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Abstract. In this paper we look at the difficulty of fixing solutions
of classic network problems. We study local changes in graphs (edge
resp. node insertion resp. deletion), and network problems (e.g. maximal
independent set, minimum vertex cover, spanning trees, shortest paths).
A change/problem combination is locally fixable if an existing solution
of a problem can be fixed in constant time in case of a local change in
the graph. We analyze a variety of well-studied classic network problems
with different characteristics.
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1 Introduction

Every driver knows about the buying vs. fixing dilemma: Is it worth it to repair
the old car, or should one instead rather buy a new model? This dilemma also
exists in the context of distributed computing: If a solution to a problem breaks
because of a small topology or input change, is it cheaper to fix the solution, or
should one rather compute a new solution from scratch? Clearly the answer to
this general question depends on many parameters, such as the studied problem,
or how broken a solution is, or the measure of cost for fixing and computing.

For the weighted matching problem, Lotker, Patt-Shamir, and Rosen proved
that fixing [21] is indeed strictly cheaper than computing [14]. Even more surpris-
ingly, there are also examples where computing is cheaper than fixing. Kutten
and Peleg show that fixing a maximal independent set (MIS) is NP -complete
in a footnote in [17], whereas computing is known to take at most polyloga-
rithmic time [22]. These two examples motivated our quest towards a better
understanding of the distributed complexity of fixing vs. computing.

In this paper we freeze two of the many parameters of the problem space.
First, we are only interested in whether graph changes can be fixed locally (in
constant time). Second, we assume that a solution is pretty much intact, i.e.,
the broken pieces are small, and well-separated in space or time. The topology
changes we are looking at in particular are deletions and insertions of single
nodes and edges, as they would happen in a moderately dynamic network. For
node changes we further differentiate between nodes with one or more edges.
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We believe that this array of changes is a suitable model for typical failures in
real networks, where a single node might crash or a single edge could become
disconnected. In our analysis we only cover one such change in the entire network,
however, it is possible that several such changes happen, as long these changes
are either well-separated in space (such that they do not influence each other) or
time (such that there is enough time to fix one change before the next happens).
We examine a diversity of well-studied classic network problems with different
characteristics.

Our main findings are as follows: (i) Many problems that feature a constant or
polylogarithmic distributed computing complexity can be fixed locally. However,
there is no general rule, as there are exceptions. (ii) Global problems are generally
not locally fixable. However, adding or removing leaves (nodes with a single edge)
often seems to pose no difficulty. Again, there is no general rule, as there are
exceptions. (iii) In addition, we show relations between different types of changes.

In summary, even though fixing is often cheaper than computing, in a math-
ematical sense the two are orthogonal. An overview of our concrete findings is
given in Table 1.

Computation Local Fixing
lower bound upper bound +e −e w → w′ +v1 −v1 +v∗ −v∗

Γ1-Count Ω(1) O(1) 4 4 — 4 4 4 4

o(n)-MDS Ω(1) O(1) [16] 7 7 — 7 7 7 7

MIS Ω(
√

logn) [14] O(logn) [22] 4[17] 4[17] — 4[17] 4[17] 4 4

O(1)-MWM Ω(
√

logn) [14] O(logn) [21] 4 4 4 4 4 4[21] 4[21]
MM Ω(

√
logn) [14] O(logn) [12] 4 4 — 4 4 4 4

2-MVC Ω(
√

logn) [14] O(logn) [12] 4 4 — 4 4 4 4

Γlogn-Count Ω(logn) O(logn) 7 7 — 7 7 7 7

ST Ω(D) O(D) 4 7 — 4 4 4 7

MST Ω(D) O(D) 7 7 7 4 4 7 7

SPT Ω(D) O(D) 7 7 7 4 4 7 7

Flow Ω(D) O(D) 7 7 7 4 4 7 7

Leader Ω(D) O(D) 4 4 — 4 4 4 4

Count Ω(D) O(D) 4 4 — 7 7 7 7

Table 1. Overview of our results. On the left side we present the known lower and
upper bounds to compute a solution for a given problem; these bounds are in the
local model, where message size is not bounded. The problems are subdivided by their
distributed complexity classes (local, polylogarithmic and global). On the right hand
side we list the cost of fixing each problem/change combination (the shorthands for the
changes are explained in Section 2.3). A “4” entry means that the combination can
be fixed locally (in constant time), a “7” entry means that it is not possible to fix the
combination locally, and “—” entries only appear in rows where the problem instance
does not have edge weights, i.e., where weight changes are not defined. Note that there
is a “4” and a “7” in every column, in all distributed complexity classes.
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2 Model

2.1 Distributed Computing

We are given a network modeled as a graph G = (V,E), in which the nodes
must base their computations and decisions on the knowledge about their local
neighborhoods. More precisely, a distributed algorithm needs time t if each node
v ∈ V can decide based on its t-hop neighborhood Γt(v). Nodes decide individ-
ually on their outputs without communication. Hence, the output of each node
v is a function of Γt(v).

This neighborhood model, first introduced by Linial [19], is related to the
classic message passing model of distributed computing. In the message passing
model, the distributed system is modeled as a communication network, again
described by an undirected graph G = (V,E). Each vertex v ∈ V represents a
node (host, device, processor, . . . ) of the network, and an edge (u, v) ∈ E is a
bidirectional communication channel that connects two nodes.

Initially, nodes have no knowledge about the network graph; they only know
their own identifier and potential additional inputs. All nodes wake up simulta-
neously and computation proceeds in synchronous rounds. In each round, every
node can send one message to each of its neighbors. A node may send different
messages to different neighbors in the same round. Additionally, every node is
allowed to perform local computations based on information obtained in mes-
sages of previous rounds. Communication is reliable, i.e., every message that is
sent during a communication round is correctly received by the end of the round.
A message passing algorithm has time complexity t if all nodes compute their
output in t communication rounds.

If messages may be large, it is well known that the message passing model
is equivalent to the neighborhood model, i.e., nodes can compute their output
based on their t-hop neighborhood if and only if they can compute their output
in t rounds of synchronous communication in the message passing model. This
common t is known as the distributed time complexity.

Similarly, we can define the time t to fix a change to be either the size of the
neighborhood Γt(v) of a node v that is involved in the fix, or as the number of
communication rounds t in a message passing algorithm to fix the change.

Various distributed complexity classes are known for t. The most important
classes are

– local algorithms, where the time t is a constant independent of any parameter
of the network, i.e., t ∈ Θ(1),

– polylog algorithms where the time t is polylogarithmic in the number of nodes
n, i.e., t ∈ Θ(polylog n), and

– global algorithms which need Θ(D) time, where D is the diameter of the
network.
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Depending on the application, the boundary between local and polylog [23,27]
or the boundary between polylog and global [19] are considered more important.
In this paper we deal with all three classes. Regarding the fixing time, we are only
interested in strictly local algorithms, i.e., a change must be fixed in constant
time, in the O(1)-neighborhood. Regarding the computing time, we look at both
the polylog and the global class in order to get a broader sense of the fixing vs.
computing issue.

2.2 Network Problems

The different network problems we discuss are, grouped by complexity class:

– local
• o(n)-Minimum Dominating Set
• Counting the 1-neighborhood

– polylog
• Maximal Independent Set
• Maximal Matching
• O(1)-Maximum Weighted Matching
• 2-Minimum Vertex Cover
• Counting the log n-neighborhood

– global
• Spanning Trees
• Minimum Spanning Trees
• Shortest Paths Tree
• Maximum Flow
• Leader Election
• Counting the whole graph

For space reasons we omit the full problem definitions here and ask the interested
reader to consult the full version.

2.3 Examined Graph Changes

We considered the following graph changes when examining the possibility of
local fixing:

– Edge insertion (+e): adding a previously absent edge to the graph without
changing the nodes of the graph.

– Edge deletion (−e): removing a previously present edge from the graph with-
out changing the nodes of the graph.

– Edge weight change (w → w′): changing the weight of an already present
edge in the graph without changing the nodes of the graph.

– 1-edge vertex insertion (+v1): adding a vertex to the graph plus a single
edge connecting the new vertex to an existing one.

– 1-edge vertex deletion (−v1): removing a vertex which is only adjacent to
one edge together with its edge from the graph.
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– Vertex insertion (+v∗): adding a vertex to the graph plus any amount of
edges connecting the new vertex to existing ones.

– Vertex deletion (−v∗): removing any vertex and all edges adjacent to it from
the graph at once.

For weighted graphs inserted edges may have any positive weights assigned to
them. The insertion and deletion of nodes without any edges is trivial for all the
problems in question. We assume that after a change occurs all nodes directly
adjacent to the change are notified of the exact kind of change that occurred.

Further, we allow treating a node “crash” (i.e., a sudden removal from the
communication graph) as if the node gracefully “signed off” (organizing any
necessary restructuring of the system prior to the node’s departure). For this
we let every node whose sudden removal would be critical create a “last will”
and deploy it at its immediate neighbors. The last will contains the results a
proper sign-off procedure would have had. To compute the last will, the sign-off
procedure is simulated beforehand, which we require to be local (i.e., conclude
within O(1) rounds). Note that every time a state change in the graph could
cause the results of a sign-off to change the respective last will must be computed
and distributed anew. However, also note that this procedure does not affect the
time complexity of computing or fixing a problem, as we require the computation
of the last will to only take O(1) rounds. We require last wills for some local
fixability results in Sections 4.4 and 4.10.

Definition 1 (PC Notation). We write PC to denote the problem of fixing a
solution of the graph problem P after a graph change C. For instance, MIS+e

denotes the problem of fixing a maximal independent set after an edge insertion.

3 Related Work

Distributed network algorithms have been studied ardently for almost 30 years.
One of the most basic problems is the maximal independent set (MIS) prob-
lem. It was shown that the distributed computation of an MIS can be done in
O(log n) time [2,22]. Closely related to the MIS problem is the maximal match-
ing problem, as a maximal matching can essentially be computed by computing
an MIS on the edges, and as such both algorithms are similar [12]. Since the
vertices adjacent to a maximal matching are a 2-approximation for vertex cover,
also 2-MVC can be solved in O(log n) time.

The study of distributed weighted matching is more recent, the first constant
approximation in polylogarithmic time was shown less than a decade ago [28].
Later, [21] discovered that some of the steps of the algorithm of [28] can be
executed in parallel, improving the distributed time complexity to O(log n). It
was shown by [20] that one can even achieve a (1+ε)-approximation in the same
time, using a different method.

Kuhn et al. showed that a polylogarithmic approximation for MVC cannot
be solved in less than polylogarithmic time [13,14]. Using reductions, one can
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immediately prove an Ω(
√

log n) lower bound for our problems with polyloga-
rithmic distributed complexity. This lower bound was strengthening the earlier
log-star lower bound by Linial [19], showing that all these problems (and some
more) are indeed in the polylogarithmic distributed complexity class.

Our tree-based problems are in the global distributed complexity class, as one
must send information across the whole network, and as such Ω(D) is a time
lower bound. If message size is not bounded, just gathering all the information
at all the nodes, and then computing the solution locally solves all problems
in asymptotically optimal O(D) time. Using a simple flooding process, one can
compute a spanning tree in O(D) time using small messages only. In the syn-
chronous model, this spanning tree will be a shortest path tree. For the MST
problem, it is not possible to get a solution in O(D) time using short messages
only [25,9,26]. For flow and other global problems, there are results which also
suggest a distributed complexity polynomial in n [26,10]. Our overview table
contains the results in the unbounded message size model, also known as the
local model.

The subject of our paper is not so much the complexity of distributed com-
puting, but rather the complexity of distributed fixing. Clearly, faults have played
a major role in distributed computing since an early time. In fact, one may argue
that distributed fixing was in fact studied even earlier, as early as in the 1970s
when Dijkstra introduced the concept of self-stabilization [6,7]. In contrast to
our work, a self-stabilizing algorithm must survive many failures, not just one,
and as such it seems to be a difficult challenge. However, as shown 20 years
ago [4,1,5], efficient self-stabilization often boils down to distributed computa-
tion. As such, surprisingly, computation and self-stabilization are more closely
related than computation and fixing. See [8,18] for an overview. More recently,
“self-healing” algorithms have gained attention [24,11].

Dynamic networks are another area related to our work, in which the graph
topology is permanently changing, either because of changing environmental
conditions (edge changes in wireless networks), mobility (edge changes because
of moving nodes in mobile networks), algorithmic dynamics (edge changes due
to algorithmic decisions in overlay networks), or churn (nodes constantly joining
or leaving as in peer-to-peer systems). In dynamic networks no node is capable
of maintaining up-to-date global information on the network. Instead, nodes
have to perform their intended (global or polylogarithmic) task based on locally
available information only, i.e., all computation in these systems is inherently
local. In the last decade there was a tremendous rise in interest in dynamic
networks, see [15] for an overview. This line of work is also more ambitious than
ours in the sense that large fractions of the network can change concurrently.
On the other hand, we restrict ourselves to constant time solutions.

Regarding fixing vs. computing, a most inspiring prior work is by Kutten and
Peleg [17]. For the MIS problem, if P 6= NP , they show that fixing can be much
harder than computing. For this, they consider a model, in which each node is in
one of three states: (‘1’) in the MIS, (‘0’) not in the MIS, or (‘?’) forgot whether
or not in the MIS. They then study how long it takes to compute the missing
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node states. 3SAT can be reduced to this problem in a straightforward way. We
briefly describe the construction here, because Kutten and Peleg only mention
it in a footnote, and did not bother to describe it in detail. Every clause of a
3SAT instance is represented by a node in state ‘0’. Every variable is represented
by two connected nodes (one for true, one for false), both in state ‘?’. For each
clause, there are 3 edges between the clause node and the variable nodes of
the variables in the clause. We conclude that fixing an MIS in their model is
NP -complete.

In a more relaxed model they consider fixing an MIS where every node knows
whether it is in the MIS but may be in a conflicting state, i.e., be in the MIS
while having a neighbor in the MIS or not being in the MIS while having no
neighbors in the MIS. They present a transformation for MIS algorithms yielding
a O(log x) randomized and a 2O(

√
log x) deterministic fixing algorithm, where x

is the number of nodes in conflicting states. Our model has a certain overlap
with this model: In case a topology change in our model only puts a constant
number of nodes into a conflicting state, their method also offers a local fix.

Another milestone is Chapter 4 of the previously mentioned paper by Lotker,
Patt-Shamir, and Rosen [21], where they prove that their technique can be
adapted to dynamic graphs. In fact, not only do they introduce our notion of
topology changes, but they also show that a single node insertion or deletion
with any amount of adjacent edges in a maximum weighted matching solution
can indeed be fixed in constant time, keeping a constant approximation ratio.
Since this beats the lower bound regarding the computational complexity for this
problem, it is a nice example that fixing can be strictly easier than computing.

4 Results

An overview of our results can be found in Table 1. For space reasons we will
omit some of the lemmas and proofs here and ask the interested reader to consult
the full version, which contains proofs for all of the listed results.

In the following we will make use of the two graph classes defined below.

Definition 2 (Paths, Rings). A path graph with n vertices is given by G =
(V,E):

V = {0, . . . , n− 1},

E =

n−1⋃
i=1

(i− 1, i) .

A ring graph additionally has the edge (0, n− 1).

4.1 Graph Change Relationships

The different graph changes we are studying are related. The following lemmas
summarize some implications that can be made.
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Lemma 1. For any graph problem P :

– If we can fix P+v∗ locally, we can also fix P+v1 locally.

– If we can fix P−v∗ locally, we can also fix P−v1 locally.

Lemma 2. For any weighted graph problem P , if we can fix both P+e and P−e

locally, we can also fix Pw→w′ locally.

Lemma 3. For any graph problem P , if we can fix both P+v∗ and P−v∗ locally,
we can also fix P+e, P−e and Pw→w′ locally.

4.2 Vertex Counting

In this section we will discuss the problem of each node knowing the number of
nodes in its r-neighborhood for different values of r.

While very straightforward, Γ1-Count is a typical example of a problem which
can be computed and also fixed in constant time:

Lemma 4. Γ1-Count+e, Γ1-Count−e, Γ1-Count+v1 , Γ1-Count+v∗ , Γ1-Count−v1

and Γ1-Count−v∗ are local.

Proof. After any change all directly adjacent nodes can simply recompute their
count values. This requires O(1) rounds. Any node not adjacent to a change will
still have a valid count. The lemma follows.

For r ∈ ω(1), i.e., non-constant r, counts can generally not be fixed in con-
stant time anymore:

Lemma 5. For any r ∈ ω(1): Γr-Count+v1 , Γr-Count+v∗ , Γr-Count−v1 and
Γr-Count−v∗ are not local.

Proof. Adding or removing a node with any (positive) amount of edges anywhere
requires updating the node counts in all nodes up to r hops away. This requires
r /∈ O(1) rounds. The lemma follows.

Lemma 6. For any r ∈ ω(1): Γr-Count+e and Γr-Count−e are not local if
r < D; Γr-Count+e and Γr-Count−e are local for r ≥ D.

Proof. Consider a path graph. Removing edge (0, 1) or adding edge (0, n − 1)
requires updating the node counts in all nodes with indices 0 through r−1. This
requires r − 1 /∈ O(1) rounds. The first part of the lemma follows.

If r ≥ D every node is counting all nodes in the graph, since we are not
considering graph changes which disconnect the graph. Adding and removing
edges would not change any node counts in that case. The second part of the
lemma follows.
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4.3 Minimum Dominating Set

In this section we will discuss the problem of approximating minimum dominat-
ing sets. This problem does not allow for any local fixing and was chosen to give
an example for this particular phenomenon. We are considering only non-trivial
approximations, i.e., within o(n) of the minimum dominating set.

Note that although we can compute an o(n)-MDS from scratch in constant
time [16], fixing one within O(1) hops of a graph change is an entirely different
problem!

Lemma 7. o(n)-MDS+v1 is not local.

Proof. First, we will show, that no algorithm can solve k-MDS+v1 in any con-
stant number of steps c (“locally”), for any k with 1 ≤ k ≤ n+1

c − 2. Let us
define:

a1a2

a3

a4 a5

b1 b2 b3 b4 b5 b6 b7

Fig. 1. Example graph with x=5 and y=7.

x = b(k − 1)(c+ 1)c,
y = 3c+ 1,

G = (V,E),

V = (a1, a2, . . . , ax, b1, b2, . . . , by),

E = {(ai, b1) | 1 ≤ i ≤ x} ∪ {(bi, bi+1) | 1 ≤ i < y},
U = {ai | 1 ≤ i ≤ x} ∪ {b2} ∪ {b3i | 1 ≤ i ≤ c},
U∗ = {b3i+1 | 0 ≤ i ≤ c} .

See fig. 1 for an example of G. Note that U is a k-MDS and U∗ is a 1-MDS
with respect to G. Adding a new vertex v and a new edge (by, v) to G will
now invalidate U as a dominating set, while U∗ still is a 1-MDS. While it is
possible to create a new dominating set U ′ from U by fixing it locally, i.e., only
within c hops of vertex by, at least one additional vertex will have to be added:
|U ′| ≥ |U |+1. Since U∗ stayed the same, this entails an increased approximation
factor k′ for U ′:

k′ =
|U ′|
|U∗|

=
x+ c+ 2

c+ 1
=
b(k − 1)(c+ 1)c+ c+ 2

c+ 1
>

(k − 1)(c+ 1) + c+ 1

c+ 1
= k

Since k′ > k, k-MDS+v1 is not local for 1 ≤ k ≤ n+1
c −2, and hence o(n)-MDS+v1

is not local.
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The proofs for the non-locality of o(n)-MDS−v1 , o(n)-MDS+e and
o(n)-MDS−e are analogous.

4.4 Maximal Independent Set

In this section we will discuss fixing maximal independent sets. Kutten and Peleg
[17] already showed that MIS+e, MIS−e, MIS+v1 and MIS−v1 can be fixed
in constant time by running a transformed MIS algorithm. We will nevertheless
still provide a set of simple proofs for those graph changes. Additionally, we will
show that MIS+v∗ and MIS−v∗ are locally fixable as well.

We say a vertex is covered if it is part of the MIS or has a neighbor in the
MIS. Note that all vertices in a graph being covered is a sufficient condition for
an MIS to be maximal.

We assume that every MIS node knows its 2-hop-neighborhood and is made
aware of changes to it (this can be achieved by flooding a message for 2 hops
each time a change occurs). This is necessary to allow each MIS node to compute
a last will (see Section 2.3), which contains which of its neighbors should enter
the MIS in case of a “crash” to ensure retaining a valid MIS.

To compute its last will an MIS node computes the subset of its direct neigh-
bors which are only covered by itself and then computes an MIS on the subgraph
of only these neighbors and the edges between them. The nodes of the subgraph’s
MIS are then chosen to become MIS nodes of the actual graph should the node
the last will is for fail. Note that this computation does not require any further
messages to be exchanged. Hence, updating the last wills only adds O(1) time
to the fixing procedures for each graph change.

Below we will detail the actions which need to be taken in the cases of edge
addition and removal of a node with any number of edges. The actions to be
taken for the other graph changes are trivial and can be found the in the full
version.

Lemma 8. MIS+e is local.

Proof. The MIS can be fixed by doing the following: when an edge e = (v, u)
is added and both v ∈ MIS and u ∈ MIS, pick one of v and u (for instance,
whichever has the lower identifier), remove it from the MIS and add those nodes
to the MIS which are designated in its last will.

If v /∈MIS or u /∈MIS the MIS remains valid: both nodes directly affected
by the change are still covered by either being in the MIS themselves or having
a neighbor in the MIS (we know this because we had a valid MIS prior to the
edge insertion), and independence is still warranted since not both nodes are in
the MIS.

Lemma 9. MIS−v∗ is local.

Proof. The case where the removed node is not part of the MIS is trivial – the
remaining MIS on the remaining nodes is still valid. In the following we will
consider the other case.
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Without the node performing a “sign-off” (i.e., participating in the fixing
before actually leaving) or an adequate preparation (such as a last will) it is
not possible to salvage the MIS in constant time. To see this just imagine an
arbitrarily complex graph where one node is connected to every other node. If
an MIS is formed by that node alone, its unprepared removal would require
computing a new MIS on the whole remaining graph which is known to take at
least Ω(

√
log n) time.

Luckily, we stated that every MIS node deposits a last will at each of its
neighbors stating which nodes should enter the MIS. This way every node can
decide in constant time whether it should join the MIS.

4.5 Maximal Matching

Maximal matchings can be fixed locally as well. Two individual graph changes
are discussed below.

We say an edge a blocks another edge b with respect to a matching M if
the edges share a vertex and a ∈ M and b /∈ M . A matching being maximal is
equivalent to every edge either being part of the matching or being blocked.

Lemma 10. MM−e is local.

Proof. An edge being removed potentially allows for two edges to be added in
turn: one at each of the vertices of the edge. Both vertices can identify and
choose an unblocked edge adjacent to them to join the matching in constant
time, which restores maximality.

Lemma 11. MM+v∗ is local.

Proof. Of the new edges at most one can become part of the matching, because
they all share a vertex. No existing edge can become part of the matching through
this change or the matching would not have been maximal before the change.
Therefore, by picking any of the new edges which are not blocked (if there are
any) and adding the picked edge to the matching, we can obtain a valid maximal
matching again.

4.6 Spanning Trees

In this section we will discuss spanning trees which do not necessarily have
minimum weight. We will not consider graph changes which cause the graph to
become disconnected.

Lemma 12. ST−e and ST−v∗ are not local.

Proof. Consider a spanning tree on a ring graph: it consists of all the graph’s
edges except for one at some vertex i. Removing vertex (i+

⌊
n
2

⌋
) mod n, or an

edge adjacent to it, requires the edge at vertex i to be added to the spanning
tree. For this to happen messages must be sent across up to

⌊
n
2

⌋
∈ Ω(n) links.

Hence, ST−e and ST−v∗ cannot be fixed locally.
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4.7 Minimum Spanning Trees

In this section we will discuss minimum spanning trees. We will not consider
graph changes which cause the graph to become disconnected.

Lemma 13. MST−e and MST−v∗ are not local.

The proof for Lemma 13 follows that of Lemma 12.

Lemma 14. MSTw→w′ is not local.

Proof. Consider a minimum spanning tree on a ring graph where every edge
has weight 1: it consists of all the graph’s edges except for one at some vertex
i. Increasing the weight of an edge adjacent to vertex (i +

⌊
n
2

⌋
) mod n by any

amount requires the edge at vertex i to be added to the minimum spanning tree.
For this to happen messages must be sent across up to

⌊
n
2

⌋
∈ Ω(n) links. Hence,

MSTw→w′ cannot be fixed locally.

Lemma 15. MST+e and MST+v∗ are not local.

Proof. Consider a minimum spanning tree on a path graph where every edge
has weight 1 except for the edge between vertices

⌊
n
2

⌋
and

⌊
n
2

⌋
+ 1 which has

weight 2: it consists of all the graph’s edges. Adding an edge between vertices
0 and n − 1 with weight 1, or adding a vertex with two edges of weight 1 to
vertices 0 and n− 1 of the original graph, requires the edge with weight 2 to be
removed from the minimum spanning tree. For this to happen messages must
be sent across up to

⌊
n
2

⌋
∈ Ω(n) links. Hence, MST+e and MST+v∗ cannot be

fixed locally.

4.8 Shortest Paths Trees

In this section we will discuss shortest paths trees. We will not consider graph
changes which cause the graph to become disconnected or which remove the root
of the SPT.

Lemma 16. SPT−e and SPT−v∗ are not local.

The proof for Lemma 16 follows that of Lemma 12. Which node the SPT is
rooted in is irrelevant for this proof.

Lemma 17. SPTw→w′ is not local.

Proof. Consider a SPT rooted in node 0 on a ring graph where every edge has
weight 1: it consists of all the graph’s edges except for one adjacent to node⌊
n
2

⌋
. Increasing the weight of the edge (0, 1) to n requires the missing edge to be

inserted into the spanning tree replacing edge (0, 1). For this to happen messages
must be sent across up to

⌊
n
2

⌋
∈ Ω(n) links. Hence, SPTw→w′ cannot be fixed

locally.
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4.9 Maximum Flow

In this section we will discuss maximum flows. We will not consider graph
changes which cause source and sink to become to become parts of different
graph components or which remove source or sink.

Lemma 18. Floww→w′ , Flow−e and Flow−v∗ are not local.

Proof. Consider a ring graph where all edge weights are 1 and which has an
additional vertex vsource which is only attached to vertex

⌊
n
2

⌋
over an edge with

weight 1. Let vsource be the flow’s source and vertex 0 be the flow’s sink. All
maximum flows on this graph have a strength of 1 and are divided into two parts
which travel over vertices {0, 1, . . . ,

⌊
n
2

⌋
} and over vertices {0,

⌊
n
2

⌋
, . . . , n − 1}

respectively.
Decreasing the weight of either edge (0, 1) or edge (n−1, 0) below the strength

of the part of the flow on that respective side will require the flow across all edges
to be changed (save for the edge adjacent to vsource). The same may be caused
by removing or removing the adjacent non-sink vertex of either edge (0, 1) or
edge (n−1, 0). Hence, Floww→w′ , Flow−e and Flow−v∗ cannot be fixed locally.

Lemma 19. Flow+e and Flow+v∗ are not local.

Proof. Consider a path graph where all edge weights are 1. Let vertex 0 be the
source of the flow and let vertex

⌊
n
2

⌋
be the sink of the flow. Any maximum flow

only uses the edges {(a− 1, a) | 0 < a ≤
⌊
n
2

⌋
}.

Adding an edge between vertices 0 and n − 1, or adding a vertex with two
edges of weight 1 to vertices 0 and n − 1 of the original graph, requires any
maximum flow on the resulting graph to use all edges. Hence, Flow+e and
Flow+v∗ cannot be fixed locally.

4.10 Leader Election

In this section we will discuss the problem of fixing a leader election. Note that
we do not require any node but the leader itself to know who the leader is. The
sole requirement is that there is exactly one leader at any time. We will not
consider graph changes which cause the graph to become disconnected.

This problem is particularly interesting, because computing it initially takes
Ω(D) rounds [3], while fixing requires little to no effort and can always be done
in constant time.

Lemma 20. Leader+e, Leader−e, Leader+v1 , Leader−v1 , Leader+v∗ and
Leader−v∗ are local.

Proof. In all cases where merely edges or non-leader nodes get added or removed,
we do not need to change the leader node. This takes constant time.

To cover cases in which the leader node gets deleted, we will make use of the
“last will” technique again (see Section 2.3). The leader node has at all times
exactly one last will deployed at one of its neighbors, stating that that node
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should become the leader should the leader node be deleted. However, the node
should not become a leader if merely the edge to the leader is deleted; in that
case it should scrap the last will. Should the last will node be deleted or should
its edge to the leader node be deleted, the leader node will issue a new last will.
These operations ensure that there is always exactly one leader after any graph
change and also take constant time.
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