
Space-Constrained Interval Selection�
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Abstract. We study streaming algorithms for the interval selection
problem: finding a maximum cardinality subset of disjoint intervals on
the line. A deterministic 2-approximation streaming algorithm for this
problem is developed, together with an algorithm for the special case
of proper intervals, achieving improved approximation ratio of 3/2. We
complement these upper bounds by proving that they are essentially
best possible in the streaming setting: it is shown that an approxima-
tion ratio of 2 − ε (or 3/2 − ε for proper intervals) cannot be achieved
unless the space is linear in the input size. In passing, we also answer an
open question of Adler and Azar [1] regarding the space complexity of
constant-competitive randomized preemptive online algorithms for the
same problem.

1 Introduction

In this paper we consider the interval selection problem, namely, finding a max-
imum cardinality subset of disjoint intervals from a given collection of intervals
on the real line. It is well known that this problem has a simple optimal algo-
rithm in the classical setting when the complete set of intervals is given to the
algorithm [15]. Here we study this problem in the streaming model [17,23], where
the input is given to the algorithm as a stream of items (intervals in our case),
one at a time, and the algorithm has a limited memory that precludes storing
the whole input. Yet, the algorithm is still required to output a feasible solution,
with a good approximation ratio.

The motivation for the streaming model stems from applications of manag-
ing very large data sets, such as biological data (DNA sequencing), network
traffic data, and more. Although some function of the whole data set is to be
computed, it is impossible to store the whole input. Depending on the setting,
different variants of the streaming model have been considered in the literature,
such as the classical streaming model [17] or the so-called semi-streaming model
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[12]. Common to all of them is the fact that the space used by the streaming
algorithm is linear in some natural upper bound on the size of the output it
returns (sometimes, a multiplicative polylogarithmic overhead is allowed).

In many problems considered in the streaming literature, the size of the output
is fully determined by some parameter of the input, and thus, one would typically
express the space complexity as a function of this parameter (cf. [4,13]). However,
in other problems, the size of the output cannot be a priori expressed that way as
it depends on the given instance; in such settings it is natural to seek a streaming
algorithm whose space complexity is not much larger than the output size of the
given instance (cf. [16]). Clearly, as long as the computational model of the
streaming algorithm is based on a Turing machine with no distinction between
the working tape and the output tape, the size of the output is an inherent lower
bound on the required space.

In this paper, we consider a setting where the algorithm is given a stream of real-
line intervals, each one defined by its two endpoints, and the goal is to compute a
maximum cardinality subset of disjoint intervals (or an approximation thereof).
This problem finds many applications, e.g., in resource allocation problems, and
it has been extensively studied in the online and offline settings in many variants.
We seek algorithms with a good upper bound on the space they use for a given
instance, expressed in terms of the size of the output for that specific instance.
Typically, we seek algorithms that use space which is at most linear in the size of
the output and yet guarantee a good approximation ratio.

Related Work. The offline interval selection problem corresponds to finding a
maximum independent set in an interval graph. An optimal greedy algorithm
was discovered early [15] and has since been a staple of algorithms textbooks
[8,18]. It should be noted that the input can be given in (at least) two different
ways: as an intersection graph with the nodes corresponding to the intervals, or as
a set of intervals given by their endpoints. This distinction makes little difference
in the traditional offline setting, where switching between these representations
can be done efficiently. However, it can be important in access- or resource-
constrained settings. We choose to study the interval selection problem assuming
the latter representation — that is, the input is given as a set of intervals —
since we believe that it makes more sense in applications related to the online
and streaming settings (most previous works on online interval selection make
the same assumption).

The study of space-constrained algorithms goes back at least to the 1980 work
of Munro and Paterson on selection and sorting [22]. More recently, the streaming
model was developed to capture the processing of massive data-sets that arise in
practice [23]. Most streaming algorithms deal with the approximate computation
of various statistics, or “heavy hitters”, as exemplified by the celebrated paper
of Alon, Matias, and Szegedy [4].

A number of classic graph theoretic problems have been treated in the stream-
ing setting, for example, matching problems [20,11], diameter and shortest paths
[12,13], min-cut [3], and graph spanners [13]. These were mostly studied under
the semi-streaming model, introduced by Feigenbaum et al. [12]; in this model,
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the algorithm is allowed to use n logO(1)(n) space on an n-vertex graph (i.e.,

logO(1)(n) bits per vertex). Closest to our problem, the independent set problem
in general sparse graphs (and hypergraphs) was studied in the streaming set-
ting by Halldórsson et al. [16]. Geometric streaming algorithms have also been
appearing in recent years, especially dealing with extent and ranges, such as [2].

There is a plethora of literature on interval selection in the online setting. Some
papers capture the problem as a call admission problem on a linear network, with
the objective of maximizing the number (or weight) of accepted calls. Awerbuch
et al. [5] present a strongly �logN�-competitive algorithm for the problem, where
N is the number of nodes on the line (corresponding to the number of possi-
ble interval endpoints). This yields an O(logΔ)-competitive algorithm for the
weighted case, where Δ is the ratio between the longest to the shortest interval.
On the negative side, Awerbuch et al. [5] establish a lower bound of Ω(logN)
on the competitive ratio of randomized non-preemptive online interval selection
algorithms. In the context of the real line, this immediately implies that such
algorithms cannot have competitive ratio that does not depend on the length of
the input. In fact, Bachmann et al. [6] recently showed that the competitive ratio
of randomized non-preemptive online algorithms for interval selection on the real
line must be linear in the number of intervals in the input. Preemptive online
scheduling has a lower bound of Ω(logΔ/ log logΔ) in the weighted case [7]. In
comparison, much better results are possible for preemptive online algorithms
in the unweighted setting: Adler and Azar [1] devise a 16-competitive algorithm.
One way of easing the task of the algorithm is to assume arrival by time, i.e.,
the intervals arrive in order of left endpoints. This has been treated for different
weighted problems [19,24,21,14,10].

Our Results. We give tight results for the interval selection problem in the
streaming setting. Our main positive result is a deterministic 2-approximation
streaming algorithm that uses space linear in the size of the output (Sect. 3).
This is complemented by a matching lower bound (Sect. 4), stating that an
approximation ratio of 2 − ε cannot be obtained by any randomized streaming
algorithm with space significantly smaller than the size of the input (which is
much larger than the size of the output). The special case of proper interval
collections (i.e., collections of intervals with no proper containments) is also
considered, for which a deterministic 3/2-approximation streaming algorithm
that uses space linear in the output size is presented (deferred to [9]); a matching
lower bound on the approximation ratio is established (Sect. 4) for streams of
unit intervals (a special case of proper intervals). The upper bounds are extended
to multiple-pass streaming algorithms: we show that an approximation ratio
1 + 1/(2p− 1) can be obtained in p passes over the input (deferred to [9]).

In passing, we also answer an open question posed by Adler and Azar [1] in
the context of randomized preemptive online algorithms for the interval selection
problem. Adler and Azar point out that the decisions made by their online
algorithm depend on the whole history (i.e., the input seen so far) and that
natural attempts to remove this dependency seem to fail. Consequently, they
write (using the term “active call” for an interval in the solution maintained by
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the online algorithm) that “it seems very interesting to find out whether there
exist constant-competitive algorithms where each decision depends only on the
currently active calls and maybe on additional bounded information”. We answer
this question affirmatively by slightly modifying our main algorithm to achieve a
randomized preemptive online algorithm that admits constant competitive ratio
(slightly improving on that of [1]) and uses space linear in the size of the optimal
solution, rather than the size of the input, as the algorithm of Adler and Azar
does (deferred to [9]).

2 Preliminaries

We think of the real line R as stretching from left to right so that an interval
I contains all points between its left endpoint left(I) and its right endpoint
right(I), where left(I) < right(I). Each endpoint can be either open (exclusive)
or closed (inclusive). A half-open interval has a closed left endpoint and an open
right endpoint. (This is, perhaps, the natural interval type to use in most resource
allocation applications.) Observe that the assumption that left(I) < right(I)
implies that every interval contains an open set (in the topological sense) and
that half-open intervals are always well defined.

The interval related notions of intersection, disjointness, and containment fol-
low the standard view of an interval as a set of points. Two intervals I, J properly
intersect if they intersect without containment; I properly contains J if I contains
J and J does not contain I. An interval collection I is said to be proper (and the
intervals in the collection, proper intervals) if no two intervals in I exhibit proper
containment. The load of I is defined to be maxp∈R |{I ∈ I | p ∈ I}|.

The interval selection problem asks for a maximum cardinality subset of pair-
wise disjoint intervals out of a given set S of intervals. In the streaming model,
the input interval set S is considered to be an ordered set (a.k.a. a stream) and
the intervals arrive one by one according to that order. The intervals are spec-
ified by their endpoints, where each endpoint is represented by a bit string of
length b (the same b for all endpoints). This may potentially provide a streaming
algorithm with the edge of knowing in advance some bounds on the number of
intervals that will arrive and on the number of intervals that can be placed be-
tween two existing intervals. However, our algorithms do not take advantage of
this extra information and our lower bounds show that it is essentially useless.
An optimal solution to a given instance S of the interval selection problem is
denoted by Opt(S).

We may sometimes talk about segments, rather than intervals, when we want
to emphasize that the entities under consideration are not part of the input.
Given a set I of intervals, a component (or connected component) of I is a
maximal continuous segment in

⋃
I∈I I.

3 The Main Algorithm

Overview. Given a stream S of intervals, our algorithm maintains a collection
A ⊆ S, referred to as the actual intervals, from which the output Alg(S) =
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Opt(A) is taken. It also maintains a collection V of virtual intervals, where each
virtual interval is the intersection of two actual intervals that existed in A at
some point. The role of the virtual intervals is to filter out undesired intervals
from joining A: an arriving interval I ∈ S joins A if and only if it does not
contain any currently maintained virtual or actual interval.

Our algorithm is designed to guarantee that each interval I ∈ S leaves a trace
in either A or V , namely, there exists some J ∈ A∪V such that J ⊆ I. Moreover,
if I, I ′ ∈ A properly intersect, then I ∩ I ′ ∈ V . This essentially means that an
arriving interval is rejected if and only if it contains some previous interval of S
or the intersection of two properly intersecting previous intervals in S that have
belonged to A.

Following that, it is not difficult to show that the load of the interval collection
A is at most 2. Based on a careful analysis of the structure of the (connected)
components in A and the locations of the virtual intervals within these compo-
nents and between them, we can argue that |V | ≤ |A|. This immediately yields
the desired upper bound on the space of our algorithm as |A| ≤ 2 · |Opt(A)|. The
bound on the approximation ratio essentially stems from the observation that
|Opt(S)| ≤ |Opt(A ∪ V )| (a direct corollary of the fact that each interval in S
leaves a trace in A∪V ) and from the invariant that each actual interval contains
at most 2 virtual intervals.

It is interesting to point out that our algorithm is in fact a deterministic
preemptive online algorithm that maintains a load-2 interval collection (the col-
lection A). Since the main result of Adler and Azar [1] also relies on such an
algorithm, one may wonder if the two algorithms can be compared. Actually, the
algorithm of Adler and Azar bases its rejection (and preemption) decisions on
similar conditions: an arriving interval is rejected if and only if it contains some
previous interval of S or the intersection of two properly intersecting intervals
in A. (Adler and Azar use a different terminology, but the essence is very sim-
ilar.) The difference lies in the latter condition: whereas the algorithm of Adler
and Azar considers only the properly intersecting intervals that are currently in
A, our algorithm also (implicitly) considers properly intersecting intervals that
belonged to A in the past and were preempted since. This seemingly small dif-
ference turns out to be crucial as it facilitates our algorithm to use much less
memory, thus giving rise to an interesting phenomena: by remembering extra
information (i.e., intersecting intervals that belonged to A in the past and are
not in A anymore), we actually end up using less memory.

The Algorithm. Consider a stream S = (I1, . . . , In) of intervals on the real
line. It will be convenient to assume that all endpoints are distinct, i.e.,
{left(I), right(I)} ∩ {left(J), right(J)} = ∅ for every two intervals I, J ∈ S. Un-
less stated otherwise, we will also assume that the intervals mentioned in this
section are closed on both endpoints. These two assumptions are lifted in [9].

Our algorithm, denoted Alg, maintains a collection A ⊆ S of actual intervals
and a collection V of virtual intervals, where each virtual interval is realized
by endpoints of intervals in S. That is, the virtual interval I ∈ V satisfies
{left(I), right(I)} ⊆ {left(J), right(J) | J ∈ S}. The algorithm initially sets
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A, V ← ∅. Then, upon arrival of a new interval I ∈ S, Alg proceeds according
to the policy presented in Algorithm 1.

Algorithm 1. The policy of Alg upon arrival of an interval I ∈ S

1: if ∃J ∈ A ∪ V s.t. J ⊆ I then
2: reject I and halt
3: A← A ∪ {I}
4: for all J ∈ A s.t. J ⊇ I do
5: A← A− {J}
6: for all J ∈ V s.t. J ⊇ I do
7: V ← V − {J}
8: for p ∈ {left(I), right(I)} do
9: if ∃J ∈ V s.t. p ∈ J then
10: V ← V − {J} ∪ {I ∩ J}
11: else if ∃J ∈ A s.t. p ∈ J then
12: V ← V ∪ {I ∩ J}
13: for all J ∈ A and K ∈ V do
14: if left(J) < left(K) < right(K) < right(J) then
15: A← A− {J}

Analysis (sketch). We provide here a sketch of the analysis; the detailed version
is deferred to [9]. Throughout, we let 1 ≤ t ≤ n denote the time at which Alg

completed processing interval It ∈ S; time t = 0 denotes the beginning of the
execution. We refer to the period between time t− 1 and time t as round t. The
stream prefix (S1, . . . , St) is denoted by St. The collections A and V at time t are
denoted by At and Vt, respectively, although, when t is clear from the context,
we may omit the subscript.

Lemma 1 lies at the core of our analysis: it states that each interval in S leaves
some trace in either A or V . This will be employed later on to argue that Alg(S)
is not much smaller than Opt(S).

Lemma 1. For every interval It ∈ S and for every time t′ ≥ t, there exists
some interval ρ ∈ At′ ∪ Vt′ such that ρ ⊆ It.

Lemma 2 — the main lemma regarding the updating phase in lines 8–12 and the
resulting structure of the interval collections A and V — states seven invariants
maintained by our algorithm; these invariants are proved simultaneously by in-
duction on t, essentially by straightforward analysis of the policy presented in
Algorithm 1.

Lemma 2. For any round 1 ≤ t ≤ n, the updating phase satisfies the following
two properties:
(P1) If ρ is added to V in round t, then ρ ∈ Vt.
(P2) If ρ and σ are added to V in round t, then ρ ∩ σ = ∅.
Moreover, for any time 0 ≤ t ≤ n, the interval collections A and V satisfy the
following five properties:
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(P3) For every ρ ∈ A and σ ∈ V , if ρ ∩ σ �= ∅, then σ ⊂ ρ with a common
endpoint.
(P4) For every ρ, σ ∈ A, if ρ ∩ σ �= ∅, then ρ ∩ σ ∈ V .
(P5) Every point p ∈ R is contained in at most 1 virtual interval.
(P6) Every point p ∈ R is contained in at most 2 actual intervals.
(P7) There do not exist two actual intervals ρ, σ ∈ A such that ρ ⊆ σ.

We employ Lemma 2 in order to understand the structure of the components of
A and their relations with the intervals in V . To that end, fix some time t and
consider an arbitrary component C formed as the union of the actual intervals
ρ1, . . . , ρk ∈ At. We denote the leftmost and rightmost points in (the segment)
C by left(C) and right(C), respectively. Assume without loss of generality that
left(ρi) < left(ρi+1) for every 1 ≤ i ≤ k − 1. Lemma 2(P6) and (P7) then
guarantees that

left(ρi−1) < left(ρi) < right(ρi−1) < left(ρi+1) < right(ρi) < right(ρi+1)

for every 2 ≤ i ≤ k−1. By Lemma 2(P4), we conclude that ρi∩ρi+1 ∈ Vt for every
1 ≤ i ≤ k−1, while Lemma 2(P3) implies that the segment [left(ρ2), right(ρk−1)]
does not intersect with any other virtual interval in Vt. The segment C possibly
contains two more virtual intervals at time t: an interval σ� ⊆ [left(ρ1), left(ρ2))
and an interval σr ⊆ (right(ρk−1), right(ρk)], but then Lemma 2(P3) guarantees
that left(σ�) = left(ρ1) = left(C) and right(σr) = right(ρk) = right(C). An
illustration of a component is provided in Fig. 1. There may also exist virtual
intervals in between the components of A, but Lemma 3, to be stated soon,
essentially shows that their number and structure are fairly limited.

ρ1 ρ3 ρ5

ρ2 ρ4

Fig. 1. A component C of A. The solid lines depict the actual interval ρi, i = 1, . . . , 5;
the dashed lines depict the virtual intervals contained in C.

Let Ψt denote the collection of the components of At and consider two adjacent
components C�, Cr ∈ Ψt, where C� is to the left of Cr . We say that the pair
(C�, Cr) is solid at time t if at most one virtual interval in Vt intersects with
the segment [right(C�), left(Cr)]. Lemma 3 states that the pair (C�, Cr) is always
solid.

Lemma 3. At every time 0 ≤ t ≤ n, all pairs of adjacent components in Ψt are
solid. Moreover, no virtual interval intersects with the segment (−∞, left(C�)]
nor with the segment [right(Cr),+∞), where C� and Cr are the leftmost and
rightmost components in Ψt, respectively.
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Lemma 4 is established by combining Lemma 1 and Lemma 3 with a careful
accounting of the virtual intervals.

Lemma 4. |Alg(St)| ≥ |Opt(St)|/2 at every time 0 ≤ t ≤ n.

Corollary 1. |Alg(S)| ≥ |Opt(S)|/2.
It remains to bound the space of our algorithm, showing that it is linear in the
length of the bit string representing Alg(S). At each time t, the space of Alg is
linear in the length of the bit strings representing At and Vt. As Opt(St)/2 ≤
Alg(St) ≤ Opt(St) for every 0 ≤ t ≤ n, and since Opt(St) is non-decreasing
with t, it is sufficient to show that |At| + |Vt| = O(|Alg(St)|) = O(|Opt(At)|).
By Lemma 2(P6), we know that the actual intervals in At can be 2-colored such
that if two intervals belong to the same color class, then they do not intersect.
Thus, |At| ≤ 2 · |Opt(At)| at every time t. On the other hand, Lemma 3 implies
that if we count the actual and virtual intervals by scanning the real line from
left to right, then the number of virtual intervals never exceeds that of the actual
intervals. Therefore, |Vt| ≤ |At| which concludes our analysis.

4 Lower Bound(s)

In this section we establish lower bounds on the approximation ratio of random-
ized streaming algorithms for the interval selection problem, establishing the
following two theorems.

Theorem 1 (Lower bound for general intervals). For every real ε > 0,
integers k0, n0 > 0, and subexponential (respectively, sublinear) function s :
N → N, there exist k0 ≤ k ≤ c · k0, where c is a universal constant, n > n0,
and an interval stream S such that (1) |S| = n; (2) |Opt(S)| = k; and (3)
Alg(S) < k(1/2 + ε) for any randomized interval selection streaming algorithm
Alg with space s(kb) (resp., space s(nb)), where b is the length of the bit strings
representing the endpoints of S.

Theorem 2 (Lower bound for unit intervals). For every real ε > 0, integers
k, n0 > 0, and subexponential (respectively, sublinear) function s : N → N,
there exist n > n0, and a unit interval stream S such that (1) |S| = n; (2)
|Opt(S)| = k; and (3) Alg(S) < k(2/3 + ε) for any randomized proper interval
selection streaming algorithm Alg with space s(kb) (resp., space s(nb)), where b
is the length of the bit strings representing the endpoints of S.

Our lower bounds are proved by designing a random interval stream S for which
every deterministic algorithm performs badly on expectation; the assertion then
follows by Yao’s principle. (Our construction uses half-open intervals, but this
can be easily altered.) Note that under the setting used by our lower bounds,
the algorithm is required to output a collection C of disjoint intervals, and the
quality of the solution is then determined to be the cardinality of C ∩ S. In
other words, the algorithm is allowed to output non-existing intervals (that is,
intervals that never arrived in the input), but it will not be credited for them.
This, obviously, can only increase the power of the algorithm.
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The (k, n)-Gadget. Fix some positive integer m whose role is to bound the space
of the algorithm. Our lower bounds rely on the following framework, character-
ized by the parameters k, n ∈ Z>0, denoted a (k, n)-gadget. Consider an extensive
form two-player zero-sum game played between the algorithm (MAX) and the
adversary (MIN), depicted by a sequence of k phases. Informally, in each phase
t, the adversary chooses a permutation πt ∈ Pn, where Pn is the collection of
all permutations on n elements, and an index it ∈ [n]. The algorithm observes
πt (but not it) and produces a memory image Mt, i.e., a bit string of length m.
The index it is handed to the algorithm after the memory image is produced.
At the end of the last phase the algorithm tries to recover πt(it) for t = 1, . . . , k:
it outputs some i∗t ∈ [n] based on the memory image Mt, index it, and all other
memory images and indices. For each t such that i∗t = πt(it), the algorithm
scores a (positive) point.

More formally, the adversarial strategy is depicted by the choices of the per-
mutations πt and the indices it for t = 1, . . . , k. We commit the adversary to
make those choices uniformly at random (so, the adversary reveals its mixed
strategy), namely, πt ∈r Pn and it ∈r [n] for every t, where all the random
choices are independent. The strategy of the algorithm is depicted by the func-
tion sequences {ft}kt=1 and {gt}kt=1, where ft : Pn×({0, 1}m × [n])

t−1 → {0, 1}m
and gt : {0, 1}m × [n] × ({0, 1}m × [n])

k−1 → [n]. Let Γ0 be the empty string
and recursively define1Γt = Γt−1 ◦ ft (πt, Γt−1) ◦ it. The payoff of the algorithm
is the number of indices t, 1 ≤ t ≤ k, such that

gt

(
ft (πt, Γt−1) , it, {ft′ (πt′ , Γt′−1) , it′}t′ �=t

)
= πt(it) .

In the language of the aforementioned informal description, the role of the func-
tion ft is to produce the memory image Mt based on the permutation πt and
all previous memory images and indices (whose concatenation is given by Γt−1).
The role of the function gt is to recover πt(it) based on the memory image Mt,
index it, and all other memory images and indices.

Note that the memory images Mt′ and indices it′ , t
′ �= t, do not contain any

information on the permutation πt on top of that contained in Mt. In particular,
the entropy in πt(it) given Mt, it, and {Mt′ , it′}t′ �=t is equal to the entropy in
πt(it) given Mt and it. Therefore, it will be convenient to decompose the domain
of the function gt : {0, 1}m× [n]×({0, 1}m× [n])k−1 → [n] so that the ({0, 1}m×
[n])k−1-part determines which function ĝt : {0, 1}m × [n] → [n] is chosen, and
then this function ĝt is used to produce i∗t based on Mt and it. Similarly, we
decompose the domain of the function ft : Pn × ({0, 1}m× [n])t−1 → {0, 1}m so

that the ({0, 1}m × [n])
t−1

-part determines which function f̂t : Pn → {0, 1}m is

chosen, and then this function f̂t is used to produce Mt based on πt.
We now turn to bound the expected payoff of the algorithm as a function of

k, m, and n. The key ingredient in this context is the following lemma, which is
essentially a well known fact in slightly different settings; a proof is provided in
[9] for completeness.

1 We use the notation u ◦ v to denote the concatenation of the string u to string v.
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Lemma 5. For every real α > 0 and integer n0 > 0, there exists an integer n >
n0 such that for every two functions f̂ : Pn → {0, 1}m and ĝ : {0, 1}m×[n]→ [n],

where m = αn logn, we have Pπ∈rPn,i∈r[n](ĝ(f̂(π), i) = π(i)) < 2α.

Corollary 2. For every real α > 0 and integers k, n0 > 0, there exists an integer
n > n0 such that if m ≤ αn logn, then the expected payoff of the algorithm
(MAX) player in a (k, n)-gadget is smaller than 2αk.

The (n, π)-Stack. We now turn to implement a (k, n)-gadget via a carefully
designed interval stream. As a first step, we introduce the (n, π)-stack con-
struction. Given an integer n > 0 and a permutation π ∈ Pn, an (n, π)-stack
deployed in the segment [x, y), x < y, is a collection of n intervals J1, . . . , Jn sat-
isfying: (1) all intervals Ji are half open; (2) all intervals Ji have the same length
right(Ji)− left(Ji) = λn, where λ = y−x

2n−1/2 ; and (3) left(Ji) = x+λ(i−1)+επ(i)

for every i ∈ [n], where ε = λ/(2n). Note that this deployment ensures that
left(Jn) < right(J1), hence the half open segment [left(Jn), right(J1)) is con-
tained in Ji for every i ∈ [n]. Moreover, the union of the intervals in the stack
does not necessarily cover the whole segment [x, y); it is always contained in
[x, y), though. The structure of an (n, π)-stack is illustrated in Fig. 2.

Fig. 2. The relative locations of the intervals in an (n, π)-stack for n = 4. The left and
right endpoints of interval Ji are located in the segments depicted by the bidirectional
arrows whose length is λ/2. The exact location within this segment is determined by
π(i). In the construction of the 2-lower bound for general intervals, the bold rectangles
correspond to the segments in which the stacks (or auxiliary intervals) identified with
the left and right children of the current node are deployed assuming that the good
interval is interval J2 (these segments do not intersect with the segments corresponding
to the bidirectional arrows).

The (k, n)-gadget is implemented by introducing k stacks, each corresponding
to one phase, and some auxiliary intervals; the stack corresponding to phase t
is referred to as stack t. The permutation π used in the construction of stack
t is πt. The index it will dictate the choice of one good interval out of the n
intervals in that stack. What exactly makes this interval good will be clarified
soon; informally, the algorithm has no incentive to output an interval in a stack
unless this interval is good.

The k stacks are used both by the construction of the 2-lower bound for
general interval streams and by that of the (3/2)-lower bound for unit intervals.
The difference between the two constructions lies in the manner in which these
stacks are deployed in the real line, and in the addition of the auxiliary intervals.
The details of the 2-lower bound are provided here; those of the (3/2)-lower
bound are deferred to [9].
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A 2-Lower Bound for General Intervals. The interval stream that realizes the
(k, n)-gadget for the 2-lower bound for general intervals is constructed as follows.
Assume that k = 2κ−1 for some positive integer κ and consider a perfect binary
tree T of depth κ. The k stacks are identified with the internal nodes of T so
that stack t precedes stack t + 1 in a pre-order traversal of T . (In other words,
if stack t is identified with node u and stack t′ is identified with a child of
u, then t < t′.) In addition to the intervals in the stacks, we also introduce
2κ = k + 1 auxiliary intervals which are identified with the leaves of T ; these
auxiliary intervals arrive last in the stream. We say that an interval J is assigned
to node u ∈ T if J belongs to the stack identified with u or if u is a leaf and J
is the auxiliary interval identified with it.

The deployment of the stacks and the auxiliary intervals in R is performed as
follows. Stack 1 (identified with T ’s root) is deployed in [0, 1). Given the deploy-
ment of stack t identified with internal node u ∈ T in the segment [x, y), we de-
ploy the stacks identified with the left and right children of u in the segments σ� =
[x+ λ(it − 3/2), x+ λ(it − 1)) and σr = [x+ λ(it + n− 1/2), x+ λ(it + n)), re-
spectively, where recall that λ = y−x

2n−1/2 . If the children of u are leaves in T ,

then we deploy auxiliary intervals in those two segments instead of stacks, that
is, one auxiliary interval in σ� and one in σr. Refer to Fig. 2 for an illustration.

The key observation regarding the choice of σ� and σr is that

left(Jit−1) ≤ left(σ�) < right(σ�) ≤ left(Jit) and

right(Jit) ≤ left(σr) < right(σr) ≤ right(Jit+1) .

This implies that: (1) the good interval in the stack identified with node u ∈ T
does not intersect with any interval assigned to a descendant of u in T ; and (2) a
non-good interval in the stack identified with node u ∈ T contains every interval
assigned to a descendant of either the left child of u or the right child of u in T .

The best response of the algorithm would clearly include all the auxiliary
intervals in the output, hence it can include an interval Ji of stack t in the
output only if it is the good interval of that stack, namely, i = it. For that
purpose, the algorithm has to recover the exact locations of the endpoints of Jit
that implicitly encode πt(it). Observing that the endpoints in this construction
can be represented by bit strings of length log(n) · log(k), Theorem 1 follows by
Corollary 2.
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