Graph Neural Networks as Application of Distributed Algorithms

Roger Wattenhofer

Concurrency & Consensus

Applications? Tons!

Graph Algorithms

Sensor Nets? Biology?!?

Graph Neural Networks

Roger Wattenhofer

High-res 3D simulations

up to 19k particles 2 different simulators (MPM & SPH)

Language models of protein sequences at the scale of evolution enable accurate structure prediction

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives

EULER CHARACTERISTIC SURFACES

(a) Control: No disease

(b) NoDR: Diabetes, but no retinopathy.

social networks

chemo-informatics

question answering systems

molecule recognition

recommender systems

knowledge graphs

An Introduction to Graph Neural Networks from a Distributed Computing Perspective

Pál András Papp and Roger Wattenhofer

ETH Zürich, Switzerland {apapp,wattenhofer}@ethz.ch

Abstract. The paper provides an introduction into the theoretical expressiveness of graph neural networks. We discuss the basic properties and main applications of standard GNN models, and we show how these constructions are both upper and lower bounded in expressive power by the Weisfeiler-Lehman test. We then outline a wide variety of approaches to increase the expressiveness of GNNs above this theoretical limit, and discuss the strengths and weaknesses of these methods.

GNNs vs. Distributed Computing

Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.

Graph Neural Networks

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.

DC Track

"Designed" algorithm

Usually node IDs

Individual messages

Solve graph problems like coloring or routing

ML Track

"Learned" parameters

Usually node features

Aggregated messages

Solve classification (node, edge, graph)

How Do GNNs Work?

Graph Neural Networks

 $a_{v} = \text{Aggregate} (\{ \{ h_{u} \mid u \in N(v) \} \})$ $h_{v}^{(t+1)} = \text{Update} (h_{v}, a_{v})$

Graph Neural Networks

Any Limitations?

Graph Neural Networks

Graph Neural Networks

 \neq

Weisfeiler-Lehman Graph Isomorphism Test

Original labels i = 0

 $\Sigma = \{A, B\}$

Relabeled i = 1

 $\begin{array}{ccc} A,B & A,B \\ \mapsto C & \mapsto C \end{array}$

 $\Sigma = \{A, B, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}\}$

Relabeled i = 2

...

 $\Sigma = \{A, B, C, D, E, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}\}$

Shrikande vs. Rooks

GNNs Fail on e.g. Cycles

DC Track

aggregation

local

congest

ML Track

oversmoothing

underreaching

oversquashing

More Expressive GNNs?

DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks

Pál András Papp ETH Zurich apapp@ethz.ch Karolis Martinkus ETH Zurich martinkus@ethz.ch **Lukas Faber** ETH Zurich lfaber@ethz.ch Roger Wattenhofer ETH Zurich wattenhofer@ethz.ch

GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability *p* independently

Run #1

GNNs with Dropouts

Port Numbers

Angle Features

Random Features

A Theoretical Comparison of Graph Neural Network Extensions

Pál András Papp¹ Roger Wattenhofer¹

Explainable GNN

DT+GNN: A Fully Explainable Graph Neural Network using Decision Trees

Asynchronous GNN

Asynchronous Neural Networks for Learning in Graphs

Benchmarks

Example: CORA Benchmark

Example: CORA Benchmark

Title	Keywords	Neighbor Labels	Neighbor Keywords
Primes is in P		Crypto,	

Graph Generation

SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Uplanad (CBM) (Destaine)

Automating Rigid Origami Design

Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer

Summary

SPECTRE

Thank You!

Questions & Comments?

Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch