
Brief Announcement: Fast Shared Counting using O(n)
Compare-and-Swap Registers

Pankaj Khanchandani

ETH Zurich

kpankaj@ethz.ch

Roger Wattenhofer

ETH Zurich

wattenhofer@ethz.ch

ABSTRACT
We consider the problem of building a wait-free and linearizable

counter using shared registers. The counter supports a read oper-

ation, which returns the value of the counter, and an increment

operation, which increments the value of the counter and returns

nothing. The shared registers support read, write and compare-and-

swap instructions. We show that given n processes andO(n) shared
registers, the increment operation is inO(logn) and read operation
is in O(1).

CCS CONCEPTS
•Theory of computation→ Sharedmemory algorithms;Con-
current algorithms;

KEYWORDS
shared counter; wait-free; linearizable; compare-and-swap

1 INTRODUCTION
The compare-and-swap (CAS) instruction is widely available in

commercial hardware and correspondingly used in software. It is

therefore an incentive to design parallel algorithms with optimal

time and space complexity using CAS instructions.

One of the basic problems in shared memory systems is to im-

plement a linearizable and wait-free shared counter for n processes.

Jayanti et al. [5] showed that if the shared registers support only

read and write instructions, then the read operation on a counter

takes Ω(n) steps. An interesting question is how fast we can get

with the shared counter operations using registers that support

CAS instructions as well and what is the smallest number of regis-

ters required for the fastest algorithm. In this brief announcement,

we show an implementation usingO(n) shared registers supporting
CAS instructions where the increment operation takes O(logn)
time and the read operation takes O(1) time.

2 RELATEDWORK
We consider the shared counter where the read operation returns

the value of the counter where as the increment operation incre-

ments the counter and does not return anything. This is in contrast

to the fetch-and-increment counter that increments the counter

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3087801.3087841

and returns the value prior to the increment. Ellen et al. [2] give

an O(logn) implementation of fetch-and-increment counter using

O(n) load-link/store-conditional registers. It is possible to simu-

latem load-link/store-conditional registers for n processes using

O(n2 +m) CAS registers so that the load-link and store-conditional

operations are wait-free and take O(1) steps [4]. Thus, we can im-

plement an O(logn) fetch-and-increment counter and an O(logn)
shared counter usingO(n2) CAS registers. Regarding a lower bound
on the time required, one can use the construction from Alistarh et

al. [1] to show that the total number of steps required for a sequence

of Θ(n) read and increment operations is Ω(n logn). Thus, at least
one of read or increment operation takes Ω(logn) steps.

3 MODEL
The shared memory consists of registers. Each register R supports

the following operations: (i) read(R), which returns the current

value of register R, (ii) write(R, x), which writes x to R and returns

⊥, and (iii) CAS(R, v, v′), which writes v ′ to R if and only if R = v
and returns whether v ′ was written to R. The register R allows

concurrent operations from different processes.

We define the sequential counter object using the state set N0
and the following operations: (i) get(), which returns the current

state s ∈ N0 without changing the next state, and (ii) inc(), which
changes the next state to s + 1 and returns ⊥. We give a wait-free

and linearizable implementation [3] of the sequential counter for n
processes. We assume that n = 2

x
for an integer x ≥ 0 and that the

processes have ids 1, 2, . . . ,n.

4 ALGORITHM
We denote the counter object with id i by Cki , where k is the num-

ber of concurrent inc() operations that the counter supports (no
restriction on the number of concurrent get() operations). Algo-

rithm 1 gives a recursive construction for Cki using a register Ri
and two other counter objects that support k/2 concurrent inc()

operations each. These are C
k/2
2i , called the left child and C

k/2
2i+1,

called the right child.
The counter that supports all the n processes is Cn

1
. From Al-

gorithm 1, the counter Cn
1
uses the register R1 and the counters

C
n/2
2

and C
n/2
3

. Recursing further, we end up with a heap of 2n − 1
registers R1, R2, . . . , R2n−1. The processes that access the counter
Cn
1
have ids 1, 2, . . . ,n. The sets L and H computed in Line 9 can be

{1, 2, . . . ,n/2} and {n/2+1,n/2+2, . . . ,n}, respectively. Thereafter,

the range of process ids that access any counter Cki is contiguous.

Thus, the sets L and H can be computed by splitting the range in

the middle. Figure 1 shows the construction for n = 4 for processes.

https://doi.org/http://dx.doi.org/10.1145/3087801.3087841

1 Cki .get()
2 return read(Ri);

3 Cki .inc()
4 if k == 1 then
5 T ← read(Ri);
6 write(Ri , T + 1);
7 return ⊥;

8 else
9 Partition the id set of k processes that access this

function into two equal sized sets, L and H ;

10 Let p be the current process id;

11 if p ∈ L then
12 C

k/2
2i .inc(); // increment left child

13 else
14 C

k/2
2i+1.inc(); // increment right child

15 V ← read(Ri);

16 sum ← C
k/2
2i .get() +C

k/2
2i+1.get();

17 success ← CAS(Ri , V , sum);

18 if success , true then
19 V ← read(Ri);

20 sum ← C
k/2
2i .get() +C

k/2
2i+1.get();

21 CAS(Ri , V , sum);

22 return ⊥;

Algorithm 1: The algorithm for inc() and read() operations

on the counter Cki .

R1

R2 R3

R4 R5 R7R6

C4

1

C2

2

C2

3

C1

4
C1

5
C1

6
C1

7

Figure 1: The counter construction for n = 4 processes (C4

1
).

It includes two counters that support two concurrent inc()
operations each (C2

2
,C2

3
) and four single process counters (C1

4
,

C1

5
, C1

6
, C1

7
).

5 ANALYSIS
Lemma 5.1. Algorithm 1 is a linearizable implementation of shared

counter Cki .

Proof. The claim is true for k = 1 because there is a single

process that increments the register Ri by one upon each inc()
operation.

For k > 1, assume that the claim is true for k/2, i.e., both

C = C
k/2
2i and C ′ = C

k/2
2i+1 are linearizable counters. Then, we

can consider the operations get() and inc() on both C and C ′

as atomic [3]. The value returned by a successive C .get() opera-
tion can only be larger as there can only be C .inc() operations in

between. This is also true for C ′.get(). Thus, the sum of C .get()
and C ′.get() and the value written to Ri never decreases. Also,
we can associate each distinct value I written to Ri with a unique

pair of values i , i ′ so that I = i + i ′ and i , i ′ are the values returned
by C .get(), C ′.get() respectively. We say that all the increment

operations C .inc() and C ′.inc() leading up to the value i and i ′

were applied to the register Ri .
Assume w.l.o.g that the process with id p ∈ L and invokes

C .inc(). To show linearizability, we have to show that C .inc() is

applied when Cki .inc() returns (the linearization point being the

point of application of C .inc()). Clearly, the operation is applied

when either the CAS in Line 17 or Line 21 succeeds. So, we only

need to check the case when both the CAS operations fail.

Assume that both the CAS operations fail. As the value of Ri
can only change by successful CAS operations and the CAS in

Line 17 fails, a successful CAS operation by another process q must

have occurred between Lines 15 and 17. Process q may or may not

apply C .inc() from process p depending on whether process q
calls C .get() before or after p calls C .inc(). If it was after, then
process q applied C .inc() to Ri . If it was before, then C .inc() is
not applied until the next successful CAS. But, as we know that the

CAS in Line 21 also fails, a successful CAS from a process q′ must

have occurred between Line 19 and Line 21. This CAS occurs on

Ri that is at least the value updated by CAS operation performed

previously by process q. Thus, the sum calculated by q′ occurs after
C .inc() from process p and this is applied to Ri by process q′. □

6 CONCLUSION
In this brief announcement, we gave anO(logn) time shared counter

implementation using O(n) space. This is both optimal in time and

space. It is an interesting question to see if this technique can be

applied to other problems such as fetch-and-increment counter

using O(n) space.

REFERENCES
[1] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid Guer-

raoui. 2014. Tight Bounds for Asynchronous Renaming. Journal of the ACM
(JACM) (2014).

[2] Faith Ellen and Philipp Woelfel. 2013. An Optimal Implementation of Fetch-and-

Increment. In 27th International Symposium on Distributed Computing (DISC),
Jerusalem, Israel.

[3] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness

Condition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) (1990).

[4] Prasad Jayanti and Srdjan Petrovic. 2005. Efficiently Implementing a Large Num-

ber of LL/SC Objects. In 9th International Conference on Principles of Distributed
Systems (OPODIS), Pisa, Italy.

[5] Prasad Jayanti, King Tan, and Sam Toueg. 2006. Time and Space Lower Bounds

for Nonblocking Implementations. SIAM Journal on Computing (2006).

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 Algorithm
	5 Analysis
	6 Conclusion
	References

