
Byzantine Agreement with Unknown Participants
and Failures

Pankaj Khanchandani
ETH Zurich

Zurich, Switzerland
kpankaj@ethz.ch

Roger Wattenhofer
ETH Zurich

Zurich, Switzerland
wattenhofer@ethz.ch

Abstract—A set of mutually distrusting participants that want
to agree on a common opinion must solve an instance of
a Byzantine agreement problem. These problems have been
extensively studied in the literature. However, most of the existing
solutions assume that the participants are aware of n — the total
number of participants in the system — and f — an upper bound
on the number of Byzantine participants. In this paper, we show
that most of the fundamental agreement problems can be solved
without affecting resiliency even if the participants do not know
the values of (possibly changing) n and f . Specifically, we consider
a synchronous system where the participants have unique but not
necessarily consecutive identifiers, and give Byzantine agreement
algorithms for reliable broadcast, approximate agreement, rotor-
coordinator, early terminating consensus and total ordering in
static and dynamic systems, all with the optimal resiliency of
n > 3f . Moreover, we show that some synchrony is necessary
as an agreement with probabilistic termination is impossible in
a semi-synchronous or asynchronous system if the participants
are unaware of n and f .

I. INTRODUCTION

Many modern networks have to be always available and it
may not be possible to know the size of the network or the
number of failures in advance, since they may change over
time. Consider, for example, a database cluster that requires
frequent node scaling because of changing load, or a wireless
sensor network that experiences a changing number of faulty
or disconnected nodes over time. Nakamoto’s blockchain [26]
is a prominent example where the network is permissionless,
i.e., the network is open to any number of nodes. So, the
number of participants and consequently, the number of failures
also change over time. Agreement is a fundamental distributed
computing primitive for fault-tolerant networks, however, much
of the existing literature assumes that the size n of the network
and/or the upper bound f on the number of failures is known
to every node [4], [3], [10], [29], [25].

In this paper, we consider fault-prone systems where the
nodes do not know the number of nodes n and the maximum
number of Byzantine nodes f and study fundamental agreement
problems for such systems, in particular:

• Reliable broadcast — ensures that a message is either
accepted by every correct node or no correct node [27];

• Rotor-coordinator — selects f + 1 leaders for the correct
nodes;

• Consensus — every correct node has a binary input and
the correct nodes output a common binary value that is
an input of some correct node [21];

• Approximate agreement — each correct node has a real
number input and has to output a real number that is
strictly within the correct input values [13];

• Total ordering — each correct node maintains a total order
on the system events while participants may enter and
leave subject to n > 3f .

Since a correct node does not know n and f and a Byzantine
node may not announce itself to everyone, there might be more
Byzantine nodes in the system than what a correct node thinks.
Thus, it may not be possible to achieve a resiliency of n > 3f ,
which can be achieved when the nodes know n and f . When
f is known and the identifiers are consecutive, it is easy to
agree on a set of f + 1 nodes, and consequently ensure the
presence of a single correct leader node in the set. We show,
however, that these problems can be solved without affecting
resiliency even when n and f are not known. Specifically, we
give algorithms for solving the above problems in synchronous
systems with the resiliency of n > 3f , which is optimal for
approximate agreement, reliable broadcast and consensus. We
also show that the synchronous assumption is necessary as
otherwise the problem is impossible and there is non-zero
probability of terminating with a disagreement.

An advantage of designing algorithms without the knowledge
of n and f is their application to networks where the set of
participants change over time. We illustrate this by extending
some of our algorithms to solve Byzantine agreement in
dynamic networks. In case of dynamic networks, single shot
problems where a node acts on one input and terminates with
one output are not very useful. So, we consider an agreement
task where nodes are required to totally order the events in a
system and design an algorithm for that task.

II. RELATED WORK

If the nodes do not known n and f , then the synchronous
assumption is necessary. Otherwise, if the network is asyn-
chronous and the message delays are unbounded, agreement
is impossible even with probabilistic termination, as we show
later. There is a line of work that deals with this problem
using oracles or failure detectors [9], [20], [2]. The idea is that
a failure detector supplies information about the number of



participants. But, these works also assume that every node
knows f . In [28], the authors consider an asynchronous
dynamic system with a failure detector where n and f are
unknown, but the failure detector assumed eventually removes
the Byzantine nodes.

Several ways of improving the robustness of synchronous
systems with Byzantine failures have also been explored. For
example, Gallet et al. [11] examine a system that can allocate
the same identifier to multiple nodes. In [5], [18], [8], the
authors examine a synchronous system with mobile Byzantine
faults — those which hop from one node to another across
rounds. In [22], [23], the authors consider self-stabilizing
agreement problems in the presence of Byzantine faults, i.e.,
the correct nodes have to recover from arbitrary initial state
even when the other Byzantine nodes maliciously prevent the
correct nodes from recovering.

The Byzantine agreement problems have a long history
since the work by Lamport et al. [21]. They gave a f + 1
round algorithm with exponential in n message complexity for
n > 3f . They also showed that the resilience of n > 3f is
optimal. Berman et al. [6] later improved the message complex-
ity to polynomial in n, while keeping optimal resilience, and
increasing the number of rounds by a small constant. Garay et
al. [19] further improved the round complexity to exactly f+1,
while retaining optimal resilience and polynomial message
complexity. The algorithm by Berman et al. [6] is well known
as the king algorithm and is still commonly used [22], [12],
[1]. The approximate agreement algorithm was introduced
by Dolev et al. [13] and is a useful primitive in designing
distributed algorithms [24], [14].It also requires n > 3f and
has optimal resiliency [17]. Srikanth et al. [27] introduced
the reliable broadcast abstraction and its use in dealing with
Byzantine failures for n > 3f . As they remark, this resiliency
is optimal as the reliable broadcast abstraction can be used to
solve consensus. The algorithms for approximate agreement,
reliable broadcast and consensus in this paper generalize the
ones from Dolev et al. [13], Srikanth et al. [27] and Berman
et al. [6] respectively.

A rotor-coordinator, as also used in [6], is an approach to
deal with at most f Byzantine faults by rotating through f + 1
coordinator nodes, thus ensuring that one coordinator would
be correct. The rotor-coordinator can be easily implemented
by rotating through f + 1 nodes when f is known and the
identifiers are consecutive. However, it is one of the main
bottleneck when n and f are unknown and the identifiers are
also non-consecutive.

III. SIGNIFICANCE OF THIS WORK

It is not so difficult to observe that if all the correct nodes
broadcast in a round, then each correct node v receives less than
nv/3 messages from the Byzantine nodes — where nv is the
number of messages received by the node v — irrespective of
whether the Byzantine nodes broadcast or not. This observation
helps in removing dependency on n and f from the classic
known algorithms. However, this observation is not sufficient by
itself. Many of the classic algorithms run for fixed f+1 rounds,

selecting a different leader in each round. This is a non-trivial
problem in our setting, since f is not a common knowledge
and also the identifiers are not consecutive. Algorithm 2 for
rotor-coordinator essentially solves this problem.

The classical models studied in the literature do not allow
the Byzantine nodes to lie about the number of participants
in the network since it is assumed to be known by every
node. Our system model allows the Byzantine nodes to send
conflicting information so that the correct nodes never have
a consistent information about the number of participants.
Therefore, the algorithms designed are robust against a wider
range of malicious behavior. This is especially useful for large
dynamic systems where it may not be possible to consistently
initialize every node with the value of n and f .

On the other hand, participants are assumed to have access
to consistent clocks after initialization, since the computation is
assumed to proceed in rounds. So, some consistent initialization
(synchronization) is still needed. This is somewhat necessary,
since we also show that Byzantine consensus cannot be solved
with probabilistic termination if the system is semi-synchronous
or asynchronous and the participants do not know n and f . This
implies that it is impossible to build blockchain systems for
solving agreement problems in asynchronous networks when
n and f are not known.

IV. MODEL

The system consists of n nodes, out of which at most f
are faulty nodes. The faulty nodes can behave in anyway
whatsoever, also known as Byzantine behavior. We call the
non-Byzantine nodes correct. The nodes have unique identifiers,
which are not necessarily consecutive. Each node knows its
identifier only at initialization apart from a possible input and
does not know any global information like n or f . The system
is synchronous and the computation proceeds in rounds. In each
round, every node receives the messages that were sent to it in
the previous round, does some local computations, and then
sends again messages to the other nodes to be consumed in
the following round. A correct node can broadcast a message
to all the nodes or send a message to a specific node that
sent a message to the node before. The identifier of a node is
included in the message it sends so the receiver of the message
can decipher its sender. Thus, a Byzantine node cannot forge
its identifier when communicating directly. However, it can
help other Byzantine nodes to do so indirectly by claiming
to have received messages from other, possible non-existent,
nodes. Byzantine nodes can send duplicate messages across
rounds but duplicate messages from the same node in a round
are simply discarded.

Note that the only way for a correct node to know about the
existence of another node is to receive a message from that
node. A Byzantine node may get itself known to only a subset
of nodes, however, it can behave as if it already knows all the
nodes without having received messages from them. In the rest
of the paper, we will sometimes refer to the above model as the
id-only model for brevity. We give the following algorithms in
the id-only model for n > 3f : reliable broadcast in Section V,



rotor-coordinator in Section VI, consensus in Section VII, and
approximate agreement in Section VIII. In Section IX, we show
that to solve agreement with probabilistic termination, when n
and f are unknown, synchronous assumption is necessary. In
Section X, we give a parallel version of the consensus algorithm,
where several consensus algorithms can be run in parallel,
however, the nodes do not initally agree on the instances to
start. In Section XI, we build on the parallel consensus to
give algorithms for achieving approximate agreement and total
ordering of events in a dynamic network. In Section XII, we
discuss the results and some further interesting questions.

V. RELIABLE BROADCAST

Reliable broadcast [27] is an abstraction to deal with the
messages sent by the Byzantine nodes. The idea is to enforce
that a Byzantine node cannot send contradictory information
to different nodes. It can still send around false information
but the abstraction ensures that the same false information is
seen by all the correct nodes. Concretely, let s be a designated
node that may or may not be correct and (m, s) be a message
broadcast by s. The message (m, s) is reliably broadcast when
the following three properties are satisfied.

1) Correctness: If s is correct, then each correct node accepts
(m, s).

2) Unforgeability: If a correct node accepts a message (m, s)
and s is a correct node, then the message (m, s) was
broadcast or sent to all the nodes by the node s.

3) Relay: If a correct node accepts the message (m, s) in
a round r, then each correct node accepts the message
(m, s) by the round r + 1.

Algorithm 1 gives an algorithm for a node v to reliably
broadcast a message (m, s) sent by a node s in the first round.
Note that in Line 10, the value nv is not the number of messages
received in the round r but the number of nodes that sent at least
one message to v until the current round r. Also, the algorithm
does not terminate as the idea is to use this mechanism as
a subroutine in another algorithm that implements its own
termination mechanism, as we will see for consensus, where few
additional messages per round are used to detect termination.
In the following lemmas, we show that the algorithm satisfies
the three properties of the reliable broadcast. We will again
assume that n > 3f .

Lemma 1. If n > 3f , then Algorithm 1 satisfies the correctness
property of the reliable broadcast.

Proof. If the node s is correct, it sends the message (m, s) to
all the nodes during the initial broadcast (Line 2). Every good
node receives the message and broadcasts echo(m, s) in the
next round (Line 7). Let g be the number of good nodes. Then,
in the third round, every correct node receives g echo(m, s)
messages. Moreover, the value of nv ≤ n in the third round as
n is the maximum number of nodes that can send a message
to v. As n > 3f , we have g > 2f or 3g > 2(f + g) = 2n.
Thus, we have g > 2n/3 ≥ 2nv/3. Therefore, every correct
node accepts the message in the third round (Line 15).

Algorithm 1 Reliable broadcast algorithm for a node v to
broadcast a message (m, s) sent by a node s in the first round.
Each iteration of the loop is a single round.

1: if v = s then . Round 1
2: Broadcast (m, s)
3: else
4: Broadcast present
5: end if
6: if Received (m, s) from s then . Round 2
7: Broadcast echo(m, s)
8: end if
9: for r ← 1 to ∞ do . Rounds 3 to ∞

10: Let nv be the number of nodes that sent at least one
message to v until the round r.

11: if Received at least nv/3 echo(m, s) messages and not
accepted (m, s) already then

12: Broadcast echo(m, s)
13: end if
14: if Received at least 2nv/3 echo(m, s) messages and

not accepted (m, s) already then
15: Accept (m, s)
16: end if
17: end for

Lemma 2. If n > 3f and a correct node v receives at least
nv/3 copies of a message m from distinct nodes in a round
r, then at least one of those messages was sent by a correct
node.

Proof. Let f ′′v be the number of faulty nodes that sent m to v
in the round r. Since every correct node transmits a message in
the first round (Lines 2 and 4), we have nv ≥ g, where g is the
number of good nodes. So, we can write nv = g + f ′v , where
f ′v is the number of faulty nodes that sent at least one message
to v until the round r. Using f ′′v ≤ f ′v and nv = g + f ′v, the
number of correct nodes G that sent a message to v in the
round r are at least nv/3− f ′′v ≥ (g− 2f ′v)/3. As g > 2f , we
have G > 2(f − f ′v)/3 or at least one as f ≥ f ′v . So, at least
one correct node sent the message m to v in the round r.

Lemma 3. If n > 3f , then Algorithm 1 satisfies the unforge-
ability property of the reliable broadcast.

Proof. We need to show that if a correct node accepts a
message (m, s) and s is a correct node, then the message
(m, s) was broadcast by s. If a message (m, s) was accepted
by a correct node v in a round ra, then v received at least 2nv/3
echo(m, s) messages in the round ra. Thus, the number of
correct nodes from which v received the echo(m, s) messages
in round ra are at least 2nv/3−f ′′v ≥ nv/3−f ′′v , where f ′′v is
the number of messages received by v from the faulty nodes in
the round ra. Using Lemma 2, at least one of the echo(m, s)
messages received by v in the round ra was sent by a correct
node.

Let rf be the first round when an echo(m, s) message was
sent by a correct node u. Thus, in the round rf , the node u



either received at least nu/3 echo(m, s) messages or received
the message (m, s) from s (Lines 12 or 7). If u received at
least nu/3 echo(m, s) messages, then using Lemma 2, there
is at least one correct node that sent an echo(m, s) message in
the previous round. Since rf is the first round when a correct
node sends an echo(m, s) message, the node u must have
received the message (m, s) from s in the round rf . Thus,
node s indeed sent the message (m, s). As s is correct, the
message (m, s) was broadcast to all the nodes in the first
round.

Lemma 4. If n > 3f and a correct node v receives at least
2nv/3 copies of a message m in a round r, then every correct
node u receives at least nu/3 copies of m in the round r.

Proof. As v receives at least 2nv/3 messages, at least 2nv/3−
f ′′v of them were sent by the correct nodes, where f ′′v is the
number of messages received by v from the faulty nodes in
the round r. Let f ′v be the number of faulty nodes from which
v received at least one message until the round r. Then, we
have 2nv/3− f ′′v = 2(g+ f ′v)/3− f ′′v , where g is the number
of good nodes. As f ′′v ≤ f ′v and f ′v ≤ f by definition, we have
2(g + f ′v)/3− f ′′v ≥ (2g − f)/3.

Using n > 3f or g > 2f , we have (2g − f)/3 = (g + (g −
f))/3 > (g + f)/3. Thus, at least (g + f)/3 correct nodes
broadcast the message m and every correct node receives at
least (g+ f)/3 copies of m in the round r. For a correct node
u, we have (g + f)/3 ≥ (g + fu)/3 = nu/3, where fu is the
number of faulty nodes from which u has received at least one
message until the round r.

Lemma 5. If n > 3f , then Algorithm 1 satisfies the relay
property of the reliable broadcast.

Proof. Let r be the first round in which a correct node v
accepts the message (m, s). Then, we show that every correct
node accepts the message (m, s) by the round r + 1.

As v accepts the message (m, s) in round r, it received
at least 2nv/3 echo(m, s) messages. Using Lemma 4, each
correct node u receives at least nu/3 echo(m, s) messages
in the round r. So, every correct node broadcasts echo(m, s)
message in the round r (Line 12) and each one of them receives
g echo(m, s) messages in the round r + 1. As g > 2f , we
have 3g > 2(f + g) = 2n. Thus, we have g > 2n/3 ≥ 2nu/3
for every correct node u. Therefore, every correct node accepts
the message (m, s) in the round r + 1.

Using Lemma 1, Lemma 3 and Lemma 5, all the properties
of the reliable broadcast are satisfied and we have the following
theorem.

Theorem 1. If n > 3f , then Algorithm 1 satisfies the properties
of the reliable broadcast in the id-only model.

VI. ROTOR-COORDINATOR

The purpose of Rotor-Coordinator is to have a common
coordinator node in each round, where the coordinator node
is trusted by everyone in that round. After f + 1 different
coordinators are selected, everyone is sure that at least one of

those f + 1 selected coordinators was correct, since there are
at most f faulty nodes. Algorithm 2 gives the algorithm for
selecting a set of f + 1 different coordinators, each one in a
separate round.

Algorithm 2 Rotor-Coordinator algorithm for a node v. The
sets Cv and Sv are used by v to store process identifiers. The
set Cv is ordered by the process identifiers in increasing order.
We use |Cv| for the size of Cv and Cv[i] for its ith member,
where i ≥ 0. The set Bv holds messages before they are
broadcast by v at the end of a round. Note that each iteration
of the loop is a single round.

1: Cv ← φ . Set of candidate coordinators
2: Sv ← φ . Set of selected coordinators
3: Broadcast init . Round 1
4: Broadcast echo(p) if received init from p . Round 2
5: for r ← 0→∞ do . Rounds 3 up to termination
6: Bv ← φ
7: Let nv be the number of nodes that sent at least one

message to v until the round r.
8: if Received at least nv/3 echo(p) and p /∈ Cv

9: then
10: Bv ← Bv ∪ {echo(p)}
11: end if
12: if Received at least 2nv/3 echo(p) and p /∈ Cv

13: then
14: Cv ← Cv ∪ {p}
15: end if
16: p← Cv[r mod |Cv|] . Select the next coordinator as

p.
17: Let p′ be the coordinator selected in the previous round.
18: if Received opinion(x) from p′ then
19: Accept x as the coordinator’s opinion
20: end if
21: if p ∈ Sv then
22: break
23: end if
24: Sv ← Sv ∪ {p}
25: if v = p then . Check if v itself is the coordinator.
26: Let ov be v’s current opinion.
27: Bv ← Bv ∪ {opinion(ov)} . Broadcast v’s

opinion at the end of the round.
28: end if
29: Broadcast Bv if its non-empty
30: end for

The idea is that every correct node broadcasts its willingness
to become a coordinator initially, when the faulty nodes may
or may not participate (Line 3). Every correct node v keeps a
set of candidate coordinators Cv , which it updates in a reliable
broadcast fashion (Lines 10 and 14). In each round, a correct
node v selects the coordinator with the next larger identifier,
say p, from the set Cv and adds it to the set of selected
coordinators Sv (Lines 16 and 24). The node v accepts the
opinion from p in the next round as the coordinator’s opinion
(Line 19) and broadcasts its own opinion as the coordinator’s



opinion in case v was selected as the coordinator from the
set Cv (Line 27). The node v terminates when it reselects the
same node as the coordinator (Line 22). The hope is that by
the time a correct node terminates, it has already witnessed a
round in which every correct node accepts the opinion of a
common and a correct coordinator. We start by observing that
if a correct node adds p to its set of candidate coordinator Cv ,
then another correct node u adds p to its set Cu as well by
the next round.

Lemma 6. If a correct node v adds p to the set Cv in a round
r, then any correct node u 6= v adds p to the set Cu by the
round r + 1.

Proof. The set Bv is emptied at the beginning of every round r
and is broadcast at the end of the round r. Thus, the algorithm
for adding a process identifier p to Cv is same as that of
accepting a message (m, s) in Algorithm 1 if (m, s) = p. So,
the lemma follows using Lemma 5 for the relay property of
the reliable broadcast.

We call a round a good round if the same node p was
selected as a coordinator by every correct node and the node
p is correct. In the following, we show that every correct node
witnesses a good round before it terminates, if n > 3f . We will
call a round as a silent round if the set Cv remains unchanged
for every correct node v, i.e, no correct node executes Line 14
in that round. A non-silent round is a round that is not silent.
We observe that in a silent round, the value of Cv is identical
for every correct node v. If they were not, then there is a silent
round between a correct node v adding an identifier p to its
set Cv and another correct node u 6= v adding p to its set Cu.
This contradicts Lemma 6. The assumption n > 3f is used
for reliable broadcast and also to ensure a good round. With
n > 4f , a good round is easily ensured, but n > 3f suffices
with careful observation as follows.

Lemma 7. If n > 3f , then every correct node witnesses at
least one good round until it terminates.

Proof. Assume for contradiction that a node v terminates in the
round with r = rt without witnessing a good round. Consider
a round with r = rc ≤ rt. Let Fv ⊆ Cv and Gv ⊆ Cv,
respectively, be the set of faulty node identifiers and the set of
good or correct node identifiers in Cv when the coordinator
node is selected in the round rc (Line 16). Thus, we have
|Cv| = |Fv|+ |Gv|.

Using Lemma 1, all the correct node identifiers are added to
Cv , even before the first coordinator node is selected. So, we
have |Gv| = n−f and |Cv| = |Fv|+n−f . Using n > 3f , we
get |Cv| > |Fv|+ 2f . Say that there is no correct node u that
added a faulty identifier to its set Cu in the round with r = 0.
Then, every correct node selects a common coordinator from
the set Gv and v witnesses a good round before termination,
a contradiction. Thus, there is a correct node u that adds a
faulty identifier to its set Cu in the round with r = 0. For
every non-silent round afterwards, at least one faulty node
identifier is added to the set Cu of some correct node u. Using

Lemma 6, if a faulty node identifier p is added to Cu, every
correct node w 6= u adds p to Cw by the next round. Thus,
we have 2f ≥ nns , where nns is the number of non-silent
rounds prior to the round rc and starting from the round r = 0.
Therefore, we have |Cv| > |Fv|+ nns .

Moreover, until the round rc, node v has neither witnessed
a good round, nor it has selected the same node again as a
coordinator by our assumption. So, in all the silent rounds
prior to the round rc, a unique faulty node was selected as
a coordinator by v. Therefore, if ns is the number of silent
rounds prior to the round rc, then |Fv| ≥ ns since v selects a
node as a coordinator only after adding it to the set Cv. So,
we have |Cv| > ns + nns .

Since r starts from 0, we have ns + nns = rc. So, we have
|Cv| > rc and rc mod |Cv| = rc. Since the above inequality is
true for every round rc ≤ rt, a node that was already selected
as a coordinator, is in the set {Cv[r mod |Cv|] : r < rc}.
Therefore, for selecting the same identifier as a coordinator
again, it must be that r > |Cv| > rc, a contradiction.

Theorem 2. If n > 3f , then every correct node terminates in
O(n) rounds and there is a round in which every correct node
accepts the opinion of a common and a correct coordinator
node.

Proof. As a node terminates as soon as it selects the same
node as a coordinator and there are n nodes in total, the node
terminates in at most n rounds. Using Lemma 7, the node
also witnesses a good round before termination and accepts
the corresponding opinion in the next round (Line 19).

VII. CONSENSUS

In this section, we give an O(f) round consensus algorithm
in the id-only model, where f is the number of faulty byzantine
nodes in the system. Algorithm 3 gives an algorithm based
on [7]. Every correct node v has an input xv , which is a real
number. Again, every correct node has to output a common
correct value. If the inputs are all same, then the output must
be that value. We consider real number inputs here, unlike
binary inputs in Section VII, since we use it later for ordering
events in a system, which can be non-binary.

In the following, we prove the correctness of Algorithm 3.
We refer to an iteration of the loop as a phase.

Lemma 8. If xv = x for every correct node at the start of the
phase, all the nodes terminate with the output x at the end of
the phase.

Proof. Every correct node broadcasts input(x) at the start
of the phase. So, every correct node v receives g input(x)
messages. As n > 3f , we have g > 2f . Thus, we have
g + 2g > 2(f + g) or g > 2n/3 ≥ 2nv/3. So, all the correct
nodes broadcast prefer(x) (Line 6). Every correct node v
receives g ≥ 2nv/3 prefer(x) messages, keeps their opinion
to x (Line 9), and broadcasts strongprefer(x) (Line 12). Again,
each correct node v receives g ≥ 2nv/3 strongprefer(x)
messages and terminates with the output x (Line 19).



Algorithm 3 An O(f) round consensus algorithm in the id-
only model. To initialize the rotor-coordinator in Line 1, run
the first two lines of the Algorithm 2. To initialize nv in
Line 2, collect the identifiers from which a message has been
received, and count them. Later, a node only accepts messages
from a node if it counted towards nv during the initialization
and discards the messages from the other nodes. If a node u
receives a message from another node v during initialization
but not later inside the loop, then u assumes that v sent the
same message as sent by u in the previous round.

1: Initialize rotor-coordinator . Rounds 1 and 2
2: Initialize nv
3: while true do
4: Broadcast input(xv) . Next Round
5: if Received at least 2nv/3 input(xv) then . Next

Round
6: Broadcast prefer(xv)
7: end if
8: if Received at least nv/3 prefer(x) then . Next

Round
9: xv = x

10: end if
11: if Received at least 2nv/3 prefer(x) then
12: Broadcast strongprefer(x)
13: end if
14: Execute a round of rotor-coordinator

using xv as v’s current opinion. Let c be
the value accepted as the coordinator’s
opinion.

. Next Round

15: if Received less than nv/3 strongprefer(x) then .
Next Round

16: xv = c
17: end if
18: if Received at least 2nv/3 strongprefer(x) then
19: Terminate and output x
20: end if
21: end while

Lemma 9. If a correct node u receives 2nu/3 copies of a
message m and a correct node v receives 2nv/3 copies of a
message m′ in the same round, then at least one correct node
sent both m and m′ in the previous round.

Proof. The number of messages G sent by the good nodes is
at least 2nu/3−fu+2nv/3−fv , where fu is the number of m
messages sent to u by the faulty nodes, and fv is the number
of m′ messages sent to v by the faulty nodes. As nu = g+ fu
and nv = g+ fv , we have G > 4g/3− (fu + fv)/3. We have
g > fu +fv since fu ≤ f , fv ≤ f and g > 2f . Thus, we have
G > g and at least one correct node sent both m and m′ in
the previous round.

Lemma 10. If a correct node terminates in a phase, then all
other correct nodes have the same opinion at the end of the
phase.

Proof. Say, a correct node v terminates with the output x. Then,
it received at least 2nv/3 strongprefer(x) messages. So, all the
correct nodes received at least nv/3 strongprefer(x) messages
using Lemma 4 and none of them switches to the coordinator’s
opinion (Line 22). Moreover, at least one correct node u sent a
strongprefer(x) message using Lemma 2. The node u received
2nu/3 prefer(x) messages. Using Lemma 4, at least nu/3 of
those messages were sent by the correct nodes and so each node
received at least nu/3 prefer(x) messages. It is not possible
that a correct node also received prefer(x′), where x 6= x′.
Indeed, if it was so, then using Lemma 2 there is a correct node
s that sent prefer(x) and a correct node t that sent prefer(x′).
Thus, node s received 2ns/3 input(x) messages and node t
received 2nt/3 input(x′) messages. Using Lemma 9, a correct
node sent both input(x) and input(x′) messages in the same
round, a contradiction. Thus, every correct node changed their
opinion to x (Line 9), which remains unchanged until the end
of the phase.

Lemma 11. If the coordinator is correct and none of the
correct nodes have terminated, then all the correct nodes have
the same opinion by the end of the phase.

Proof. Consider the first phase when the coordinator is cor-
rect. Either every correct node v receives less than nv/3
strongprefer(x) messages, in which case all the correct nodes
have the same opinion by the end of the phase, and we are done.
Otherwise, there is a correct node u that received at least nu/3
strongprefer(x) messages. Using Lemma 2, there is at least
one correct node w that sent a strongprefer(x) message. Thus,
node w received at least 2nw/3 prefer(x) messages. Using
Lemma 4, every correct node v received at least nv/3 prefer(x)
messages. As before, it is impossible that a correct node v also
receives nv/3 prefer(x′) messages, where x 6= x′. So, every
correct node, including the coordinator, changes its opinion to
x (Line 9). Since the coordinator is correct, it sends the same
opinion x to all the nodes. Thus, even if some correct nodes
decide to change their opinion to the coordinator’s opinion, all
the correct nodes still have the same opinion at the end of the
phase.

We can now combine the previous lemmas into the following
theorem.

Theorem 3. Algorithm 3 solves consensus in O(f) rounds in
the id-only model.

Proof. If the correct nodes have the same input x, then they
output x using Lemma 8. Otherwise, one of the following
happens within O(f) rounds: either a correct node terminates
with an output x or a correct coordinator gets picked. In either
case, the correct nodes have the same opinion at the end of the
phase, and terminate with the same output by the next round
using Lemma 8.

VIII. APPROXIMATE AGREEMENT

In the approximate agreement problem [13], each correct
node takes a real number input and outputs a real number. Let



imin and imax , respectively, be the minimum and the maximum
value that is an input of a correct node. Similarly, let omin and
omax , respectively, be the minimum and maximum value that
is output by a correct node. The values output by the correct
nodes must satisfy the following conditions.

1) The value output by each correct node is within the input
range [imin , imax ].

2) The output range [omin , omax ] is strictly smaller than
the input range, i.e., (omax − omin) < (imax − imin) if
imax 6= imin .

Algorithm 4 Approximate Agreement algorithm for a node v.
The input value of the node is iv .

1: Broadcast iv to all the nodes (including self).
2: Let Rv be the set of received values and nv = |Rv|.
3: Discard bnv/3c smallest and bnv/3c largest values from

the set Rv to obtain the set Sv .
4: Output ov = (minSv + maxSv)/2, where minSv and

maxSv are the minimum and maximum value of the set
Sv respectively.

Algorithm 4 solves the problem. The following lemma shows
that the algorithm satisfies the first property of the approximate
agreement, i.e., the output range lies within the input range.

Lemma 12. If n > 3f , then ov ∈ [imin , imax ] for every correct
node v.

Proof. Let g be the number of correct nodes. Then, the node
v receives at least g values from the correct nodes after the
first round. Let fv be the number of values received by v
from the Byzantine nodes. Therefore, we have fv ≤ f as f is
the number of faulty nodes and v receives at most one value
from each faulty node in a round. As n = f + g and fv ≤ f ,
we can rewrite n > 3f as g + f > 2fv + f . Thus, we have
(g + fv)/3 > fv or b(g + fv)/3c ≥ fv as fv is an integer. As
nv = g + fv , we have bnv/3c ≥ fv .

As there are at most fv faulty values in the set Rv and
bnv/3c ≥ fv , the minimum value minSv left after discarding
bnv/3c smallest values from Rv satisfies minSv ≥ imin ,
where imin is the minimum value received from a correct
node. Using a similar argument, the maximum value maxSv

satisfies maxSv ≤ imax . Therefore, the output ov , which is the
average of minSv and maxSv , satisfies ov ∈ [imin , imax ].

Let imed be the median of the input values at the correct
nodes. In the following lemma, we show that the value imed is
never discarded by a correct node while computing the set Sv .

Lemma 13. If n > 3f , then the value imed ∈ Sv for every
correct node v.

Proof. Let g be the number of correct nodes. Using n > 3f
and n = g + f , we get f < g/2. Using nv = g + fv and
fv ≤ f , we get bnv/3c ≤ nv/3 = (g + fv)/3 ≤ (g + f)/3.

As f < g/2, we get bnv/3c < g/2. Therefore, even if all
the smallest bnv/3c discarded values are from the good nodes,

then also strictly less than half of the smallest good values are
discarded to obtain the set Sv . Similarly, strictly less than half
of the largest good values are discarded to obtain the set Sv.
Thus, we have imed ∈ Sv .

Combining the previous two lemmas, we can state the
following theorem.

Theorem 4. If n > 3f , then Algorithm 4 achieves approximate
agreement in the id-only model.

Proof. Using Lemma 12, the output range lies within the input
range and the first property of the approximate agreement is
satisfied.

Using Lemma 13, we have imed ∈ Sv. Thus, we have
maxSv ≥ imed and that minSv ≤ imed . Moreover, using
Lemma 12, we also get that minSv ≥ imin and maxSv ≤
imax . Therefore, we have that the average ov = (minSv +
maxSv)/2 lies within the range [(imin + imed)/2, (imed +
imax )/2]. So, the size of output range (omax−omin) = (imax−
imin)/2 < (imax − imin) if imax 6= imin .

IX. SYNCHRONY IS NECESSARY

In our work, we have assumed that the system is synchronous.
Intuitively, this is a necessary assumption as a node does not
know n and f and hence, the number of messages to wait for
before deciding. So, it might end up deciding before receiving
a message that was delayed for long, as such the decision might
be incorrect. The following lemma proves this for consensus.

Lemma 14. In an asynchronous system where the number of
nodes n and an upper bound f on the number of failures is
not known to the nodes, consensus is impossible, even with
probabilistic termination.

Proof. Assume a system S in which all the nodes are correct.
We partition the set of the nodes into sets A and B. A node
v has input 1 if v ∈ A; input 0 if v ∈ B. The messages
between A and B are arbitrarily delayed. To a node v ∈ A,
this is indistinguishable from a system A where the nodes in
B are absent, as v only knows its id initially in both S and
A. Similarly, system S is indistinguishable to a node v ∈ B
from a system B where the nodes A are absent. The nodes A
decide 0 in the system A with a non-zero probability, since
they only hear from the nodes with the input 0. Similarly, the
nodes B decide 1 in the system B with a non-zero probability.
So, the nodes in the system S decide on different values with
a non-zero probability.

Similar problems can happen in a semi-synchronous system
[15], where the message delays have a fixed upper bound ∆,
but its value is unknown to the nodes. However, the previous
argument does not work since we cannot arbitrarily delay the
messages due the existence of the fixed upper bound ∆. Instead,
we start with the partitions A and B and inductively build an
invalidating execution for a union of them.

Lemma 15. In a semi-synchronous system, where the message
delays have a fixed upper bound ∆ and the nodes do not know



the value of ∆, n and f , consensus is impossible, even with
probabilistic termination.

Proof. Consider a system A where all the nodes have input
1 and the message delays are at most ∆a. Each node v ∈
A decides 1 with non-zero probability. Let Ea be such an
execution in A of duration Ta. Similarly, consider another
system B where all the nodes have input 0 and the message
delays are at most ∆b. Let Eb be an execution in B where
all the nodes decide 0 in duration Tb. We consider another
system S consisting of |A|+ |B| nodes, and set the maximum
message delay ∆s > max(∆a, Ta,∆b, Tb). We partition the
set S into a set A of |A| nodes and a set B of |B| nodes. The
nodes in A have input 1 where as the nodes in B have input
0. We also assume some bijective mapping between the sets
A and A and between the sets B and B. We use a′ denote the
counterpart of a in this bijective map.

We construct an execution Es from Ea and Eb as follows.
If a node a ∈ A sends a message to a node b ∈ A, then
a′ ∈ S sends the same message to b′. The message sent in
S has the same delay as the message sent in A. If a node
a ∈ A broadcasts a message to all the nodes A, then a′ ∈ S
broadcasts the same message to all the nodes S . The delays for
the messages broadcast are assigned as follows. The message
delay in S for the messages broadcast to the nodes A ⊂ S
is same as the delay of those messages in A. The message
delay in S for the messages broadcast to the nodes B ⊂ S
are ∆s. Similarly, we assign message actions and delays to
the nodes B ⊂ S. Inductively, a node a ∈ A ⊂ S makes the
same decisions as a node a′ ∈ A, since both of them do not
know the value of n and f , and node a makes the (same)
decision before it even hears from a node in B. Similarly, a
node b ∈ B ⊂ S makes the same decisions as a node b′ ∈ B.
Therefore, there is an execution Es in S so that a ∈ S decides
1 and b ∈ S decides 0, a disagreement.

The above argument essentially means that an agreement
protocol designed to work without the knowledge of n and
f (such as the Bitcoin blockchain [26]), either must assume
synchronous execution for guaranteed agreement or sacrifice
agreement with some probability.

X. PARALLEL CONSENSUS

In the consensus problem, each correct node had only one
opinion and had to output a single opinion in agreement with
other nodes. Later, when a correct node can submit multiple
opinions, we need to agree on every opinion submitted by a
correct node. Therefore, we consider the parallel consensus
problem: Every correct node v has a set of kv input pairs
(id i

v, x
i
v) for 1 ≤ i ≤ kv, where xiv is an opinion and idv is

the identifier of the input pair. Each correct node outputs a set
of pairs subject to the following conditions.

1) Validity: If (id, x) is an input pair of every correct node
and x 6= ⊥, then all the correct nodes must output the
pair (id, x).

2) Agreement: If a correct node v outputs a pair (idv, xv),
then all other correct nodes must output (idv, xv) as well.

3) Termination: Every correct node outputs a set of pairs in
finite number of rounds.

Note that the rules allow a pair (idv, xv) as an input of a
correct node v, but not all the correct nodes, and be absent
from the output of every correct node.

First, we describe the EarlyConsensus(id) algorithm, where
every correct node v has at most one input pair (id , xv), i.e., all
nodes may not be aware of the identifier id . The pseudocode
is given in Algorithm 5. To help a node v distinguish if
another node u is aware of id or has no preference or no
strong preference of an opinion, we use id :nopreference and
id :nostrongpreference messages.

Next, we describe the ParallelConsensus algorithm using
the previous one: The node v starts the EarlyConsensus(idv )
algorithm for every (idv , xv) pair input at v. If the node v first
hears id :input , id :prefer , id :strongprefer respectively during
the second, third, and fifth round of the first phase and no input
pair corresponding to id was present at v, then also the node
v starts the EarlyConsensus(id) algorithm from that round.

Theorem 5. The ParallelConsensus algorithm satisfies the
parallel consensus properties.

Proof. Consider a pair (id , xv) that is input at a correct node v,
where xv 6= ⊥. In the first round of the phase, the node v broad-
casts id :input(xv). So, every correct node hears an id :input
message in the second round, and fills the missing opinions
from the correct nodes with a id :input(⊥). In the subsequent
rounds, if a correct node u does not receive enough messages
to send a id :prefer or a id :strongprefer message, then it re-
spectively sends a id :nopreference and id :nostrongpreference
message. So, the node v does not fill in a message for u.
Therefore, the execution of EarlyConsensus(idv ) is identical
to an execution of Algorithm 3, where the input of a correct
node v is xv if (idv , xv) is an actual input and ⊥ if such a
pair is absent. Using Theorem 3, every correct node v outputs
a pair (id , ov) in O(f) rounds, so that it is in agreement with
other correct nodes, and is same as the input (id , xv) if it is
present at all the correct nodes. Discarding the output pairs
of the form (id ,⊥) does not affect the agreement and validity
properties required by parallel consensus (Line 25).

Now, consider that no correct node has an input pair with
the identifier id . If we show that no correct node outputs a
pair with the identifier id , then we are done. Let r be the first
round when a correct node v receives an id message. If r is
the second phase, or the fourth round (rotor-coordinator) of
the first phase, then v simply discards it. Otherwise, the round
r can be the second (Line 7), third (Lines 12 and 15) or the
fifth one (Lines 21 and 24) of the first phase. First, consider
that r is the second round of the first phase and a correct
node v first received the id :input message during round r.
Since no other correct node u had an id pair as input, node
v fills a default id :input(⊥) for every correct node u 6= v
and decides to broadcast id :prefer(⊥). Similarly, any other
correct node w 6= v that first received the id :input message
in the round r broadcasts id :prefer(⊥). In the next round,
every correct node receives an id :prefer(⊥) message. If a



Algorithm 5 EarlyConsensus(id) algorithm at node v: The
node has at most one input pair (id , xv). The rotor-coordinator
and nv are initialized as in Algorithm 3. Later, a node only
accepts messages from a node if it counted towards nv during
the initialization and discards the messages from the other
nodes. The types M = {id :input , id :prefer , id :strongprefer}
of received messages are counted as follows. If a message of
type m ∈M is received for the first time during the second
phase, then it is discarded (considered as not received). If a
message of type m ∈M is received for the first time during
the first phase, then the message m(⊥) is substituted for every
node u that counted towards nv during initialization but did
not send a type m message. If a node v has received a type
m ∈M message already during the first phase and a node u
that counted towards nv does not send a type m′ ∈M message
in a subsequent round, then for every such node u, the node v
substitutes the message of type m′ that it sent most recently.

1: Initialize rotor-coordinator . Rounds 1 and 2
2: Initialize nv
3: while true do
4: if Input pair (id , xv) present and xv 6= ⊥ then
5: Broadcast id :input(xv) . Next Round
6: end if
7: if Received at least 2nv/3 id :input(xv) then . Next

Round
8: Broadcast id :prefer(xv)
9: else

10: Broadcast id :nopreference
11: end if
12: if Received at least nv/3 id :prefer(x) then . Next

Round
13: id :xv = x
14: end if
15: if Received at least 2nv/3 id :prefer(x) then
16: Broadcast id :strongprefer(x)
17: else
18: Broadcast id :nostrongpreference
19: end if
20: Execute a round of rotor-coordinator

using xv as v’s current opinion. Let c be
the value accepted as the coordinator’s
opinion.

. Next Round

21: if Received less than nv/3 id :strongprefer(x) then .
Next Round

22: id :xv = c
23: end if
24: if Received at least 2nv/3 id :strongprefer(x) then
25: Terminate and output (id , x) if x 6= ⊥
26: end if
27: end while

correct node heard id :prefer message for the first time, then it
will fill a default id :prefer(⊥) for every node u that did not
send a message to it. If a correct node p already heard an id

message, then we know that it sent id :prefer(⊥) in the previous
round and will fill the same for missing opinions. Thus, every
correct node p receives at least 2np/3 id :prefer(⊥) messages,
sets id :xp = ⊥ and broadcasts id :strongprefer(⊥). So, every
correct node p receives at least 2np/3 id :strongprefer(⊥) in
the next round, terminates but does not output an id pair since
⊥ is the associated opinion.

Now, consider that r is the third round of the first phase
and a correct node v first hears an id :prefer message in the
round r. The node v fills a default id :prefer(⊥) opinion
for every correct node u, sets id :xv = ⊥ and broadcasts
id :strongprefer(⊥). In the next round, every correct node
hears an id :strongprefer(⊥) message. If a correct node w
hears id :strongprefer(⊥) for the first time, it fills the missing
messages with the default id :strongprefer(⊥) message. If not,
the node w fills the missing opinion with what it sent previously,
which is again id :strongprefer(⊥). Thus, every correct node
w receives at least 2nw/3 id :strongprefer(⊥) messages and
does not output any id pair.

Lastly, consider that r is the fifth round of the first phase
and a correct node v first hears an id :strongprefer message in
the round r. No correct node received an id before the round r
by assumption, so no correct node sends an id message before
round r. So, the node v fills the default id :strongprefer(⊥)
message for every correct node u. Consequently, the node
v receives 2nv/3 id :strongprefer(⊥) messages and does not
output an id pair.

XI. APPLICATION TO DYNAMIC NETWORKS

Building upon the previous algorithms, we can easily devise
agreement algorithms for the dynamic networks where the
participants enter and leave the system under the influence
of an adversary. In the Appendix, we give the algorithms for
approximate agreement and total ordering in dynamic networks.
The dynamic version of approximate agreement is essentially
the same as the static one as the required properties continue
to hold in the dynamic case as well.

The total ordering algorithm makes the correct nodes output a
sequence or chain of values such that they satisfy the following
properties: (1) If a and b are the current chains of any two
correct nodes, then either a is a prefix of b or b is a prefix of
a. (2) The chain length at every correct node increases over
time provided that the a correct node submits a value in every
round. The idea is to use an instance of parallel consensus in
every round by tagging these messages with the starting round
number of the instance. The full algorithm and the proof is in
the Appendix.

XII. DISCUSSION

In this paper, we investigated distributed systems where the
participants are neither aware of the size n nor the safe estimate
f of Byzantine failures. We examined fundamental distributed
computing problems such as, approximate agreement, reliable
broadcast, rotor-coordinator and consensus; concluding that
all of them can be solved with the optimal resiliency of n >
3f . Each of these algorithms illustrated a different method



of computing. It is interesting to note that “replacing” f by
nv/3 works in these algorithms although nv/3 is an incorrect
upper bound on the number of failures. An algorithm using
a combination of some of the discussed primitives could be
“compiled” to work without the knowledge of n and f keeping
resiliency unaffected. We evaluated resiliency in this work but
other metrics such as message complexity, round complexity,
etc. do not change much either. For example, the message
complexity of reliable broadcast is unaffected compared to the
original algorithm, the convergence rate of the approximate
agreement algorithm remains unchanged and the O(f) round
complexity of consensus algorithm is optimal [16].

Removing knowledge of n and f from the participants has
other benefits too. For example, we show in Section XI that
the design of agreement algorithms for dynamic networks
becomes much easier and the nodes do not need to agree on
the number of participants in the network. It also opens up ways
to achieve agreement in networks without using information
from every node. For example, consider a set of nodes that are
in approximate agreement with each other already and a new
node joins. Then, the new node can execute Algorithm 4 only
with a subset of nodes to get closer to the value of most of
the nodes. Self-stabilizing algorithms may not need to restore
the value of n and f .

It is unclear if the resiliency of rotor-coordinator is optimal,
a question left for further work. Also, one could look if these
techniques could benefit semi-synchronous or asynchronous
dynamic systems where the rate of change of n is controlled,
since without having any knowledge about n or f guaranteed
agreement is impossible in such systems.

XIII. ACKNOWLEDGEMENTS

We would like to thank Christoph Lenzen for the discussions,
reading the draft and suggesting improvements.

REFERENCES

[1] Yehuda Afek, James Aspnes, Edo Cohen, and Danny Vainstein. Brief
Announcement: Object Oriented Consensus. In Symposium on Principles
of Distributed Computing (PODC), Washington, D.C., July 2017.

[2] Eduardo A. P. Alchieri, Alysson Neves Bessani, Joni da Silva Fraga,
and Fabíola Greve. Byzantine Consensus with Unknown Participants.
In International Conference On Principles Of Distributed Systems
(OPODIS), Luxor, Egypt, December 2008.

[3] James Aspnes. Notes on Theory of Distributed Systems. Chapter 10,
February 2018.

[4] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals,
Simulations, and Advanced Topics, chapter 5. John Wiley & Sons, 2004.

[5] Nazreen Banu, Samia Souissi, Taisuke Izumi, and Koichi Wada. An
Improved Byzantine Agreement Algorithm for Synchronous Systems
with Mobile Faults. International Journal of Computer Applications,
2012.

[6] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal
Distributed Consensus. In 30th Annual Symposium on Foundations of
Computer Science (FOCS), Research Triangle Park, NC, October 1989.

[7] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal Early
Stopping in Distributed Consensus. In 6th International Workshop on
Distributed Algorithms (WDAG), Haifa, Israel, November 1992.

[8] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and
Sébastien Tixeuil. Approximate Agreement under Mobile Byzantine
Faults. In 36th International Conference on Distributed Computing
Systems (ICDCS), Nara, Japan, June 2016.

[9] David Cavin, Yoav Sasson, and André Schiper. Consensus with Unknown
Participants or Fundamental Self-Organization. In International Confer-
ence on Ad-Hoc Networks and Wireless (ADHOC-NOW), Vancouver, BC,
Canada, July 2004.

[10] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approx-
imate Consensus in Highly Dynamic Networks: The Role of Averaging
Algorithms. In 42nd International Colloquium on Automata, Languages,
and Programming (ICALP), Kyoto, Japan, July 2015.

[11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Anne-
Marie Kermarrec, Eric Ruppert, and Hung Tran-The. Byzantine
Agreement with Homonyms. In 30th Annual Symposium on Principles
of Distributed Computing (PODC), San Jose, California, June 2011.

[12] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen,
Christoph Lenzen, Joel Rybicki, Jukka Suomela, and Siert Wieringa.
Synchronous Counting and Computational Algorithm Design. Journal
of Computer and System Sciences, 2016.

[13] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching Approximate Agreement in the Presence of
Faults. Journal of the ACM (JACM), 1986.

[14] Shlomi Dolev and Jennifer L. Welch. Self-Stabilizing Clock Synchroniza-
tion in the Presence of Byzantine Faults. Journal of the ACM (JACM),
2004.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 1988.

[16] Michael J. Fischer and Nancy A. Lynch. A Lower Bound for the Time
to Assure Interactive Consistency. Information Processing Letters, 1982.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy
Impossibility Proofs for Distributed Consensus Problems. In 4th Annual
ACM Symposium on Principles of Distributed Computing (PODC),
Minaki, Ontario, Canada, August 1985.

[18] Juan A. Garay. Reaching (and Maintaining) Agreement in the Presence
of Mobile Faults. In International Workshop on Distributed Algorithms
(WDAG), Terschelling, Netherlands, September 1994.

[19] Juan A. Garay and Yoram Moses. Fully Polynomial Byzantine Agreement
for n > 3t Processors in t+ 1 Rounds. SIAM Journal on Computing
(SICOMP), 1998.

[20] Fabiola Greve and Sebastien Tixeuil. Knowledge Connectivity vs.
Synchrony Requirements for Fault-Tolerant Agreement in Unknown
Networks. In 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Edinburgh, UK, June 2007.

[21] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 1982.

[22] Christoph Lenzen and Joel Rybicki. Efficient Counting with Optimal
Resilience. In 29th International Symposium on Distributed Computing
(DISC), Tokyo, Japan, October 2015.

[23] Christoph Lenzen and Joel Rybicki. Self-Stabilising Byzantine Clock
Synchronisation is Almost as Easy as Consensus. In International
Symposium on Distributed Computing (DISC), Vienna, Autria, October
2017.

[24] Jennifer Lundelius and Nancy Lynch. A New Fault-Tolerant Algorithm
for Clock Synchronization. In 3rd Annual ACM Symposium on Principles
of Distributed Computing (PODC), Vancouver, British Columbia, Canada,
August 1984.

[25] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K.
Garg. Multidimensional Agreement in Byzantine Systems. Distributed
Computing, 2015.

[26] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
2008.

[27] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms. Distributed Computing, 1987.

[28] Erfan Taheri and Mohammad Izadi. Byzantine Consensus for Unknown
Dynamic Networks. The Journal of Supercomputing, 2015.

[29] Lewis Tseng and Nitin H. Vaidya. Fault-Tolerant Consensus in Directed
Graphs. In Symposium on Principles of Distributed Computing (PODC),
Donostia-San Sebastián, Spain, July 2015.



APPENDIX

In this section, we see how the protocols that we developed
can be applied to networks, where the participants enter or leave
the system, subject to the constraint that n > 3f . First, we look
into the approximate agreement problem. We use Algorithm 4
in the dynamic setting as well. It is easy to observe that the
Lemmas 12 and 13 apply even if the participants enter and
leave the system in every round subject to n > 3f . So, the
range of correct values still gets halved in every round, with
respect to the previous round. However, new nodes entering the
system might also increase the range of values at the correct
nodes. So, whether the range decreases or increases over time
depends on the actual inputs of nodes entering or leaving the
system.

Next, we consider the problem of total ordering of events in
a dynamic system. We can run the parallel consensus algorithm
in every round to agree on the events occurred during that
round. We just need to make sure that the set of identifiers used
for every parallel consensus instance remains consistent. To do
that, we have to specify some more details about the model.
The adversary can decide the number of nodes that can join the
network before every round starts, subject to the constraint that
n > 3f remains true when the round starts. Once a node joins
the network, it can broadcast to all the nodes that have joined
but not left already. A node leaves the network by announcing
so to all the participants. A correct node decides itself when
to leave. The adversary decides when a faulty node leaves the
network. Algorithm 6 lists the pseudocode.

In the following, we show that the nodes agree on the
sequences that they output in Line 30. Let T r

v be the sequence
output by a correct node v at the end of round r (Line 30). Our
goal is that T r

v satisfies the following two agreement properties.
1) Chain-prefix: For any pair of correct nodes u, v, either

T r
u is a prefix of T r

v or T r
v is a prefix of T r

u .
2) Chain-growth: For every correct node v, events are

appended to T r
v over time, if a correct node submits

an event in every round.

Theorem 6. Algorithm 6 outputs a chain of events that satisfy
the chain-prefix and chain-growth properties.

Proof. Initially, the node v0 stores the correct round number
0. By assumption, we have n > 3f in every round. Then, by
induction on rounds, selecting the round number based on the
majority of received ack messages always returns the correct
round number for every correct node. Therefore, every correct
node that starts a parallel consensus instance in a round r, tags
it with the same identifier r. Each of these instances are then
correct using Theorem 5.

Consider a round r′ that is final with respect to v. Since
each phase of Algorithm 5 is five rounds and the initialization
is two rounds, the parallel consensus instance r′ terminates
by r′ + 5f ′r + 2 rounds using Theorem 5, where f ′r is the
number of faulty nodes in the round r′. Let g′r be the number
of good nodes in the round r′ and n′r be the total number of
nodes in the round r′. Since we have n′r > 3f ′r by assumption,

Algorithm 6 Algorithm at a node v to order events in a dynamic
network. Initially, there is one node v0 in the network, whose
r is initialized to 0 and S is initialized to v0. Since there could
be multiple parallel consensus instances running at the same
time, we identify them by the round in which they start by
appending the round number to the messages. Also, running a
parallel consensus instance with respect to S means recording
the value of S at the start of the instance, and only accepting
the messages from the node identifiers in S, discarding the
rest.

1: if v wants to participate then
2: Broadcast present . Next Round
3: Let Av be the multiset of (ack , t) messages received

by v in the next round, where t ≥ 0
4: Initialize r = r0 + 1, where (ack , r0)

is the majority in Av

5: Initialize S to the identifiers which sent a message in
Av

6: end if
7: while true do
8: r ← r + 1
9: Irv ← {}

10: if Received present from u then
11: S ← S ∪ {u}
12: Send (ack , r) to u. . Next Round
13: end if
14: if v wants to stop participating then
15: Broadcast absent . Next Round
16: Wait and participate in outstanding parallel consensus

instances until termination
17: end if
18: if Received absent from u then
19: S ← S\{u}
20: end if
21: if v witnesses an event m 6= ⊥ then
22: Broadcast (m, r) . Next Round
23: end if
24: if Received (m, r − 1) from u then
25: Irv ← Irv ∪ {(u,m)}
26: end if
27: Start a parallel consensus instance r

with the input pairs Irv with respect to
the set S

. Next Round

28: A round r′ < r is final if r − r′ > 5|Sr′

v |/2 + 2
29: Let R be the largest round such that all

the rounds at most R are final
30: Order the outputs of the consensus

instances with identifiers at most R
in the order of increasing identifiers,
breaking ties arbitrarily

31: end while

we have |Sr′

v | ≥ g′r > 2f ′r. Since r′ is final, the current
round r > r′ + 5|Sr′

v |/2 + 2 > r′ + 5f ′r + 2. So, the parallel
consensus instance r′ has terminated by the previous round



and no further output from consensus instance r′ is produced.
Moreover, using Theorem 5, any other correct node u 6= v
has also accepted the same output pairs corresponding to the
consensus instance id . Also, node u has not accepted any
other output pairs corresponding to the consensus instance
id , which would contradict the agreement property of parallel
consensus. Let Ru and Rv respectively be the value of R
computed in Line 29 by the nodes u and v. Then, rounds up
to Rmin = min{Ru, Rv} are final for both the nodes u and
v. Thus, the outputs of the consensus instances up to Rmin is
the common prefix of T r

u and T r
v , which is the common-prefix

property.
Since the parallel consensus instance r′ terminates in O(f ′r)

rounds, the earliest non-final round eventually becomes final
and the chain-growth property is satisfied as well.


	Introduction
	Related Work
	Significance of this Work
	Model
	Reliable Broadcast
	Rotor-Coordinator
	Consensus
	Approximate Agreement
	Synchrony is Necessary
	Parallel Consensus
	Application to Dynamic Networks
	Discussion
	Acknowledgements
	References
	Appendix

