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Power

Processor

Radio

Sensors
Memory

Today, we look 
much cuter!

And we’re usually 
carefully deployed
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Distributed (Network) Algorithms
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Ad Hoc Networks                vs. Sensor Networks

• Laptops, PDA’s, cars, soldiers

• All-to-all routing

• Often with mobility (MANET’s)

• Trust/Security an issue
– No central coordinator

• Maybe high bandwidth

• Tiny nodes: 4 MHz, 32 kB, …

• Broadcast/Echo from/to sink

• Usually no mobility
– but link failures

• One administrative control

• Long lifetime Energy
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Reloaded or Revolutions?

• Reloaded
– Distributed (message passing) algorithms
– Message complexity Support for energy efficiency
– Time complexity Support for dynamics

• Revolutions
– Wireless Interference issues Not standard message passing, 

but new types of distributed algorithms
– Wireless New types of connectivity/interference graphs?

• Finally an application that can’t live without state-of-the-art 
distributed algorithms?!
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Overview

• Introduction

• Algorithmic Models: Case Study Clustering
– Flooding vs. Dominating Sets
– Non-Trivial Algorithm
– Lower Bounds
– Model Discussion

• Communication Models: Case Study Scheduling
• Conclusions
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Finding a Destination by Flooding
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Finding a Destination Efficiently
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(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there 
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

• It might be favorable to
have few nodes in the 
(C)DS. This is known as the
Minimum (C)DS problem.
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Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph. 

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for 

mobile ad-hoc network) – topology of graph “far away” should 
not influence decision who belongs to (C)DS
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A Simple “Localized” Algorithm

• Classic greedy algorithm:

• “Always choose node with most non-dominated neighbors.”
• The solution is a log-approximation (which is asymptotically 

optimal, unless P ≈ NP).

• Distributed version:

1. Wait until higher-degree (same degree: higher-ID) neighbors have 
decided not to join dominating set.

2. Join dominating set and tell neighbors.

• Problem: This algorithm can have a linear waiting chain. Too slow!
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A Simple “Local” Algorithm

• If higher priority neighbors are connected and cover all other 
neighbors, then don’t join CDS, else join CDS
– This talk, inspired by an improvement of Jie Wu
– 2 rounds of communication for CDS only; lots of practical appeal
– In the worst case very bad, even for UDGs only a √n approximation
– However, on random UDGs, this gives a O(1) approximation
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Algorithm Summary
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Results

• First time/approximation tradeoff. First algorithm which achieves a 
non-trivial approximation ratio in constant time (even for UDG!) 
[Kuhn, Wattenhofer, PODC 2003]

• Improved version [Kuhn, Moscibroda, Wattenhofer, SODA 2006]
– O(log2Δ / ε4) time for a (1+ε)-approximation of phase A with 

logarithmic sized messages.
– An improved and generalized distributed randomized rounding

technique for phase B (constant time, logarithmic approximation)
– Works for quite general linear programs.

• Is it any good…?
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Lower Bound for Dominating Sets: Intuition…
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• Two graphs (m << n). Optimal dominating sets are marked red.

|DSOPT| = 2.
|DSOPT| = m+1.
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Lower Bound for Dominating Sets: Intuition…

• In local algorithms, nodes must decide only using local knowledge.
• In the example green nodes see exactly the same neighborhood.

• So these green nodes must decide the same way!
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Lower Bound for Dominating Sets: Intuition…
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• But however they decide, one way will be devastating (with n = m2)!

|DSOPT| = 2.
|DSOPT without green| ≥ m.

|DSOPT| = m+1.
|DSOPT with green| > n
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The Lower Bound

• Lower bounds (Kuhn, Moscibroda, Wattenhofer @ PODC 2004):
– Model: In a network/graph G (nodes = processors), each node 

can exchange a message with all its neighbors for k rounds. 
After k rounds, node needs to decide.

– We construct the graph such that there are nodes that see the 
same neighborhood up to distance k. We show that node ID’s do 
not help, and using Yao’s principle also randomization does not. 

– Results: Many problems (vertex cover, dominating set, 
matching, etc.) can only be approximated Ω(nc/k2 / k) and/or 
Ω(Δ1/k / k).

– It follows that a polylogarithmic dominating set approximation (or 
maximal independent set, etc.) needs at least Ω(log Δ / loglog Δ)
and/or Ω((log n / loglog n)1/2) time. 
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Graph Used in Dominating Set Lower Bound

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0

• The example is for k = 3.
• All edges are in fact special bipartite graphs

with large enough girth.
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Are Localized/Local Algorithms Practical?!?

• Localized algorithm: Causality chain, butterfly effect 

• Local algorithm: Synchronous communication rounds
– Quite high demand to MAC layer
– In reality messages get lost, due to fading, noise, and interference
– In reality not all neighbors receive a message (hidden terminal problem)
– In reality nodes might crash and restart (shabby power supply) 

• Smells like self-stabilization
– Messages might get lost, duplicated, or corrupted
– Node memory/state might get corrupted (RAM only)
– However, ROM (program, initialization, random seed) is safe
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How to turn any local into a self-stabilizing algorithm

• Local algorithm:

• Initialize (local) variables
• Phase

– Compute message from variables
– Transmit message
– Receive messages from neighbors
– Recompute variables
– Decision? If not go to next phase

• Self-stabilizing algorithm:

• Simply keep transmitting 
<Out0,Out1,Out2, …> in one 
single message. (For many local 
algorithms, this message can be 
encoded to save space.)

• And keep checking whether your 
memory is still ok.

• It works! Adversarial memory 
corruptions are local only.

• [Awerbuch, Varghese, FOCS 91]

Receive Variables Transmit
- Init Out0
In1 Phase1 Out1
In2 Phase2 Out2
… … …
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Algorithm Classes

Global Algorithm   

Distributed Algorithm

Local   Localized

• For some problems we don’t even
understand the non-distributed case 

• “Reiceive msg X Transmit msg Y”
• Every global algo can be distributed 

+ Node can only 
communicate with 
neighbors k times.

+ Strict time bounds
– Synchronous model

Unstructured

+ Often simple
– Nodes can wait for 

neighbor actions
– Often linear chain 

of causality

+ Implement MAC 
layer yourself; you 
control everything

– Often complicated
– Argumentation 

overhead
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Clustering for Unstructured Radio Networks

• “Big Bang” (deployment) of a sensor and/or ad-hoc network:
– Nodes wake up asynchronously (very late, maybe)
– Neighbors unknown
– Hidden terminal problem
– No global clock
– No established MAC protocol
– No reliable collision detection 
– Limited knowledge of the number of nodes or degree of network.

• We have randomized algorithms that compute DS (or MIS) in 
polylog(n) time even under these harsh circumstances, where n is 
an upper bound on the number of nodes in the system.

• [Kuhn, Moscibroda, Wattenhofer @ MobiCom 2004]
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The model determines the distributed
complexity of a problem

Example: Comparison of Two Algorithms for Dominating Set

Algorithm 1 

• Algorithm computes DS

• k2+O(1) transmissions/node
• O(ΔO(1)/k log Δ) approximation

• Quite complex!
• Performance OK

Algorithm 2

• Algorithm computes DS

• 1 transmission/node
• O(1) approximation

• Easy!
• Performance great!
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Connectivity Models

too pessimistic too optimistic

General
Graph

UDG

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph
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Connectivity: Bounded Independence Graph (BIG)

• How realistic is QUDG?
– u and v can be close but not adjacent
– model requires very small d 

in obstructed environments (walls)

• However: in practice, neighbors are often also neighboring

• Solution: BIG Model
– Bounded independence graph
– Size of any independent set grows 

polynomially with hop distance r
– e.g. O(r2) or O(r3) 
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Connectivity: Unit Ball Graph (UBG)

• ∃ metric (V,d) describing distances between nodes u,v ∈ V

such that:  d(u,v) · 1 : (u,v) ∈ E
such that: d(u,v) > 1  : (u,v) ∈ E

• Assume that doubling dimension of metric is constant
– Doubling dimension: log(#balls of radius r/2 to cover ball of radius r)

UBG based on
underlying doubling metric.
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Models can be put in relation

• Try to proof correctness in an as “high” as possible model
• For efficiency, a more optimistic (“lower”) model might be fine

[Schmid, Wattenhofer, WPDRTS 2006]
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The model determines the complexity
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1

Spatial Reuse (with Scheduling)

2

3

4

5

8

7

6
Time-Slot Senders:

t1: v1, v4, v7

t2: v2, v3, v6

t3: v5, v8

This example uses 3 time slots!

Schedule a set of given links in 
as few as possible time slots
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Physical Model

• Let us look at the signal-to-noise-plus-interference (SINR) ratio!
• Message arrives if SINR is larger than β at receiver

Minimum signal-to-
interference ratio

Power level 
of sender u

Path-loss exponent

Noise

Distance between
two nodes
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Consider the following simple scheduling task Ψ:

A Simple Scheduling Problem

Every node can send one

message successfully!

Receivers can be

choosen optimally!

(e.g. nearest neighbor)

How many time-slots are required so
every node can send at least once?

„The Scheduling Complexity
in Wireless Networks“

Ψ:
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• Let α=3, β=3, and N=10nW (realistic values!)
• Set the transmission powers as follows PC= -7 dBm and PA= 0 dBm

• SINR at D is: 

• SINR at B is: 

Can we schedule links concurrently…?

A B C D

1m 1m 1m

A wants to sent to B, C wants to send to D

Simultaneous transmission is possible !
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Let’s make it tougher!

A BC D
1m

A wants to sent to B, C wants to send to D

• Let α=3, β=3, and N=10nW
• Set the transmission powers as follows PC= -15 dBm and PA= 1 dBm

• SINR at D is: 

• SINR at B is: 

Simultaneous transmission is possible !

4m 2m



Roger Wattenhofer, ETH Zurich @ Sirocco 2006 41

• This is possibly the simplest possible scheduling problem!
– n nodes in 2D Euclidean plane (nodes in arbitrary position)
– Nodes can choose power levels
– Message successfully received if SINR at receiver sufficient
– Ψ: Each node‘s transmission is successfully received by someone

The Scheduling Complexity of Wireless Networks

Clearly,
S(Ψ) · n

Scheduling Complexity S(Ψ)
The minimal number of time-slots required
until every node can successfully transmit at 
least once (in any network with n nodes)!
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• The trivial protocol (scheduling each node individually) 
requires n time slots. 

• Any protocol with uniform power assignment
requires Ω(n) time slots. 

• Any protocol with power assignment
requires Ω(n) time slots. 

• If done right, scheduling complexity of Ψ is

• In any network, a strongly-connected topology
can be scheduled in time

S(Ψ) · n

S(Ψ) ∈ Ω(n)

S(Ψ) ∈ Ω(n)

Results [Moscibroda, Wattenhofer, Infocom 2006]

S(Ψ) ∈ Ο(log3n)

S(connected) ∈ Ο(log4n)
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Lower Bound for                    Power Assignment

• Consider the exponential chain:
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• Consider the exponential chain:

• Exponential chain can be scheduled in O(1) time!
• How many links can we schedule simultaneously with ?
• Consider first node v1...   

its power is P1=ρ210α for some constant ρ
• This creates interference of at least ρ/2α at every other node! 
• The second node v2 also sends with power P2=ρ27α

• Again, this creates an additional interference of at least ρ/2α at every
other node! 

1

v1v2

2 22 23 24 25 26 27 28 29 210

f1

ρ(f1)α Power

Interference>ρ/2α>ρ/2α>ρ/2α>ρ/2α>ρ/2α>ρ/2α>ρ/2α
ρ(f2)α

f2

>ρ/2α>ρ/2α >ρ/2α

Lower Bound for                    Power Assignment

Not trivial…
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• Consider the exponential chain:

• Exponential chain can be scheduled in O(1) time!
• How many links can we schedule simultaneously?
• Let us start with the first node v1...   

its power is P1=ρ210α for some constant ρ
• This creates interference of at least ρ/2α at every other node! 
• The second node v2 also sends with power P2=ρ27α

• Again, this creates an additional interference of at least ρ/2α at every
other node! 

1

v1

Power

Interference
>2ρ/2α

>2ρ/2α
ρ(f2)α

v2

>2ρ/2α >2ρ/2α
>2ρ/2α>2ρ/2α

>2ρ/2α

2 22 23 24 25 26 27 28 29 210

f1

ρ(f1)α

f2

And so on…

v3

ρ(f3)α

>3ρ/2α
>3ρ/2α

>3ρ/2α
>3ρ/2α

f3

Lower Bound for                    Power Assignment

Not trivial…
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• Assume we can schedule X nodes in parallel. 
• The left-most receiver xr faces an interference of at least X·ρ/2α

yet, xr receives the message, say from xs. 
• How large can X be?
• The SINR at xr must be at least β, and hence

• From this, it follows that X is at most 2α/β!

Lower Bound for                    Power Assignment

Any power assignment

algorithm has scheduling complexity: S(Ψ)∈ Ω(n)

!
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Observations and Implications

• All MAC layer protocols we are aware of use either uniform or dα

power assignment. 
– Thus, the theoretical performance of current MAC layer protocols

almost as bad as scheduling every single node individually!

• In contrast: faster polylogarithmic scheduling (faster MAC protocols) 
are theoretically possible in all (even worst-case) networks, if nodes 
choose power carefully.
– Theoretically, there is no fundamental scaling problem with scheduling 

(in contrast to capacity). 
– Theoretically efficient MAC protocols must use non-trivial power levels!

• Well, the word theory appeared in every line...
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From Theory to Practice

• We did measurements using standard mica2 nodes! 

• Replaced standard MAC protocol by a (tailor-made) „SINR-MAC“

• Measured for instance the following deployment...

• Time for successfully transmitting 20‘000 packets: 

Speed-up is almost a factor 3

u1 u2 u3 u4 u5 u6



Roger Wattenhofer, ETH Zurich @ Sirocco 2006 51

Possible Applications – Improved “Channel Capacity”

• Consider a channel consisting of wireless sensor nodes

• What throughput-capacity of this channel...?

time Channel capacity is 1/3
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Possible Applications – Improved “Channel Capacity”

• A better strategy... 

• Assume node can reach 3-hop neighbor

time Channel capacity is 3/7
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Possible Applications – Improved “Channel Capacity”

• All such (graph-based) strategies have capacity strictly less than 1/2!

• For certain α and β, the following strategy is better!

time Channel capacity is 1/2
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• Neighboring nodes must communicate periodically 
(for time synchronisation, neighborhood detection, etc…)

• Sending data to base station may be time critical use long links

• Employing clever power control may reduce delay & reduce 
coordination overhead!

From theory (scheduling) to practice (protocol design)…?

Possible Applications – Data Gathering
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More…

Link Layer 

Network Layer

Services

Theory/Models

• Clustering (Dominating Sets, etc.)
• Interference and Signal-to-Noise-Ratio 
• MAC Layer and Coloring
• Topology and Power Control 
• Deployment (Unstructured Radio Networks) 
• New Routing Paradigms (e.g. Link Reversal)
• Geo-Routing 
• Broadcast and Multicast 
• Data Gathering 
• Location Services and Positioning 
• Time Synchronization
• Modeling and Mobility 
• Lower Bounds for Message Passing
• Selfish Agents, Economic Aspects, Security
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Summary

• Sensor networks are an excellent application for distributed 
algorithms

• We need to study new network topologies
– Network models between geometry and graph theory (BIG, UBG)
– Interference models such as SINR

• We need to study new algorithmic paradigms
– Distributed Localized Local Self-Stabilizing Unstructured
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Thank You!
Questions? Comments?
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