How Many Ants Does It Take to Find the Food?

Jara Uitto

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Ants Nearby Treasure Search

 Introduced by Feinerman, Korman, Lotker and Sereni [PODC 2012].

• *n* mobile agents, controlled by Turing machines, search for a treasure.

• Communication not allowed.

- Infinite integer grid.
- Each ant initially located in the origin.

- Adversarially hidden treasure/food.
- (Manhattan) distance to treasure is D.

Ants Nearby Treasure Search

• How many rounds until the treasure is found?

 We study the number of ants needed to find the treasure at all.

• One Turing Machine is enough. No communication needed.

 Ants are controlled by (randomized) finite state machines.

- Communicate by sensing the states of nearby ants.
- Run-time studied by Emek, Langner, Uitto and Wattenhofer [ICALP2014].

• Synchrony vs. Asynchrony

• A deterministic protocol?

 Individual algorithm for each ant.

 An algorithm works correctly if the ants find the treasure in expected finite time.

Deterministic + Asynchronous

Triangle Search

Synchronization?

• Can we perform better if the ants have a common sense of time?

Randomization

• How about random coin tosses?

NE

NE 11

NE 1110110
Geometric Search

Run-Time

• For every search *i*, we have a probability of at least $A_i = \frac{1}{4} \cdot 2^{-(D+1)}$ to find the treasure.

• Let B_i be the event that the treasure is not found during any search j < i.

Run-Time

- Let *T* be the total time required.
- $E[T] \leq \sum_{i=1}^{\infty} P(A_{i+1} \cdot B_i) (O(i) + O(D)).$

•
$$P(A_{i+1} \cdot B_i) \le 2^{-(D+3)} \cdot (1 - 2^{-(D+3)})^i$$
.

• $E[T] \le 2^{-(D+3)} \sum_{i=1}^{\infty} (1 - 2^{-(D+3)})^i (O(i) + O(D)) = O(2^D).$

Lower Bounds?

• Can we do better? In the deterministic and synchronous case, the answer is no.

 Let us start with showing that one ant is not enough.

• A finite state machine repeats its behavior.

A band of constant width

• One ant can only discover a band of constant width.

• Let *t* be the time of the last meeting.

• Both agents (alone) discover a band after t.

• Lemma: The ants meet infinitely often in some pair of states (q, q').

• Observation: the time between two such meetings is bounded by a constant.

- Two deterministic ants can only discover a band of constant width.
- Two deterministic ants cannot find the food.

Conclusion

	\mathbf{FA}				
Problem	Sy	ync	async		
	det	rand	det	rand	
One agent		×		×	
Two agents	\times	?	\times	?	
Three agents	\checkmark	\checkmark	?	\checkmark	
Four agents			\checkmark		

- Three asynchronous ants?
- Two randomized ants?

Conclusion

	\mathbf{PDA}				
Problem	sync		async		
	det	rand	det	rand	
One agent	×	\checkmark	×	\checkmark	
Two agents	\checkmark		\checkmark		
Three agents					
Four agents					

Thanks to my co-authors Yuval Emek, Tobias Langner, David Stolz and Roger Wattenhofer