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ABSTRACT
Bessel functions are critical in scientific computing for applica-

tions such as machine learning, protein structure modeling, and

robotics. However, currently, available routines lack precision or

fail for certain input ranges, such as when the order 𝑣 is large, and

GPU-specific implementations are limited. We address the precision

limitations of current numerical implementations while dramati-

cally improving the runtime. We propose two novel algorithms for

computing the logarithm of modified Bessel functions of the first

and second kinds by computing intermediate values on a logarith-

mic scale. Our algorithms are robust and never have issues with

underflows or overflows while having relative errors on the order of

machine precision, even for inputs where existing libraries fail. In

C++/CUDA, our algorithms have median and maximum speedups

of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively,

over the ranges of inputs and third-party libraries tested. Compared

to SciPy, the algorithms have median and maximum speedups of

77x and 300x for GPU and 35x and 98x for CPU, respectively, over

the ranges of inputs tested.

The ability to robustly compute a solution and the low rela-

tive errors allow us to fit von Mises-Fisher, vMF, distributions to

high-dimensional neural network features. This is, e.g., relevant

for uncertainty quantification in metric learning. We obtain image

feature data by processing CIFAR10 training images with the con-

volutional layers of a pre-trained ResNet50. We successfully fit vMF

distributions to 2048-, 8192-, and 32768-dimensional image feature

data using our algorithms. Our approach provides fast and accurate

results while existing implementations in the Python libraries SciPy

and mpmath fail to fit successfully.

Our approach is readily implementable on GPUs, and we provide

a fast open-source implementation alongside this paper.
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1 INTRODUCTION
Bessel functions, an integral part of scientific computing, find wide-

spread applications in various fields, including machine learning,

protein structure modeling, and robotics [5, 7, 24]. These functions,

in their standard and modified forms, arise as solutions to Bessel

differential equations [2, 33]. Their relevance extends to physical

phenomena such as vibrations, hydrodynamics, and heat transfer

[9, 17].

This paper focuses on the modified Bessel functions of the first

and second kinds, denoted, respectively, 𝐼𝑣 (𝑥) and 𝐾𝑣 (𝑥), where 𝑣
represents the order and 𝑥 the argument. These functions will be

formally defined in Section 3.

In statistics, the modified Bessel functions are central to distribu-

tions such as the Mises-Fisher distribution and the K-distribution

[18, 21, 34]. Despite their widespread use, there remain significant

challenges with their numerical computation; particularly in terms

of robustness when dealing with large order values and over differ-

ent input ranges, as they easily underflow or overflow. Although

early work has been done on algorithms that optimize accuracy

and reduce computational time, they still have significant problems

[6, 10, 20, 29].

In Bayesian deep learning, the limitations of current methods

for computing modified Bessel functions have been noted, with

existing techniques often lacking precision or prone to overflow or

underflow making them unusable [24]. To circumvent these prob-

lems, Oh et al. [24] resort to bounds on the ratio

𝐼𝑣/2−1 (𝑥 )
𝐼𝑣/2 (𝑥 ) when 𝑣

takes large values, e.g. 𝑣 in the thousands or tens of thousands. Fig-

ure 1 demonstrate these limitations using SciPy’s implementation,

which struggles beyond 𝑣 = 128 and exhibits longer runtimes than

our library.

To address the accuracy limitations of current implementations,

we focus on computing the logarithm of modified Bessel functions

efficiently and effectively. Some methods for computing Bessel

functions focus on scaling the Bessel functions to avoid numerical

problems such as underflow or overflow. In these cases, the Bessel

function 𝐵(𝑥) is scaled by a function 𝑆𝐵 (𝑥), which for 𝐼𝑣 (𝑥) and
𝐾𝑣 (𝑥) are given by Eqs. (1) and (2). In this way, the scaling functions
compensate for exponential increases and decreases in the functions.
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(a) Runtime comparison between our library and SciPy. The runtime
for each value of 𝑣 for SciPy and our library is measured by sampling
20M values for 𝑥 in the interval [1, 100] and measuring the time
for each 𝑣 = 2

0, 21, ..., 210. The red region (𝑣 ≥ 128) is where SciPy
underflows. For all values of 𝑣, the runtime of our library is one
to two orders of magnitude faster than that of SciPy. We also run
the test for the modified Bessel function of the second kind, and
when 𝑣 ≤ 16, our library is slower than SciPy. However, across the
two modified Bessel functions, our library sees a median speedup
of, respectively, 35x and 77x for CPU and GPU, and a maximum
speedup of, respectively, 98x and 300x for CPU and GPU.
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(b) Stability comparison for computing log 𝐼𝑣 (𝑥 ) : SciPy versus our
library. The left panel shows SciPy’s underflow regions (in red), indi-
cating limited stability. In contrast, the right panel demonstrates that
our library consistently returns finite values (in green), reflecting
its high robustness. The color scheme highlights the computational
reliability of our library over the tested domain.

Figure 1: Comparing robustness and runtime between Scipy’s
scaled implementation and our library for calculating the
logarithm of the modified Bessel function of the first kind.

SciPy uses these scaling functions to extend the range of input in

which it can compute the Bessel functions [30].

𝑆𝐼 (𝑥) = exp(− |𝑥 |), (1)

𝑆𝐾 (𝑥) = exp( |𝑥 |) . (2)

Instead of scaling the functions with exponentials, we propose to

compute the logarithms of the modified Bessel functions, log 𝐼𝑣 (𝑥)
and log𝐾𝑣 (𝑥), by computing intermediate values on a logarithmic

scale to ensure the numerical stability of the results.

In addition to the lack of robustness, the existing implementa-

tions are not fast and are CPU-bound. Therefore, we also develop a

GPU version, since CUDA only has implementations for 𝑣 = 0 and

𝑣 = 1, and applications need log 𝐼𝑣 (𝑥) for any 𝑣 > 0.

This paper is part of a project that seeks to create a special func-

tion library that can run on GPUs. This avoids GPU-to-CPU and

CPU-to-GPUmemory transfers when performing machine learning

with special functions, as these memory transfers are expensive

[14]. The functions should be precise and have runtimes comparable

to existing solutions when using a GPU.
1

2 RELATEDWORK
Applications of Bessel Functions. The modified Bessel function

of the first kind appears in the probability density function of the

von Mises-Fisher distribution. This models data on the 𝑝−1 unit
hypersphere, 𝑆𝑝−1 = {x ∈ R𝑝 | ∥𝑥 ∥2 = 1}, and is a cornerstone of

directional statistics [21]; the von Mises-Fisher distribution in R𝑝

uses 𝐼𝑣 (𝑥) for 𝑣 = 𝑝/2 and 𝑣 = 𝑝/2 − 1 (Section 6.3). We review a few

applications next.

Beik-Mohammadi et al. [5] create a generative model with the

von Mises-Fisher (vMF) distribution to capture end-effector orien-

tations in a robot control setting.

The vMF distribution is also used in metric learning, which aims

for similar data to be near, while dissimilar ones should be far away

[22]. Warburg et al. [32] propose a Bayesian method to capture

the inherent uncertainty of the model predictions. Their pipeline

embeds images into a neural network feature space, which is nor-

malized to unit norm. Using a Laplace approximation to capture

weight uncertainty, they approximate the predicted feature distri-

bution with a vMF distribution, which requires high-order Bessel

functions.

Boomsma et al. [7] use the vMF distribution to model local

protein structures. Banerjee et al. [4] use vMF to cluster high-

dimensional data and give methods to fit the vMF distributions

without having to evaluate the modified Bessel function. However,

the approximation has errors around 1% even for low-dimensional

data, 𝑝 ∈ [10, 100].
Oh et al. [24] use the vMF distribution for Bayesian uncertainty

quantification and observe the inherent instability in modern li-

braries. Therefore, they create their own approximation to estimate

the ratio between the modified Bessel function of the first kind of or-

ders
𝑝/2 and 𝑝/2 − 1. This is required when estimating the parameters

of the vMF distribution using the statistical estimation method pre-

sented by Sra [28]. This shows that whenever the modified Bessel

functions were encountered, the researchers had to come up with

approximations because they did not have a numerically stable

method for computing the functions, which is the core contribution

of our work.

Calculating Bessel Functions. Many software libraries that han-

dle special functions incorporate algorithms to compute Bessel

functions, often based on the approach described by Amos [3]. An

example is the Boost C++ library, which implements the unscaled

Bessel functions. The documentation of the Boost library contains

tests of the precision of their implementations; they report the

relative errors in units of epsilon (machine precision) using Mathe-

matica for the reference solutions. The tests are done with double

1
The code can be found at https://lab.compute.dtu.dk/cusf/cusf

https://lab.compute.dtu.dk/cusf/cusf
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precision, but no input range is given. The relative errors they re-

port are around machine precision for doubles (≈ 2 · 10−16), but
we experimentally found (Section 6) that the relative errors can be

several orders of magnitude larger.

Calculating Logarithm of Bessel Functions. Research has already

been conducted on computing the logarithm of Bessel functions.

For example, Rothwell [26] presents algorithms for both the Bessel

functions of the first and second kind, using recursion in areas

where the conventional approach introduced by Amos [3] faces

numerical challenges. However, it is important to recognize that

the recursion method means that the runtimes for computing the

logarithms grow linearly with the order 𝑣 . In addition, these meth-

ods involve the use of complex numbers in the computation process

because the Bessel functions can be negative. The high runtime

when 𝑣 is large would negatively affect the performance on GPUs

as we wish to process large arrays of numbers and not just singu-

lar values. Additionally, complex numbers increase the memory

load and register usage, thus limiting the maximum number of

concurrent kernels. Similarly, Cuingnet [11] propose an approach

for the logarithm of the modified Bessel function of the second kind,

but the work does not provide code or comparative information,

making any comparison difficult.

Bremer [10] provides algorithms to evaluate the logarithm of the

Bessel function of the first and second kind, with errors ranging

from 10
−12

to 10
−9

and a runtime of approximately 3 to 4 seconds

for 10M input values. Errors are estimated using Mathematica to

provide reference solutions. Our implementation manages to do

much better for the logarithm of the modified Bessel of the first and

second kind; we get errors around machine precision (10
−16

) while

the runtime in most cases is 1 to 2 orders of magnitude better.

3 THEORY
This section will go into the theory necessary to develop the algo-

rithms and introduce asymptotic expressions. Watson [33] gives a

thorough explanation of the Bessel functions.

Defining Bessel Functions. The Bessel functions are defined
as the solutions, 𝑦 (𝑧), to Bessel’s differential equation shown in

Eq. (3), where 𝑧 ∈ Z is the argument and 𝑣 is the order [33]. Mean-

while, the modified Bessel functions are the solutions to Bessel’s

modified differential equation seen in Eq. (4), where 𝑥 ∈ R is now

the argument [2, p. 374].

𝑧2
d
2𝑦

d𝑧2
+ 𝑧 d𝑦

d𝑧
+ (𝑧2 − 𝑣2)𝑦 = 0, (3)

𝑥2
d
2𝑦

d𝑥2
+ 𝑥 d𝑦

d𝑥
− (𝑥2 + 𝑣2)𝑦 = 0. (4)

The Bessel functions of the first and second kind are the solutions

to Eq. (3), where 𝑦 (𝑧) is, respectively, finite or divergent for 𝑧 = 0.

The solutions are respectively denoted as 𝐽𝑣 (𝑧) and 𝑌𝑣 (𝑧). The
modified Bessel functions of the first and second kind, 𝐼𝑣 (𝑥) and
𝐾𝑣 (𝑥), are given by restricting 𝐽𝑣 (𝑧) and 𝑌𝑣 (𝑧) to purely imaginary

inputs 𝑧; for example, 𝐼𝑣 (𝑥) = 𝑖−𝑣 𝐽𝑣 (𝑖𝑥), 𝑥 ∈ R [25].

Logarithmic computations.When computing logarithms for

Bessel functions, a certain transformation is essential that involves

logarithms of sums. It is the “logarithm-of-a-sum” trick for a se-

quence of 𝑁 positive numbers, providing a formula to efficiently

compute the logarithm of the sum. This technique improves numer-

ical accuracy, for instance, by focusing on the logarithms of terms

rather than the terms themselves. The transformation is given as

log

𝑁∑︁
𝑘=0

𝑎𝑘 = log𝑎𝑖 + log

𝑁∑︁
𝑘=0

𝑎𝑘

𝑎𝑖

= log𝑎𝑖 + log

𝑁∑︁
𝑘=0

exp(log𝑎𝑘 − log𝑎𝑖 ) . (5)

For the sake of numerical accuracy, the optimal 𝑎𝑖 to select is the

largest term of the series, i.e. 𝑖 = argmax𝑘 𝑎𝑘 . This prevents the

exponentiation operations from overflowing.

3.1 Modified Bessel function of the first kind
First, we will consider the modified Bessel function of the first kind,

𝐼𝑣 (𝑥), for the inputs 𝑣 ≥ 0 and 𝑥 ≥ 0. This function produces posi-

tive outputs, so the logarithm is well-defined. An infinite series can

be used to evaluate the function for all inputs [2, p. 375 Eq. 9.6.10].

However, it is advantageous to use some asymptotic expressions

for various ranges of input values to speed up the computations

and improve the numerical accuracy. The same techniques and

some of the expressions used for 𝐼𝑣 (𝑥) can be applied with minor

modifications to the modified Bessel function of the second kind,

𝐾𝑣 (𝑥). 𝐼𝑣 (𝑥) is given by the infinite series below [25].

𝐼𝑣 (𝑥) =
(𝑥
2

)𝑣 ∞∑︁
𝑘=0

(
𝑥2

4

)𝑘
𝑘!Γ(𝑘 + 𝑣 + 1) . (6)

To compute log 𝐼𝑣 (𝑥), we truncate the series after a finite number

of terms. For this, we have the following corollary.

Corollary 1. The series in Eq. (6) converges absolutely for all
inputs.

This follows from the fact that the factorial function grows much

faster than the exponential function.

Corollary 1 implies that, in practice, the series can be truncated

after 𝑁 terms.

𝐼𝑣 (𝑥) ≈
(𝑥
2

)𝑣 𝑁∑︁
𝑘=0

(
𝑥2

4

)𝑘
𝑘!Γ(𝑘 + 𝑣 + 1) .

Recurrence relation. Given the sum presented above, we can

simplify the calculation of the terms by introducing a recurrence

relation. In the series Eq. (6), the terms are given by Eq. (7) and

can be calculated recursively, Eqs. (8) and (9). This is relevant for

efficient implementations, as the previous terms can be used to

quickly calculate the next term.

𝑎𝑘 =

(
𝑥2

4

)𝑘
𝑘!Γ(𝑘 + 𝑣 + 1) , (7)

𝑎0 =
1

Γ(𝑣 + 1) , (8)

𝑎𝑘+1 = 𝑎𝑘
𝑥2

4(𝑘 + 1) (𝑘 + 𝑣 + 1) . (9)
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Taking the logarithm of 𝐼𝑣 (𝑥) and applying the “logarithm of a sum”

trick gives

log 𝐼𝑣 (𝑥) ≈ 𝑣 log
𝑥

2

+ log𝑎𝑖

+ log

𝑁∑︁
𝑘=0

exp (log𝑎𝑘 − log𝑎𝑖 ) . (10)

where 𝑎𝑖 is the largest of the terms log𝑎𝑘 ;

𝑖 = argmax

𝑘

log𝑎𝑘

= argmax

𝑘

{
𝑘 log

(
𝑥2

4

)
−

𝑘∑︁
𝑗=1

log 𝑗 − log Γ(𝑘 + 𝑣 + 1)
}
.

Thus, to evaluate log 𝐼𝑣 (𝑥), we only need the logarithm of the

terms 𝑎𝑘 . Due to the multiplication in the recurrence relation for

𝑎𝑘 , Eq. (9), the logarithm of the terms can be efficiently evaluated

without the risk of underflow or overflow using a similar recursion,

log𝑎0 = − log Γ(𝑣 + 1), (11)

log𝑎𝑘 = log𝑎𝑘−1 + 2 log𝑥

− log 4 − log𝑘 − log(𝑘 + 𝑣) . (12)

With these equations, a computational routine can be devel-

oped to compute log 𝐼𝑣 (𝑥). Given the input parameters 𝑣 and 𝑥 , the

procedure involves the following steps:

(1) Initialize the value of 𝑁 to ensure sufficient accuracy.

(2) Compute Eq. (12) for the 𝑎𝑘 terms.

(3) Calculate log 𝐼𝑣 (𝑥) using Eq. (10).

This leaves an unanswered question. What value 𝑁 should be

used to accurately calculate log 𝐼𝑣 (𝑥)?
Using the recurrence relation for log𝑎𝑘 as given in Eq. (12), the

value of log𝑎𝑘 changes by,

log𝑎𝑘+1 − log𝑎𝑘 =2 log𝑥 − log 4

− log(𝑘 + 1) − log(𝑘 + 𝑣 + 1).
Thus, the value of log𝑎𝑘 increases∀𝑘 < 𝐾 , where𝐾 is the unique

value that satisfies

2 log𝑥 − log 4 = log(𝐾) + log(𝐾 + 𝑣),
and decreases ∀𝑘 > 𝐾 .

Solving the equation for 𝐾 gives Eq. (13) with the approximation

holding when 𝑥 ≫ 𝑣 , 𝑥 ≪ 𝑣 , and 𝑥 ≈ 𝑣 . Thus, the location of the

peak term is approximately linear in 𝑥 .

𝐾 =
−𝑣 ±

√
𝑥2 + 𝑣2
2

≈ 𝑥

2

. (13)

The computations are done in finite precision, so when doing

the summation in Eq. (5), we get no influence on the summation

∀𝑘 : log𝑎𝑘 − log𝑎𝐾 < log 𝜖 , where 𝜖 is the machine precision. The

terms grow (almost) exponentially until this point, followed by a

superexponential (𝑐/(𝑘!)) decrease, so many terms would not affect

the summation.
2

Therefore, it is not necessary to compute all the terms, as only the

terms above machine precision in Eq. (5) affect the output. Terms

2
One could sort the terms in the summation to avoid this; however, as the terms rapidly

decrease far away from 𝐾 the impact is negligible, and it involves doing an expensive

sorting operation. We later show that the numerical precision remains good without

this sorting.

less than machine precision, relative to the maximum value, are

ignored. From empirical experiments, we observe that the number

of relevant terms grows as 9.2
√
𝑥 when 𝑥 ≫ 𝑣 or 𝑥 ≈ 𝑣 . However,

if 𝑥 is large, then

√
𝑥 is still large, so it is still necessary to evaluate

many terms. Therefore, we will use asymptotic expressions when

the inputs are large.

Assymptotic expressions. We find asymptotic expressions

that hold when 𝑣 or 𝑥 is large to avoid evaluating the summation

presented above for many terms. We found two asymptotic ex-

pressions that are fast to evaluate and give accurate results when

the series definition of log 𝐼𝑣 (𝑥) is lacking. Numerical tests against

MATLAB’s Bessel functions are used to determine in which regions

the expressions work well; we will focus on this in Section 4.

The first expression is denoted as the “𝜇𝐾 expression” and is

given below for log 𝐼𝑣 (𝑥) with 𝜇 = 4𝑣2 [25].

log 𝐼𝑣 (𝑥) ∼ 𝑥 − 1

2

log(2𝜋𝑥)

+ log

�����1 + ∞∑︁
𝑘=1

(−1)𝑘
Π𝑘
𝑗=1

(𝜇 − (2 𝑗 − 1)2)

𝑘!(8𝑥)𝑘

����� . (14)

This expression works well for large arguments 𝑥 provided the

order 𝑣 is small. Numerical tests have shown that it is not necessary

to evaluate more than about 20 terms in the infinite series. The

main reason for using 20 terms instead of, say, 5 terms is that the

expression works for slightly smaller inputs. However, this effect

plateaus after 20 terms. The 𝐾 in 𝜇𝐾 indicates that the first 𝐾 terms

are used to calculate the result. There is an absolute value around

the infinite series, as numerical errors can cause it to be negative. In

addition, as seen earlier with the log𝑎𝑘 recursion, the terms in the

series can also be calculated recursively to improve the runtime.

The second expression is denoted as the “𝑈𝐾 expression” and is

given below for log 𝐼𝑣 (𝑥) [25].

log 𝐼𝑣 (𝑥) ∼ −1

2

log(2𝜋𝑣) + 𝑣𝜂 − 1

4

log(1 + 𝑥 ′2)

+ log

�����1 + ∞∑︁
𝑘=1

𝑢𝑘 (𝑡)
𝑣𝑘

����� , (15)

𝑥 ′ =
𝑥

𝑣
, 𝑡 =

1

√
1 + 𝑥 ′2

, 𝜂 =
√︁
1 + 𝑥 ′2 + log

𝑥 ′

1 +
√
1 + 𝑥 ′2

.

The infinite series is cut off after a few terms and the 𝐾 is again

used to indicate how many terms are kept. This method can only

be used when 𝑣 ≠ 0 due to the definition of 𝑥 ′, and it does not work
well if 0 < 𝑣 ≪ 1. The functions 𝑢𝑘 (𝑡) are polynomials given by

the recursive expression [25].

𝑢0 (𝑡) =1, (16)

𝑢𝑘+1 (𝑡) =
𝑡2 − 𝑡4

2

d

d𝑡
𝑢𝑘 (𝑡) +

1

8

∫ 𝑡

0

(1 − 5𝑥2)𝑢𝑘 (𝑡)d𝑥 . (17)

We have only been able to find the polynomials𝑢𝑘 (𝑡) for 𝑘 = 1, ..., 6

in the literature [25, 10.41(ii)]. Using Mathematica, we computed

𝑢𝑘 (𝑡) for 𝑘 = 7, ..., 13. Like in Eq. (14), the infinite series in Eq. (15)

contains an absolute value sign, which is only needed to limit

numerical issues.

Based on the input values, we then have three available methods,

the sum definition from Eq. (6), the 𝜇𝑘 expression from Eq. (14),
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and lastly the𝑈𝐾 expression from Eq. (15) to calculate log 𝐼𝑣 (𝑥). In
Section 4 we will determine the input ranges for each method.

3.2 Modified Bessel function of the second kind
This subsection focuses on the elements necessary to calculate

the logarithm of the modified Bessel function of the second kind,

log𝐾𝑣 (𝑥), for input argument 𝑥 and order 𝑣 . Starting with the

asymptotic expressions, 𝜇𝐾 and 𝑈𝐾 can still be used with minor

changes, as indicated below.

Asymptotic expressions. The “𝜇𝐾 expression” for log𝐾𝑣 (𝑥) is
given below with 𝜇 = 4𝑣2 [25].

log𝐾𝑣 (𝑥) ∼
1

2

(log𝜋 − log(2𝑥)) − 𝑥

+ log

�����1 + ∞∑︁
𝑘=1

Π𝑘
𝑗=1

(𝜇 − (2 𝑗 − 1)2)

𝑘!(8𝑥)𝑘

����� . (18)

Here, only some of the first coefficients and the alternating sign

in the infinite series have changed. Therefore, the considerations

for the 𝜇𝐾 expression of log 𝐼𝑣 (𝑥) still hold. Specifically, the same

number of terms and input ranges works well.

The “𝑈𝐾 expression” for log𝐾𝑣 (𝑥) is similar to before [25].

log𝐾𝑣 (𝑥) ∼
1

2

(log𝜋 − log(2𝑣)) − 𝑣𝜂 − 1

4

log(1 + 𝑥 ′2)

+ log

�����1 + ∞∑︁
𝑘=1

(−1)𝑘 𝑢𝑘 (𝑡)
𝑣𝑘

����� , (19)

𝑥 ′ =
𝑥

𝑣
, 𝑡 =

1

√
1 + 𝑥 ′2

, 𝜂 =
√︁
1 + 𝑥 ′2 + log

𝑥 ′

1 +
√
1 + 𝑥 ′2

,

with 𝑢𝑘 (𝑡) being as in Eqs. (16) and (17).

Integral definition. The asymptotic expressions only hold for

large inputs, so we need an expression for small values. For small

inputs, we can use the integral expression in Eq. (20) [26, p. 241 Eqs.

(26)-(27)].

log𝐾𝑣 (𝑥) =
1

2

log𝜋 − log Γ(𝑣 + 1

2

) − 𝑣 log(2𝑥) − 𝑥

+ log

∫
1

0

𝛽 exp(−𝑢𝛽 ) (2𝑥 + 𝑢𝛽 )𝑣−
1

2𝑢𝑛−1

+ exp

−1
𝑢
𝑢−2𝑣−1 (2𝑥𝑢 + 1)𝑣−

1

2 d𝑢, (20)

𝛽 =
2𝑛

2𝑣 + 1

, 𝑛 = 8.

To simplify expressions based on the integral, we define the func-

tions 𝑓 (𝑢), 𝑔(𝑢), and ℎ(𝑢) as given below.

𝑓 (𝑢) = 𝛽 exp(−𝑢𝛽 ) (2𝑥 + 𝑢𝛽 )𝑣−
1

2𝑢𝑛−1,

+ exp

−1
𝑢
𝑢−2𝑣−1 (2𝑥𝑢 + 1)𝑣−

1

2 = 𝑔(𝑢) + ℎ(𝑢),

𝑔(𝑢) = 𝛽 exp(−𝑢𝛽 ) (2𝑥 + 𝑢𝛽 )𝑣−
1

2𝑢𝑛−1,

ℎ(𝑢) = exp

−1
𝑢
𝑢−2𝑣−1 (2𝑥𝑢 + 1)𝑣−

1

2 .

We need to evaluate the integral numerically, which we will do

using Simpson’s 1/3 composite rule [27].∫
1

0

𝑓 (𝑢)d𝑢 ≈ 4

6𝑁

𝑁
2∑︁
𝑘=1

𝑓 ((2𝑘 − 1)ℎ) + 2

6𝑁

𝑁
2
−1∑︁

𝑘=1

𝑓 ((2𝑘)ℎ)+

+ 𝑓 (0) + 𝑓 (1)
6𝑁

,

ℎ =
1

𝑁
.

The 𝑁 is constant, and numerical tests have shown that 𝑁 = 600

gives acceptable results balancing runtime and accuracy for all

inputs tested. To simplify the sums we define the weights𝑤𝑘 given

by:

𝑤𝑘 =

{
4, 𝑘 odd

2, 𝑘 even

.

Combining the weights with the definition of 𝑔 and ℎ, and applying

the “logarithm-of-a-sum” trick, the logarithm of the integral term

in Eq. (20) can be rewritten as follows. Note that 𝑓 (0) = 0.

log

∫
1

0

𝑓 (𝑢)d𝑢 ≈ − log(6𝑁 ) + log𝑀

+ log (exp (log𝐺 − log𝑀) + exp (log𝐻 − log𝑀)) ,
log𝑀 = max(log𝐺, log𝐻 ),

log𝐺 = log

(
𝑁−1∑︁
𝑘=1

𝑤𝑘𝑔(𝑘ℎ) + 𝑔(1)
)
,

log𝐻 = log

(
𝑁−1∑︁
𝑘=1

𝑤𝑘ℎ(𝑘ℎ) + ℎ(1)
)
.

The integral can then be computed quickly from log𝐺 and log𝐻 .

We once again apply the “logarithm-of-a-sum” trick; however, we

precompute the maximum values before evaluating the sum. Oth-

erwise, we must store all terms in memory and loop through the

sums twice. To simplify, we focus solely onmax𝑔(𝑢) andmaxℎ(𝑢)
and ignore the weights𝑤𝑘 .

Finding heuristics for maximums. The maximum value of a

function, here 𝑔(𝑢) and ℎ(𝑢), is either where the derivative is zero
or the boundaries of the input range. Based on the integral Eq. (20)

we have 𝑢 ∈ [0, 1]. Therefore, the maximum can also be at 𝑢 = 0

and 𝑢 = 1.

We start by considering 𝑔(𝑢), and we apply the logarithm as this

will not change the location of the maximum. Furthermore, we take

the derivative with respect to 𝑢.

log𝑔(𝑢) = log 𝛽 − 𝑢𝛽 +
(
𝑣 − 1

2

)
log(2𝑥 + 𝑢𝛽 )

+ (𝑛 − 1) log𝑢,

d

d𝑢
log𝑔(𝑢) = − 𝛽𝑢𝛽−1 +

(
𝑣 − 1

2

)
𝛽𝑢𝛽−1

2𝑥 + 𝑢𝛽
+ 𝑛 − 1

𝑢
.

Setting the derivative to zero and solving for 𝑢 gives

1 =
𝑣 − 1

2

2𝑥 + 𝑢𝛽
+ 𝑛 − 1

𝛽𝑢𝛽
.
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Setting 𝑥 = 𝑢𝛽 and solving for 𝑥 gives a quadratic equation with

solutions given below in Eq. (21).

𝑥 =
−2𝑥𝛽 + 𝑣𝛽 − 𝛽

2
+ 𝑛 − 1

2𝛽

±

√︃
(−2𝑥𝛽 + 𝑣𝛽 − 𝛽

2
+ 𝑛 − 1)2 + 8𝛽𝑥 (𝑛 − 1)
2𝛽

. (21)

If there exists a solution 𝑥 ∈ R to the above equation such that 𝑢∗ =

𝑥
1

𝛽 ∈ [0, 1] then 𝑢∗ is the argument that maximizes 𝑔. However, it

is difficult to determine for which input ranges solutions exist. If

𝑢∗ exists, numerical experiments have shown 𝑢∗ ∈ [0.95, 1], with
the maximum only slightly larger than 𝑔(1). Furthermore, in most

cases there are no solutions 𝑢∗ ∈ [0, 1], and the maximum is at

𝑢 = 1. So, the heuristic 𝑢∗ = 1 is valid in most cases, and if it is

false, then max𝑢 𝑔(𝑢) − 𝑔(1) is small. Thus, there are no numerical

problems when using this heuristic.

We will then consider logℎ(𝑢) and its derivative. In addition, we

will set the derivative to zero and solve for 𝑢.

logℎ(𝑢) = −1
𝑢

(−2𝑣 − 1) log𝑢
(
𝑣 − 1

2

)
log(2𝑥𝑢 + 1),

d

d𝑢
logℎ(𝑢) = 1

𝑢2
− 2𝑣 + 1

𝑛
+
2𝑥

(
𝑣 − 1

2

)
2𝑥𝑢 + 1

,

2𝑣 + 1 =
1

𝑢
+

𝑣 1
2

1 + 1

2𝑥𝑢

.

The last expression can be rewritten as a quadratic equation with

solutions:

𝑢 =
−2(𝑣 − 𝑥) − 1 ±

√︁
(2𝑣 − 2𝑥 + 1)2 + 4(2𝑣𝑥 + 3𝑥)
4𝑣𝑥 + 6𝑥

.

The part under the square root is non-negative for all inputs 𝑥 and

𝑣 . Thus, we see that a solution always exists, and numerical tests

have shown this to be the maximum in all cases. However, the

following heuristic has been shown to approximate the solution

𝑢∗ = argmaxℎ(𝑢) very well.

𝑢∗ =

{
1

2
, 𝑣 < 2

1

2𝑣 , 𝑣 ≥ 2

.

Thus, we can get a good approximation of the maximums of 𝑔(𝑢)
and ℎ(𝑢) without evaluating complex expressions.

We can now calculate log𝐾𝑣 (𝑥) using these three available meth-

ods, the integral definition (20), the 𝜇𝑘 expression (18), and the𝑈𝐾
expression (19). In Section 4, we determine suitable input ranges

for each method.

4 ALGORITHMS
The expressions presented above must be merged to give algo-

rithms to calculate log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥). To do this, we need to

determine which expression to use for a given input.

We conducted tests of the runtimes in MATLAB 2020b and found

that the 𝜇𝐾 expression is the fastest to compute for all 𝐾 ≤ 20. The

second fastest is the 𝑈𝐾 expression for all 𝐾 ≤ 13. Finally, the

infinite series and integral expressions, for, respectively, log 𝐼𝑣 (𝑥)
and log𝐾𝑣 (𝑥), are the slowest.

Expression Input ranges

𝜇3 ((𝑥 > 1400) ∧ (𝑣 < 3.05)) ∨ (([0.6229 log𝑥 −
3.2318] > log 𝑣) ∧ (𝑣 > 3.1))

𝜇20 ((𝑥 > 30) ∧ (𝑣 < 15.3919)) ∨ (([0.5113 log𝑥 +
0.7939] > log 𝑣) ∧ (𝑥 > 59.6925))

𝑈4 (𝑥 > 274.2377 ∧ 𝑣 > 0.3) ∨ (𝑣 > 163.6993)
𝑈6 (𝑥 > 84.4153 ∧ 𝑣 > 0.46) ∨ (𝑣 > 56.9971)
𝑈9 (𝑥 > 35.9074 ∧ 𝑣 > 0.6) ∨ (𝑣 > 20.1534)
𝑈13 (𝑥 > 19.6931 ∧ 𝑣 > 0.7) ∨ (𝑣 > 12.6964)

Table 1: Input ranges where the asymptotic expressions for
themodified Bessel functions of the first and second kind are
applicable. Ordered top-to-bottom from fastest to slowest.

4.1 Choosing the right expressions
We have different approximations of log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥) and
use numerical experiments to determine which is more accurate for

different input ranges. The tests show that the same input ranges

are valid for the 𝜇𝐾 and 𝑈𝐾 expressions when calculating both

log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥). The input ranges can be seen in Table 1.

The order of the expressions in the table gives the order of

priority for the expressions with the series and integral definitions

as the fallback cases. Thus, if for an input (𝑣, 𝑥) the expression

𝜇20 is valid, then it will be used regardless of whether any of the

𝑈𝐾 expressions can be used. Additionally, to simplify the code,

we do not use all 𝜇𝐾 or 𝑈𝐾 expressions for 𝐾 = 3, ..., 20 and 𝐾 =

4, ..., 13, respectively. While the 𝜇4 expression is faster than the 𝜇20
expression, the difference is not very large, so to simplify the code,

we chose a select few expressions based on numerical tests. The

main runtime sinks are currently the sum and integral expressions,

while the other expressions are much faster.

4.2 Pseudo code
Using the expressions presented previously and the input ranges for

which they are valid, we can write a routine to calculate log 𝐼𝑣 (𝑥)
and log𝐾𝑣 (𝑥) given an input (𝑣, 𝑥). The pseudocode can be found

in Algorithm 1.

Using these algorithms, we can then compare them to the solu-

tions available in other software packages by directly comparing the

runtimes and accuracies, but also by testing them on a real-world

use case.

4.3 GPU specific optimizations
The CPU code uses naive parallelization by parallelizing the loop

over the elements using OpenMP. We make some modifications to

the CPU code to optimize the code for GPUs. The code is written

for CUDA where threads are collected in blocks of threads; 256

threads in our case gave good results. The threads in a block are

collected in warps of 32 threads, where each warp is used for the

Single Instruction Multiple Threads, SIMT, execution model. When

naively parallelized on GPUs, the 𝑖’th thread computes log 𝐼𝑣 (𝑥)
or log𝐾𝑣 (𝑥) for the 𝑖’th input value (𝑣𝑖 , 𝑥𝑖 ) as for CPUs. However,
the threads in a warp should work on the same expression. For

example, if the 𝑖’th and 𝑖 +1’th elements are computed using the 𝜇20
and𝑈9 expressions, respectively, and they run on the same warp,
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Data: 𝑥, 𝑣
Result: log 𝐼𝑣 (𝑥) or log𝐾𝑣 (𝑥)
initialization;

if ((𝑥 > 1400) ∧ (𝑣 < 3.05)) ∨ (([0.6229 log𝑥 − 3.2318] >
log 𝑣) ∧ (𝑣 > 3.1)) then

Use 𝜇3 expression;

else if
((𝑥 > 30) ∧ (𝑣 < 15.3919)) ∨ (([0.5113 log𝑥 + 0.7939] >
log 𝑣) ∧ (𝑥 > 59.6925)) then

Use 𝜇20 expression;

else if (𝑥 > 274.2377 ∧ 𝑣 > 0.3) ∨ (𝑣 > 163.6993) then
Use𝑈4 expression;

else if (𝑥 > 84.4153 ∧ 𝑣 > 0.46) ∨ (𝑣 > 56.9971) then
Use𝑈6 expression;

else if (𝑥 > 35.9074 ∧ 𝑣 > 0.6) ∨ (𝑣 > 20.1534) then
Use𝑈9 expression;

else if (𝑥 > 19.6931 ∧ 𝑣 > 0.7) ∨ (𝑣 > 12.6964) then
Use𝑈13 expression;

else
Use series definition (for log 𝐼𝑣 (𝑥)) or integral definition
(for log𝐾𝑣 (𝑥));

end
Algorithm 1: Compute log 𝐼𝑣 (𝑥), 𝑣 ≥ 0 or log𝐾𝑣 (𝑥), 𝑣 ∈ R us-

ing the equations given in the theory section when running on a

CPU.When running on a GPU the branches for the 𝜇3,𝑈4,𝑈6,𝑈9

expressions are removed to reduce warp divergence.

Region Function Number of Reference Solutions

Small

log 𝐼𝑣 (𝑥) 999,341

log𝐾𝑣 (𝑥) 1,000,000

log 𝐼0 (𝑥) 10,000,000

Large

log 𝐼𝑣 (𝑥) 605

log𝐾𝑣 (𝑥) 39

log 𝐼0 (𝑥) 10,000

Table 2: Number of reference solutions for testing the preci-
sion when calculating log 𝐼𝑣 (𝑥), log𝐾𝑣 (𝑥) and log 𝐼0 (𝑥).

this will cause warp divergence. To avoid this and to balance the

load for an entire block of threads, we sort the input elements based

on which expression is used for each element. This means that

if there are 𝑘 elements computed using the 𝜇20 expression, then⌊
𝑘
256

⌋
blocks will work entirely on the 𝜇20 expression, resulting

in high utilization for these blocks. Measurements of the runtime

will include the sorting operations, which account for ≈ 33% of

the runtime, however without the sorting the code is overall 3 to

4 times slower. Furthermore, as noted in Algorithm 1, the GPU

version omits some of the expressions. This is done as an additional

measure to improve utilization and thus performance. The faster

expressions that cover smaller input ranges have been removed,

which has been found to improve the overall runtime for GPUs.

5 DATA AND EXPERIMENTAL SETUP FOR
NUMERICAL EXPERIMENTS

We benchmark our library against the corresponding functions

for log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥) in the standard library (std), the GNU

Scientific Library (GSL), and the Boost library [8, 12, 16]. For GSLwe

can use their scaled functions, which reduce the risk of numerical

underflows and overflows.We take the logarithm and add or remove

the argument to undo the scaling functions shown in Eqs. (1) and (2),

while for all others, we take the logarithm of the function outputs.

Moreover, GSL, Boost, and the CUDAMath Library (CUDA in tables)

contain functions specifically for orders 𝑣 = 0 and 𝑣 = 1. Therefore,

we also compare our library’s general log 𝐼𝑣 (𝑥) function against

these special-purpose functions.

5.1 Test Regions
We evaluated the performance of log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥) in two

distinct regions of (𝑣, 𝑥). The two regions that were considered

for testing are the Small region ((𝑣, 𝑥) ∈ [0, 150] × [0, 150]) and
the Large region ((𝑣, 𝑥) ∈ [150, 10000] × [150, 10000] for log 𝐼𝑣 (𝑥),
and (𝑣, 𝑥) ∈ [150, 4000] × [150, 4000] for log𝐾𝑣 (𝑥)3). When testing

the special case 𝑣 = 0, we use the Small and Large regions for

the input argument 𝑥 . The Small region is chosen so that third-

party libraries, specifically Boost, could compute values for log 𝐼𝑣 (𝑥)
without having underflow or overflow errors or returning Not

a Number (NaN). The large region was limited by the range of

inputs for which it was feasible to compute reference values using

Mathematica.

5.2 Test Points Sampling
For performance evaluation of log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥), we sampled

10M points uniformly in the specified regions, while for 𝑣 = 0, we

uniformly sample 100M points in both regions.

For precision testing, we uniformly sample 1M points in the

Small region and 1K points in the Large region for the fractional

order. We sample 1M points in the Small region and 10K points in

the Large region for the special case 𝑣 = 0.

5.3 Reference Solutions
To establish reference solutions for precision tests, we utilizedMath-

ematica 13.3 to perform accurate calculations for each sampled point

and stored up to 16 decimal points to ensure that reference solutions

are precise up to machine errors for doubles. For precision testing,

any points that were incorrectly evaluated in Mathematica were

filtered out. Such inaccuracies were determined by Mathematica

not providing a numeric answer but simply stating "Indeterminate".

However, it should be noted that even when Mathematica provides

a numeric output, it may not be accurate in some cases; particu-

larly when evaluating values where 𝑣 ≈ 100 and 𝑥 ≈ 0.1. In such

cases, Mathematica raises a warning indicating that there is a loss

of precision. To obtain more accurate results, we suggest using

Wolfram|Alpha. However, due to its computational heaviness and

time-consuming nature, we only used Wolfram|Alpha for a few

dozen input points, which will be discussed later.

3
For large values the 𝐾𝑣 (𝑥 ) function in Mathematica did not terminate so we limited

the Large region



ICS ’24, June 4–7, 2024, Kyoto, Japan Plesner, et al.

The reference solutions provide a baseline for evaluating the

accuracy of the implemented functions on both CPU and GPU.

6 NUMERICAL RESULTS
This section looks at the results of experiments performed using

the data presented in the previous section to test different libraries

that compute log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥). The tests were run on an

NVIDIA RTX 2080 TI GPU and an Intel Xeon Silver 4208 CPU using

all 16 cores. We tested later on newer hardware (NVIDIA A100

80GB and AMD EPYC 7742 CPU using all 64 cores), and the relative

differences in runtimes between libraries and the precision was un-

changed. Tests are performed using double precision floating point

numbers, which reduces the throughput of arithmetic instructions

on the GPU by a factor of 32 compared to using single precision

floating point numbers [23, 5.4.1. Arithmetic Instructions]. We are

more concerned with numerical accuracy than runtime, so the po-

tential throughput improvement from 32 times more arithmetic

instructions does not offset the reduced accuracy.

6.1 Precision
We split results for the CPU and GPU functions in our library and

denote the computing device explicitly. The precision is measured

as the absolute value of the relative error to the reference solution.

We compute precision as the median and maximum statistics, ex-

cluding Not-A-Number (NaN) and ±infinity values. In cases where

all values are NaN or±∞, the median and themaximum are denoted

as Not Available (N/A).

We define robustness as the fraction of test points for which the

methods were able to produce an answer that was not NaN or ±∞.

Robustness is the key metric when comparing libraries, and we

break ties with the maximum statistic.

The key observation from Table 3 is that our library never fails

to compute a value, i.e., the overall robustness is 100%. In addition,

the median errors are at machine precision; however, the maximum

relative errors are sometimes higher than the maximum relative

errors for other libraries. For example, compared to Boost in the

Small region for log 𝐼𝑣 (𝑥). Therefore, we cannot determine which

library is here the most accurate. As an extension, we plot the

cumulative distribution of relative errors in Fig. 2, which shows

that our library has a higher proportion of values with small errors.

Table 3 indicate some outputs from our library with high relative

errors compared to the reference values of Mathematica. These are

values where 𝑣 ≈ 100 and 𝑥 ≈ 0.1, and Mathematica warns about

the loss of precision for such inputs. Therefore, we extracted the

35 values with the highest relative errors for our library (relative

errors of ≈ 10
−6

or higher), and recalculated the reference values

using Wolfram|Alpha (Table 4). We see that the most accurate

library is now ours, which gives answers that are 12 orders of

magnitude closer to the reference values than other libraries (errors

near machine precision). GSL could not calculate an answer for

any of the 35 values, while std and Boost had high median and

maximum errors.

These results suggest a discrepancy between Wolfram|Alpha
and Mathematica. We were unable to find any information about

this difference, but we noted that the Wolfram Language supports

arbitrary-precision arithmetic [1]. However, the Wolfram language
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Figure 2: Cumulative distribution of relative errors for our
and the three third-party libraries when computing log 𝐼𝑣 (𝑥)
for the Small region. The plot illustrates the comparative
performance in terms of numerical precision. Our library
has a steeper curve, indicating a higher proportion of outputs
with minimal relative errors, demonstrating our library’s
higher precision in evaluating the logarithm of the modified
Bessel function of the first kind over the entire range tested.

is used by both, so this would not explain why Mathematica has

numerical problems. It should be noted that Mathematica raised a

warning about loss of precision due to numerical underflow, so this

would support Wolfram|Alpha being the better option for reference

values. This suggests that Mathematica may not be the optimal

source for numerical tests, as is current practice [8].

In summary, our library has similar or better precision than ex-

isting libraries when considering the discrepancy between Mathe-

matica andWolfram|Alpha. More importantly, our library is always

able to return a successful value.

Additionally, we can compare the libraries, along with the CUDA

Math Library, by computing the modified Bessel function of the

first kind for the special cases where 𝑣 ∈ {0, 1}; these special cases
allows for specialized solutions. Our library does not have functions

specifically designed to handle this special case, so the generic

function for log 𝐼𝑣 (𝑥) is used. The metrics can be seen in Table 5

and show that std is the most precise for the values in the Small

region, with our library only slightly less precise. For the Large

region, the GSL and our library are the most precise, as both can

compute for all input values, and the relative errors are numerical

errors, while the others lack robustness and accuracy.

6.2 Performance
Next, we look at the runtimes of the different libraries to compare

the computational efficiency of each. For the fractional-order meth-

ods, we get the runtimes shown in Table 6. From the table, we can

see that our library is the fastest for computing log 𝐼𝑣 (𝑥) in both

regions, but for the Small region, the functions from the std and

GSL libraries are faster for computing log𝐾𝑣 (𝑥). Except for the
Small region when computing log𝐾𝑣 (𝑥), the runtime of our library

is about 20 to 200 ms for 10M input values. This is one to two orders

of magnitude faster than the results presented by Bremer [10] for

computing log 𝐽𝑣 (𝑥) and log𝑌𝑣 (𝑥).
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Function Region Metric

Library

std GSL Boost Our library (CPU) Our library (GPU)

log 𝐼𝑣 (𝑥)

Small

Robustness 100% 99.98% 100% 100% 100%

Median 4.04 × 10
−16

1.34 × 10
−16

0.0 2.12 × 10
−16

2.08 × 10
−16

Maximum 2.77 × 10
−6

2.03 × 10
−7

4.10 × 10
−8

8.30 × 10
−4

8.30 × 10
−4

Large

Robustness 0.50% 44.13% 1.98% 100% 100%
Median 1.20 × 10

−16
0.00 0.00 2.40 × 10

−16
2.28 × 10

−16

Maximum 1.20 × 10
−5

1.46 × 10
−15

0.00 2.98 × 10
−13

2.98 × 10
−13

log𝐾𝑣 (𝑥)

Small

Robustness 99.91% 99.91% 99.91% 100% 100%
Median 0.00 0.00 0.00 1.61 × 10

−16
1.61 × 10

−16

Maximum 1.38 × 10
−11

2.29 × 10
−11

1.23 × 10
−11

6.50 × 10
−9

6.50 × 10
−9

Large

Robustness 100% 82.05% 100% 100% 100%
Median 1.19 × 10

−16
1.32 × 10

−16
1.31 × 10

−16
2.40 × 10

−16
2.40 × 10

−16

Maximum 1.41 × 10
−5

5.02 × 10
−8

5.02 × 10
−8

5.02 × 10
−8

5.02 × 10
−8

Table 3: Precision metrics for different libraries in Small and Large regions when calculating log 𝐼𝑣 (𝑥) and log𝐾𝑣 (𝑥). The errors
are the absolute relative errors compared to the reference solutions calculated using Mathematica. The robustness value in
bold indicates the library with the highest robustness value, where the maximum relative error is used to break ties. for a given
function and region. When computing log 𝐼𝑣 (𝑥) for the Small region, notice that the boost library has a much lower maximum
error than the other libraries when using Mathematica as the reference solution.

Function Region Metric

Library

std GSL Boost Our library (CPU) Our library (GPU)

log 𝐼𝑣 (𝑥) Selected values

Robustness 100% 0% 100% 100% 100%
Median 2.28 · 10−5 N/A 2.28 · 10−5 1.53 · 10−16 1.53 · 10−16

Maximum 8.30 · 10−4 N/A 8.30 · 10−4 3.07 · 10−16 3.07 · 10−16

Table 4: Precision metrics for different libraries for 35 selected values in the Small region when calculating log 𝐼𝑣 (𝑥). The
robustness value in bold indicates the library with the highest robustness value, where the maximum relative error is used
to break ties. The reference values are computed using Wolfram|Alpha. It can be seen that our library is much more precise
when calculating log 𝐼𝑣 (𝑥) compared to the other libraries when using Wolfram|Alpha for the reference solutions. GSL does not
return any values, and thus the median and maximum are not available (N/A).

Function Region Metric

Library

std GSL Boost CUDA Our library (CPU) Our library (GPU)

log 𝐼0 (𝑥)

Small

Robustness 100% 100% 100% 100% 100% 100%

Median 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1.11 · 10−14 3.08 · 10−9 9.07 · 10−10 9.07 · 10−10 3.68 · 10−13 3.68 · 10−13

Large

Robustness 61% 100% 61% 61% 100% 100%

Median 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1.71 · 10−16 2.16 · 10−16 2.15 · 10−16 2.15 · 10−16 2.22 · 10−16 2.22 · 10−16

Table 5: Precision metrics for different libraries in Small and Large regions when calculating log 𝐼0 (𝑥). The errors are the relative
errors compared to the reference solutions calculated with Mathematica. The robustness value in bold indicates the library
with the highest robustness value, where the maximum relative error is used to break ties. We can see that std, boost, and
CUDA all lack robustness in the Large region. Results for 𝑣 = 1 are omitted as they are similar.

We can then also compare the runtimes when looking at the spe-

cial case 𝑣 ∈ {0, 1}, where the CUDA Math Library is also available

for a GPU comparison. For these special cases, there exist simpli-

fied expressions. The results of these tests are shown in Table 7,

where it is clear that the CUDAMath Library is much faster in both

regions. However, the CPU function in our library is comparable

to the other CPU libraries; and for the Large region, we are much

faster than the other CPU libraries.

6.3 Metric learning
We now want to show that our library can be used to solve a real-

world problem using a setup similar to Warburg et al. [32]. Here, we

fit high-dimensional features from image processing to von Mises

Fischer, vMF, distributions. We choose this distribution because

it models data that exist on a unit hypersphere in 𝑝-dimensional

space, 𝑆𝑝−1 = {𝑥 ∈ R𝑝 |∥𝑥 ∥2 = 1}. This is exactly the type of data

that results from 𝑙2-normalization of the extracted features [22].
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Function Region

Library

std GSL Boost Our library (CPU) Our library (GPU)

log 𝐼𝑣 (𝑥)
Small 555.23 ± 27.04 429.50 ± 6.83 4023.40 ± 3.44 131.39 ± 0.87 50.41 ± 0.30
Large 26249.82 ± 4.64 73.02 ± 6.90 244023.40 ± 35.64 71.71 ± 10.69 39.68 ± 0.22

log𝐾𝑣 (𝑥)
Small 590.04 ± 18.58 309.61 ± 10.75 3871.66 ± 2.28 2794.04 ± 13.62 430.60 ± 10.60

Large 10864.81 ± 2.72 4517.38 ± 16.03 99496.82 ± 107.38 67.11 ± 10.96 39.96 ± 0.18

Table 6: Mean runtime in milliseconds over five runs for computing the modified Bessel functions of the first kind, log 𝐼𝑣 (𝑥),
and the second kind, log𝐾𝑣 (𝑥), for fractional orders in the two regions Small and Large. The ± indicates the standard deviation
for the five runs. The fastest method for each function and region combination is highlighted in bold. Overall, our library is
much faster than the other libraries, except for log𝐾𝑣 (𝑥) in the Small region.

Function Region

Library

std GSL Boost CUDA Our library (CPU) Our library (GPU)

log 𝐼0 (𝑥)
Small 3512.69 ± 6.57 915.87 ± 10.33 903.93 ± 26.38 61.56 ± 1.88 1665.29 ± 5.96 433.00 ± 18.63

Large 19560.23 ± 14.13 929.41 ± 24.00 2080.96 ± 33.07 50.15 ± 0.26 301.89 ± 25.13 187.14 ± 21.57

log 𝐼1 (𝑥)
Small 3480.81 ± 4.66 966.92 ± 77.46 823.42 ± 7.63 44.43 ± 0.03 1285.75 ± 16.32 336.44 ± 2.79

Large 19620.46 ± 53.96 946.19 ± 23.20 1937.93 ± 7.65 36.28 ± 0.77 261.30 ± 15.74 175.59 ± 0.51

Table 7: Mean runtime in milliseconds over five runs when computing log 𝐼0 (𝑥) and log 𝐼1 (𝑥). The ± indicates the standard
deviation for the five runs. The GNU Scientific Library (GSL), Boost, and CUDA use special functions for log 𝐼0 (𝑥) and log 𝐼1 (𝑥).
Our library uses the general log 𝐼𝑣 (𝑥). The fastest library is CUDA, and our GPU version is second. Our CPU version is comparable
to the other CPU libraries. We can see that there is only a small difference between 𝑣 = 0 and 𝑣 = 1.

Batch of

images

Resize to 𝐷 × 𝐷 Preprocessing

Convolutional feature extractor – ResNet50

𝑙2-normalize features

Fit von Mises Fischer Distribution

Figure 3: Metric learning pipeline. Images from CIFAR10 (
Fig. 4) are resized to three different sizes of𝐷 = 32,𝐷 = 64, and
𝐷 = 128, and passed through the convolutional layers from
ResNet50 to extract image features. We fit a vMF distribution
to the 𝑙2-normalized features. The extracted features have
2048, 8192, and 32768 dimensions, respectively.

The images are first resized to a resolution of 𝐷 ×𝐷 . We then use

the convolutional layers of a pre-trained image classification model

to extract high-dimensional features. This pipeline has been shown

in Fig. 3. The dimensionality of the extracted features is adjustable

by changing the resolution 𝐷 .

We use the CIFAR10 training dataset of 32 × 32 color images,

which consists of 50k images in ten categories: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck (see [19] for details).

Example images are shown in Fig. 4. The images are resized to

affect the dimensionality of the extracted features to which we fit

a vMF distribution. We bilinearly resize the images to 32×, 64 ×

Figure 4: Example images from the CIFAR10 dataset.

64, and 128 × 128. To extract features from the images, we use a

convolutional model as it is agnostic to the input dimensions and

gives output dimensions based on the input dimensions. For this

project, we treat the convolutional model as a black-box feature

extractor. We used the convolutional layers from the ResNet50

model with pre-trained weights, as this is a widely used baseline

computer vision model [15, 31]. Given the sizes of the images used,

the extracted features have sizes 2048, 8192, and 32768.

As mentioned earlier, the von Mises-Fischer (vMF) distribution

models data on the sphere, where it generalizes the normal distri-

bution [13, 21]. The distribution is given by a mean direction, 𝝁,
and concentration parameter, 𝜅, and has density

𝑓𝑝 (x|𝝁, 𝜅) = 𝐶𝑝 (𝜅) exp (𝜅𝝁⊤x), 𝐶𝑝 (𝜅) =
𝜅𝑝/2−1

(2𝜋)
𝑝

2 𝐼𝑝/2−1 (𝜅)
.

We see above that we need 𝐼𝑣 (𝑥) for 𝑣 = 𝑝/2 − 1 to compute the

probability density function for the vMF distribution. There are

explicit expressions to fit the parameters 𝝁 and 𝜅 to a dataset
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by maximizing the log-likelihood. The mean direction is given

by taking the mean of the data. Suppose that we have the data

𝑋 = {𝑥𝑖 |𝑥𝑖 ∈ R𝑝 , ∥𝑥 ∥2 = 1}, then we can estimate 𝝁,

𝝁 =
𝑥

𝑅
, 𝑥 =

1

|𝑋 |
∑︁
𝑥𝑖 ∈𝑋

𝑥𝑖 , 𝑅 = ∥𝑥 ∥2 . (22)

The concentration parameter 𝜅 is more difficult to estimate. How-

ever, Sra [28] gave an approximation, 𝜅0, which can be further

improved by performing one or two Newton updates, 𝜅1 and 𝜅2,

respectively; these are given below.

𝐹 (𝜅) = 𝜅 −
𝐴𝑝 (𝜅) − 𝑅

1 −𝐴𝑝 (𝜅)2 − 𝑝−1
𝜅 𝐴𝑝 (𝜅)

, 𝐴𝑝 (�̂�) =
𝐼𝑝/2 (�̂�)
𝐼𝑝/2−1 (�̂�)

,

𝜅0 =
𝑅(𝑝 − 𝑅2)
1 − 𝑅2

, 𝜅1 = 𝐹 (𝜅0), 𝜅2 = 𝐹 (𝜅1) . (23)

Numerical evaluations in their paper show a relative error for 𝜅2
between 10

−12
and 10

−11
over dimensions 𝑝 ∈ [100, 100000] [28,

Table 2].

We focus on the feasibility of fitting the vMF distributions to

evaluate our library. We fit the mean direction parameter using

Eq. (22) to the data from the data pipeline. We then maximize the

log-likelihood over the concentration parameter 𝜅 given the mean

direction and compare the resulting estimate to the approximations

𝜅𝑖 , 𝑖 = 0, 1, 2. The log-likelihood is given by,

logLik(𝜅 |𝑋 ) = 1

|𝑋 |
∑︁
𝑥𝑖 ∈𝑋

log 𝑓𝑝 (x|𝝁, 𝜅)

=
1

|𝑋 |
∑︁
𝑥𝑖 ∈𝑋

[(𝑝
2

− 1

)
log𝜅 − 𝑝

2

log 2𝜋

− log 𝐼𝑝/2−1 (𝜅) + 𝜅𝝁⊤x
]
.

We maximize the log-likelihood by minimizing the negative log-

likelihood using minimize in SciPy with the L-BFGS-B method,

bounding 𝜅 to be a non-negative number. The optimization is per-

formed with and without analytic gradients. The results of the

optimizations can be seen in Table 8. For the gradient-free method,

we see that the estimated 𝜅 matches the first six, four, and two

digits of 𝜅2 for the 2048-, 8192-, and 32768-dimensional features,

respectively. The optimizer stops because the gradient is estimated

to be zero, which is caused by numerical errors, since the negative

log-likelihood is still decreasing, with the minimum close to 𝜅2.

However, even with these numerical inaccuracies, the estimates

are still within 0.2% of the best available estimate. With the gra-

dient, we see that the optimizer can estimate 𝜅 much better, with

relative errors ≤ 3.87 · 10−11. Thus, with the gradient, the relative

errors match the errors reported by Sra [28] for their method, so

we cannot rule out that our errors are caused by inaccuracies in 𝜅2.

We performed the same test using SciPy and mpmath to compute

the Bessel functions; however, the optimizer could not converge

in any tests. With mpmath, it would abort due to loss of precision,

and with SciPy it would diverge. Thus, only with our library can

we estimate the parameters of a vMF distribution by optimizing the

log-likelihood to a dataset. This demonstrates that our approach

opens up tasks involving the modified Bessel functions of the first

and second kind that were previously not realistic.

# of features 2048 8192 32768

Gradient free estimate 298.9091 1577.135 6681.31

Gradient estimate 298.9098 1577.405 6668.07

𝜅0 298.9127 1577.412 6668.08

𝜅1 298.9098 1577.405 6668.07

𝜅2 298.9098 1577.405 6668.07

Table 8: Results for fitting the vMF distribution to assess
our implementation of log 𝐼𝑣 (𝑥) in a real-world use case.
The table presents estimates obtained by fitting the mean
direction parameter according to Eq. (22) and maximizing
the log-likelihood over the concentration parameter 𝜅. The
estimates are compared with the approximations 𝜅𝑖 , 𝑖 = 0, 1, 2

from Eq. (23).The gradient-free estimates have a relative
error of 2.39 · 10−6, 1.71 · 10−4 and 1.99 · 10−3 for, respectively,
2048-, 8192- and 32768-dimensional features compared to
𝜅2. With gradient, the relative errors drop to, respectively,
3.87 × 10

−11, 2.13 × 10
−11, 1.72 × 10

−11.

7 CONCLUSION
This paper presents new algorithms for computing the logarithm of

modified Bessel functions of the first and second kind that address

critical precision limitations and underflow and overflow problems

in existing libraries that make existing libraries unsuitable for many

practical applications. Our algorithms consistently produced numer-

ically stable results without underflow or overflow, with precision

equal to or better than current C++ libraries and significantly faster

running times. In most cases, the runtime was one or two orders

of magnitude faster. These results have implications for the use of

the modified Bessel functions in practical applications. We present

an example use case by successfully fitting the von Mises-Fisher

distribution to high-dimensional data by numerically optimizing

the log-likelihood of the data. This demonstrates that our libraries

enable the use of modified Bessel functions for high-dimensional

data, which was previously not possible with available libraries.

Our methods significantly outperform existing libraries that

compute exponentially scaled functions, especially in terms of ro-

bustness and computational efficiency. The only exception is the

modified Bessel function of the second kind for small values, where

our library currently lags behind existing solutions in speed and

accuracy. However, our library is still more robust than existing

libraries. Future research could explore the potential of developing

functions that are specialized for certain inputs, such as integer or-

der. In addition, implementing derivatives of these functions would

facilitate the use of gradient-based optimization techniques, fur-

ther extending the utility of our library. There is also potential to

adapt our approach to other specialized functions that face similar

computational challenges.
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