How Many Ants Does It Take to Find the Food?

Ants Nearby Treasure Search

- Introduced by Feinerman, Korman, Lotker and Sereni [PODC 2012].
- n mobile agents, controlled by Turing machines, search for a treasure.
- Communication not allowed.

Model

- Infinite integer grid.
- Each ant initially located in the origin.

Model

- Adversarially hidden treasure/food.
- (Manhattan) distance to treasure is D.

Ants Nearby Treasure Search

- How many rounds until the treasure is found?
- We study the number of ants needed to find the treasure at all.

Model

Model

Model

- One Turing Machine is enough. No communication needed.

Model

- Ants are controlled by (randomized) finite state machines.
- Communicate by sensing the states of nearby ants.
- Run-time studied by Emek, Langner, Uitto and Wattenhofer [ICALP2014].

Model

- Synchrony vs. Asynchrony

- A deterministic protocol?

Model

- Individual algorithm for each ant.

- An algorithm works correctly if the ants find the treasure in expected finite time.

Deterministic + Asynchronous

Triangle Search

Synchronization?

- Can we perform better if the ants have a common sense of time?

Rectangle Search

Randomization

- How about random coin tosses?

Geometric Search

Geometric Search

NE

Geometric Search

NE 1

Geometric Search

NE 11

Geometric Search

NE 111

Geometric Search

NE 1110

Geometric Search

NE 11101

Geometric Search

NE 111011

Geometric Search

NE 1110110

Geometric Search

Run-Time

- For every search i, we have a probability of at least $A_{i}=\frac{1}{4} \cdot 2^{-(D+1)}$ to find the treasure.
- Let B_{i} be the event that the treasure is not found during any search $j<i$.

Run-Time

- Let T be the total time required.
- $E[T] \leq \sum_{i=1}^{\infty} P\left(A_{i+1} \cdot B_{i}\right)(O(i)+O(D))$.
- $P\left(A_{i+1} \cdot B_{i}\right) \leq 2^{-(D+3)} \cdot\left(1-2^{-(D+3)}\right)^{i}$.
- $E[T] \leq 2^{-(D+3)} \sum_{i=1}^{\infty}\left(1-2^{-(D+3)}\right)^{i}(O(i)+O(D))=$ $O\left(2^{D}\right)$.

Lower Bounds?

- Can we do better? In the deterministic and synchronous case, the answer is no.
- Let us start with showing that one ant is not enough.

One Ant

- A finite state machine repeats its behavior.

One Ant

-	-	-							
9									

One Ant

		,							
a	${ }^{4}$								
	-			9					
				\cdots					

One Ant

[
9									
			\checkmark				9		
			\cdots				,		

One Ant

A band of constant width

One Ant

- One ant can only discover a band of constant width.
- How about two ants?

Two Ants

- Let t be the time of the last meeting.

- Both agents (alone) discover a band after t.

Two Ants

- Lemma: The ants meet infinitely often in some pair of states $\left(q, q^{\prime}\right)$.
- Observation: the time between two such meetings is bounded by a constant.

Two Ants

$\left(q, q^{\prime}\right)$

Two Ants

Two Ants

Two Ants

Two Ants

- Two deterministic ants can only discover a band of constant width.
- Two deterministic ants cannot find the food.

Conclusion

FA

- Three asynchronous ants?
- Two randomized ants?

Conclusion

PDA

Problem	sync		async	
	det	rand	det	rand
One agent	\times	\checkmark	\times	\checkmark
Two agents	\checkmark		\checkmark	
Three agents				
Four agents				

Questions?

Thanks to my co-authors
Yuval Emek, Tobias Langner, David Stolz and Roger Wattenhofer

