v
2

)x

1

x

3

x

4

Metric graph G

x

2

w((xi , xj)) = d(vi , vj)

Stable Matchings
Can Be Expensive

Graph Construction

1 1

G

2

Graph Construction

1 1

1/↵� "

G

2

Graph Construction

1 1

1/↵� "

2 + 1/↵� "

G

2

Graph Construction

kG
2

k = 2 + 1/↵� "

G

3

kG
2

k

Graph Construction

kG
2

k = 2 + 1/↵� "

(1/↵� ") · kG
2

k
G

3

kG
2

k

Graph Construction

kG
2

k = 2 + 1/↵� "

(1/↵� ") · kG
2

k
G

3

kG
2

k

kG
3

k = (2 + 1/↵� ")2

Graph Construction

Gi

kGi�1

k kGi�1

k

Graph Construction

Gi

kGi�1

k kGi�1

k
(1/↵� ") · kGi�1

k

Graph Construction

Gi

kGi�1

k kGi�1

k
(1/↵� ") · kGi�1

k

kGik = (2 + 1/↵� ")i�1

Matchings

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

⇤

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Matchings

M

M

⇤

G

log n

c(M⇤) n/2

c(M) � (2 + 1/↵� ")log n�1

2 ⌦
⇣
(2 + 1/↵� ")log n

⌘

2 ⌦
⇣
n

log(2+1/↵)
⌘

c(M)

c(M⇤)
2 ⌦

⇣
n

log(2+1/↵)�1

⌘
⇢ ⌦

⇣
n

log(1+1/(2↵))
⌘

Finding Cheap
Stable Matchings

Greedy Algorithm

Greedy Algorithm

Start with a minimum-cost matching

Greedy Algorithm

can be e�ciently calculated by algorithm of Lovasz &
Plummer (1986) based on Edmonds’ work (1965)

Greedy Algorithm

Consider edges /2 M ordered by ascending weights

Greedy Algorithm

If edge is unstable . . .

Greedy Algorithm

. . .flip it!

Greedy Algorithm

Consider next edge

Greedy Algorithm

Edge is unstable . . .

Greedy Algorithm

. . .flip again!

Greedy Algorithm

Repeat for remaining edges

Greedy Algorithm

Repeat for remaining edges

Greedy Algorithm

Repeat for remaining edges

Greedy Algorithm

Repeat for remaining edges

Greedy Algorithm

Return stable matching

Tight Trade-O↵

Theorem (Upper Bound)

Let M↵ be the matching returned by Greedy for some ↵ � 1. Then,

c(M↵)

c(M⇤)
2 O�

n

log(1+1/(2↵))
�
.

Theorem (Lower Bound)

For every ↵ � 1, there exists a metric graph such that for any

↵-stable matching M↵,

c(M↵)

c(M⇤)
2 ⌦

�
n

log(1+1/(2↵))
�
.

“Game Theory”

$100B Revenue

¾ Online

Match Players Fast
Waiting is Boooooring

Match Players Well
Similar Rating, Location, etc.

Online Two Player Games

Min-Cost Perfect Matching With Delays (MPMD)

MPMD Example

time

rating
(space)

MPMD Example

time

rating
(space)

MPMD Example

time

rating
(space)

MPMD Example

time

rating
(space)

MPMD Example

time

rating
(space)

time cost

space cost

MPMD Example

time

rating
(space)

time cost

space cost

MPMD Example

time

rating
(space)

time cost

space cost

MPMD Example

time

rating
(space)

time cost

space cost

Haste Makes Waste!

MPMD Example

time

rating
(space)

time cost

space cost

MPMD Example

time

rating
(space)

MPMD Example

time

rating
(space)

MPMD Example

time

rating
(space)

algorithm cost

optimal cost

Online Matching Literature

I Bipartite graph, left side is known, right side revealed online
I Maximum cardinality matching

[KVV1990, BM2008, GM2008, DJK2013, M2014, NW2015]
I Maximum vertex weighted matching

[AGKM2011, DJK2013, NW2015]
I Maximum capacitated assignment (the AdWords problem)

[MSVV2005, BJN2007, GM2008, AGKM2011, NW2015]
I Metric maximum weight matching

[KP1993, KMV1994]
I Metric minimum cost perfect matching

[KP1993, MNP2006, BBGN2014]
I Metric minimum capacitated assignment (transportation)

[KP2000]

I MPMD: known graph, both sides revealed online

MPMD Results

I Finite metric space M = (V , �)
I n = |V |
I � = maxx 6=y2V �(x,y)

minx 6=y2V �(x,y)

I O(log2 n + log�)-competitive randomized algorithm
[Emek, Kutten, W 2016]

I O(log n)-competitive (almost) deterministic algorithm
Lower bound of ⌦(

p
log n)

[Azar, Chiplunkar, Kaplan 2017]

I O(log n)-competitive (almost) det. bipartite algorithm
⌦(

p
log n/ log log n) lower bound for bipartite

⌦(log n/ log log n) lower bound for non-bipartite
[Wang et al., in submission]

The 𝑂(log 𝑛) Algorithm

Approximate Metric by Tree

Leaves = Nodes in Metric Space

[Fakcharoenphol, Rao, Talwar 2004], [Bansal, Buchbinder, Gupta, Naor 2015]

Height = 𝑂(log 𝑛)
E[Distortion] = 𝑂(log 𝑛)

𝑤

Algorithm

Algorithm

Algorithm

= 𝑤

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Proof

Proof

Proof

Proof

Total space cost = σ

Proof

Proof

Proof

For each pair at least one timer running

Total time cost ≤ 2σ

Total Algorithm Cost = 𝑂(σ)

What about OPT?

Proof

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

time
ALG

OPT

or

Proof

time
ALG

OPT

time
ALG

OPT

or

cost = cost

Done?

Just One Little Thing…

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

Proof

time
ALG

OPT

OPT has an easy time…

… but only every other phase!

Total OPT Cost = 𝛺(σ)

Where is the log 𝑛 coming from?

Height = 𝑂(log 𝑛) for time
E[Distortion] = 𝑂(log 𝑛) for space

Summary

Matching in Metric Spaces

Good or FastCheap or Stable

Thank You!
Questions & Comments?

www.disco.ethz.ch

Thanks to my co-authors
ESA 2015: Yuval Emek, Tobias Langner
STOC 2016: Yuval Emek, Shay Kutten
In Submission: Yuyi Wang

Abstract: My talk is about matchings in a metric space. In the first part, we connect two classic
approaches in matching, (i) a global optimization angle à la Edmonds, and (ii) a local selfish
angle à la Gale and Shapley. We analyze the price of anarchy of metric matching when
combining the two. The second part of the talk deals with an online version of metric matching.
Consider an online gaming platform supporting two-player games such as Chess or Street
Fighter 4. The platform tries to find a suitable opponent for each player, minimizing two
criteria: (i) matching similar players, so that the game is challenging for both players; and (ii) the
waiting time until a player is matched and can start playing since waiting is boring. It turns out
that these two minimization criteria are often conflicting. To cope with this challenge, we must
allow the platform to delay its service in a rent-or-buy manner.

The first part of my talk is based on an ESA 2015 paper with Yuval Emek and Tobias Langner.
The second part is based on an STOC 2016 paper with Yuval Emek and Shay Kutten, and on
unpublished work with Yuyi Wang and others.

	AGT 2017
	AGT2017
	new slides only

	new slides only 3
	AGT2017
	esa

	new slides only 3

	stoc vanilla
	AGT 2017.pdf
	AGT2017

	AGT 2017

