MACbeth
 The Three Witches of Media Access Theory

Roger Wattenhofer
EHH

What has been studied ...most ardently?

\#1 MAC Layer (e.g. Coloring)
\#2 Topology and Power Control

- Interference and Signal-to-Noise-Ratio
\#3 Clustering (e.g. Dominating Sets)
- Deployment (Unstructured Radio Networks)
- New Routing Paradigms (e.g. Link Reversal)
\#5 Geo-Routing
\#4 Broadcast and Multicast
- Data Gathering
- Location Services and Positioning
- Time Synchronization
\#1 Capacity and Information Theory
- Lower Bounds for Message Passing
- Selfish Agents, Economic Aspects, Security

Media Access Control (MAC) Layer

- The MAC layer protocol controls the access to the shared physical transmission medium
- In other words, which station is allowed to transmit at which time (on which frequency, etc.)
- MAC layer principles/techniques
- Space and frequency multiplexing (always, if possible)
- TDMA: Time division multiple access (GSM)
- CSMA/CD: Carrier sense multiple access / Collision detection (Ethernet)
- CSMA/CA: Carrier sense multiple access / Collision avoidance (802.11)
- CDMA: Code division multiple access (UMTS)

Why is the MAC layer so important?

- In a wireless multi-hop network, many design issues are central
- Application
- Hardware design
- Physical layer (e.g. antenna)
- Operating system
- Sensor network: Sensors
- ... more topics not really related to algorithms/theory/fundamentals
- However, also really critical is the MAC Layer
- In my opinion much more essential than, e.g. routing
- Higher throughput
- Saving energy (long sleeping cycles)

An Orthodox TDMA MAC algorithm

- Given a connectivity graph G, often a unit disk graph What?!?
- Interference? Two-hop neighbors! ("Hidden terminal problem")

- Algorithm: G' = G + two-hop links, min-color G' How?
- Frame length = number of colors, slot = color.

The Three Witches (Talk Outline)

0

- Introduction
- Why MAC is important

- Orthodox MAC
- Witch \#1: The Chicken-and-Egg Problem
- Witch \#2: Power Control is Essential
- Witch \#3: Models, Models, Models!

Please mind, this is talk about theory/algorithms/fundamentals, not systems. Systems are more difficult, or at least different...

Witch \#1: The Chicken-and-Egg Problem

0

- Excerpt from a typical paper:

```
Algorithm 2 LPMDS approximation (\Delta known)
1: \mp@subsup{x}{i}{}:=0;
    2: for }\ell:=k-1 to 0 by -1 do
```



```
    4: for m:=k-1 to 0 by -1 do
    5: }\quad(*a(\mp@subsup{v}{i}{})<(\Delta+1\mp@subsup{)}{}{(m+1)/k}*
    6: send color }\mp@subsup{}{i}{}\mathrm{ to all neighbors;
        \delta(vi) := |{\jmath \in N N | \mp@subsup{\operatorname{color}}{j}{}=\mp@subsup{}{}{\prime}\mathrm{ 'white' }};
        if \tilde{\delta}(\mp@subsup{v}{i}{})\geq(\Delta+1\mp@subsup{)}{}{\ell/k}\mathrm{ then}
            xi}:=m\mp@code{max}{\mp@subsup{x}{i}{},\frac{1}{(\Delta+1\mp@subsup{)}{}{m/k}}
10: fi
            send }\mp@subsup{x}{i}{}\mathrm{ to all neighbors;
                if }\mp@subsup{\sum}{j\in\mp@subsup{N}{i}{}}{}\mp@subsup{x}{j}{}\geq1\mathrm{ then colori}:=\mp@code{gray m;
            od
            (* zi
            od
```


Coloring Algorithms Assume an Established MAC Layer...

6: \quad send color $_{i}$ to all neighbors;

How do you know your neighbors?

How can you exchange data with them?
\rightarrow Collisions (Hidden-Terminal Problem)

Most papers assume that there is a

MAC Layer in place!

This assumption may make sense in well-established, well-structured networks,...
...but it is certainly invalid during and shortly after the deployment of ad hoc and sensor networks, when there is not yet a MAC layer established

... Or a Global Clock

2: for $\ell:=k-1$ to 0 by -1 do

How do nodes know when to start the loop?

What if nodes join in afterwards?
\rightarrow Asynchronous wake-up!

Paper assumes that there is a global
 clock and synchronous wake-up!

This assumption greatly facilitates the algorithm's analysis...
...but it is certainly invalid during and shortly after the deployment of ad hoc and sensor networks, when there is not yet a MAC layer established

We have a Chicken-And-Egg-Problem

- TDMA MAC protocols can be reduced to two-hop coloring
- Coloring algorithms assume a working MAC layer

Deployment and Initialization

- Ad Hoc \& Sensor Networks \rightarrow no built-in infrastructure
- During and after the deployment \rightarrow complete chaos
- Neighborhood is unknown
- There is no existing MAC-layer providing point-to-point connections!

Self-Organization „Initialization"

Deployment and Initialization

 -- Initialization in current systems often slow (e.g. Bluetooth)
- Ultimate Goal: Come up with an efficient MAC-Layer quickly.
- Theory Goal: Design a provably fast and reliable initialization algorithm.

We have to consider the relevant technicalities!

- We need to define a model capturing the characteristics of the initialization phase.

Unstructured Radio Network Model (1)

Adapt classic Radio Network Model to model the conditions immediately after deployment.

- Multi-Hop

- Hidden-Terminal Problem
- No collision detection
- Not even at the sender
- No knowledge about (the number of) neighbors
- Asynchronous Wake-Up
- No global clock
- Node distribution is completely arbitrary
- No uniform distribution

Unstructured Radio Network Model (2)

- Quasi Unit Disk Graph (QUDG) to model wireless multi-hop network
- Two nodes can communicate if Euclidean distance is $\leq \mathrm{d}$
- Two nodes cannot communicate if Euclidean distance is >1
- In the range [d..1], it is unspecified whether a message arrives
[Barrière, Fraigniaud, Narayanan, 2001]
- Upper bound N for number of nodes in network is known
- This is necessary due to $\Omega(\mathrm{n} / \log \mathrm{n})$ lower bound [Jurdzinski, Stachowiak, 2002]

Q: Can we efficiently (and provably!) compute an MiAtallstyucturrehis thaisshanshdnlodel?

A: Mesmute.can!

Results

- Thomas Moscibroda, Roger Wattenhofer, SPAA 2005

With high probability, the distributed coloring algorithm ...
$\rightarrow \ldots$ achieves a correct coloring using $\mathrm{O}(\Delta)$ colors
\rightarrow... every node irrevocably decides on a color within
time $\mathrm{O}(\Delta \log \mathrm{n})$ after its wake-up
$\rightarrow \ldots$ the highest color depends only on the local maximum degree

Algorithm Overview (system's view)

- Idea: Color in a two-step process!
- First, nodes select a (sparse) set of leaders among themselves
\rightarrow induces a clustering

- Leaders assign initial coloring that is correct within the cluster
- Problem: Nodes in different clusters may be neighbors!

- In a final verification phase, nodes select final (conflict-free) color from color-range!

Algorithm Overview (a node's view)

Algorithm Overview (Challenges)

- Problems:
\rightarrow Everything happens concurrently!
\rightarrow Nodes do not know in which state neighbors are (they do not even know whether there are any neighbors!)
\rightarrow Messages may be lost due to collisions
\rightarrow New nodes may join in at any time...

How to achieve both?

- Correctness!
\rightarrow No two neighbors must choose the same color.
- No starvation!
\rightarrow Every node must be able to choose a color within time $\mathrm{O}(\Delta \log \mathrm{n})$ after its wake-up.

Conclusions

\circ

- Initialization of ad hoc and sensor network of great importance!
- Relevant technicalities must be considered!

MobiCom 2004 (Kuhn, Moscibroda, Wattenhofer)

- A model capturing the characteristics of the initialization phase
- A fast algorithm for computing a good dominating set from scratch

MASS 2004 (Moscibroda, Wattenhofer):

- A fast algorithm for computing more sophisticated structures (MIS)

SPAA 2005 (Moscibroda, Wattenhofer):

- A fast algorithm for computing a coloring

A fast algorithm for establishing a MAC Layer from scratch!

The Deployment Problem: Future Work

Algorithm Classes

Global Algorithm

+ Node can only communicate with neighbors k times.
+ Strict time bounds
- Often synchronous
- For some problems we don't even understand the non-distributed case
- "Reiceive msg $X \rightarrow$ Transmit msg Y "
- Every algo can be made distributed
+ Often simple
- Nodes can wait for neighbor actions
- Often linear chain of causality
+ Implement MAC layer yourself; you control everything
- Often complicated
- Argumentation overhead

The Three Witches (Talk Outline)

- Introduction
- Why MAC is important

- Orthodox MAC
- Witch \#1: The Chicken-and-Egg Problem
- Witch \#2: Power Control is Essential
- Witch \#3: Models, Models, Models!

Witch \#2: Power Control is Essential

-
- Modeling interference in a typical algorithms paper:

- The model is a simplification, sure, but is the hidden terminal problem really a problem?!?

The Hidden-Terminal Problem

\circ
Consider the following scenario:

- A wants to sent to B, C wants to send to D
- How many time slots are required?

Can A and C send simultaneously...?
No, they cannot!
This is the Hidden-Terminal Problem! Interference causes a collision at B!

The Hidden-Terminal Problem

A wants to sent to B, C wants to send to D

- Let us look at the signal-to-noise-plus-interference (SINR) ratio!
- Message arrives if SINR is larger than β at receiver

The Hidden-Terminal Problem

A wants to sent to B, C wants to send to D

1 m

- Let $\alpha=3, \beta=4$, and $N=1$ (these are realistic values in sensor networks)
- Set the transmission powers as follows $P_{C}=15$ and $P_{A}=70$
- The SINR at D is:

$$
\frac{15 / 1^{3}}{1+70 / 3^{3}} \approx 4.17 \geq \beta
$$

- The SINR at B is:

$$
\frac{70 / 1^{3}}{1+15 / 1^{3}} \approx 4.37 \geq \beta
$$

Simultaneous transmission is possible!

Let's make it tougher!

○

A wants to sent to B, C wants to send to D

Can A and C send simultaneously...?

No, they cannot!
Reasons

- D is in sending range of $A \rightarrow$ collision at D
- B hears either C or a collision, but not A !
- Common Sense....

Let's make it tougher!

○-
A wants to sent to B, C wants to send to D

- Let $\alpha=4, \beta=2$, and $N=1$
- Set the transmission powers as follows $P_{C}=100$ and $P_{A}=3900$
- The SINR at D is:

$$
\frac{100 / 1^{4}}{1+3900 / 3^{4}} \geq \beta
$$

- The SINR at B is:

$$
\frac{3900 / 4^{4}}{1+100 / 2^{4}} \geq \beta
$$

Again: Simultaneous transmission is possible !

Theory vs. Reality!

$\mathrm{O} \longrightarrow \mathrm{O}$

C
D

Graph Theoretical Models:

There exists no graph-theoretic model that can capture the above !

- Unit Disk Graph \rightarrow No! (C cannot send to D in this mode!!)
- General Graph \rightarrow No! (because success depends on A's power!)
- Radio Network Models \rightarrow No! (Collision garbles messages!)
- Etc...

Modeling networks

as graphs appears to be inherently wrong!!!

Theory vs. Reality!

Power Assignment Policies:

Constant power level

- All nodes have uniform power \rightarrow No!
- Node B will receive the transmission of node C
- Impossible even in SINR model!
- Powers are according to $P \sim O\left(d^{\alpha}\right) \rightarrow$ No!
- This linear power assignment often assumed in theory (minimum energy broadcast, topology control, etc.
- Node D will receive the transmission of node A

All typically studied power assignment schemes are bad!

Theory vs. Reality!

0

- We have seen....

1) Graph models are inherently flawed!
2) Standard power assignment assumptions are suboptimal!

- The question is....

Theory vs. Reality!

0

- We have seen....

1) Graph models are inherently flawed!
2) Standard power assignment assumptions are suboptimal!

- The question is....

1) Uniform Power Levels...
2) Power according to $P \approx \Theta\left(d^{\alpha}\right)$

How sub-optimal are common power assignment schemes...?

Achieved throughput is acceptably high

Simple power assignment schemes can be employed

A Simple Scheduling Problem

1. How far from reality are graph models...?
2. How sub-optimal are common power assignment schemes...?

Consider the following simple scheduling task Ψ :

How many time-slots are required to schedule this task?
„The Scheduling Complexity in Wireless Networks"

A Simple Scheduling Problem - Example

$\mathrm{O} \longrightarrow \mathrm{O} \longrightarrow 0$

1. How far from reality are graph models...?
2. How sub-optimal are common power assignment schemes...?

An example:

Time-Slot

$$
\begin{aligned}
& \mathrm{t}_{1}: \\
& \mathrm{t}_{2}: \\
& \mathrm{t}_{3}:
\end{aligned}
$$

Senders:

This scheme uses 3 time slots!
\rightarrow Scheduling complexity of Ψ is 3 in this example.

A Simple Scheduling Problem

$\mathrm{O} \longrightarrow \mathrm{O}$

1. How far from reality are graph models...?
2. How sub-optimal are common power assignment schemes...?

- This is possibly the simplest possible scheduling problem!

Define: Scheduling Complexity $S(\Psi)$ of Ψ

The number of time-slots required until every node can transmit at least once!

Clearly, $\mathbf{S}(\Psi) \leq \mathbf{n}$

\rightarrow Problem describes a fundamental property of wireless networks.
\rightarrow Because the problem is so simple...
1... standard MAC protocols are expected to perform reasonably well.
2... graph-based models are expected to be reasonably close to reality.

Lower Bound for $P \sim O\left(d^{\alpha}\right)$ Power Assignment

- Consider again the exponential chain:

Lower Bound for $P \sim O\left(d^{\alpha}\right)$ Power Assignment

- Consider again the exponential chain:

- How many links can we schedule simultaneously?
- Let us start with the first node $\mathrm{v}_{1} \ldots$ \rightarrow its power is $P_{1} \geq \rho 2^{\alpha(i+10)}$ for some constant ρ
- This creates interference of at least $\rho / 2^{\alpha}$ at every other node!
- The second node v_{2} also sends with power $P_{2}=\rho 2^{\alpha(i+7)}$
- Again, this creates an additional interference of at least $\rho / 2^{\alpha}$ at every other node!

Lower Bound for $P \sim O\left(d^{\alpha}\right)$ Power Assignment

- Consider again the exponential chain:

- How many links can we schedule simultaneously?
- Let us start with the first node $v_{1} \ldots$
\rightarrow its power is $P_{1} \geq \rho 2^{\alpha(i+10)}$ for some constant ρ
Why...???
- This creates interference of at least $\rho / 2^{\alpha}$ at every other node!
- The second node v_{2} also sends with power $P_{2} \geq \rho 2^{\alpha(i+7)}$
- Again, this creates an additional interference of at least $\rho / 2^{\alpha}$ at every other node!

[^0]
Lower Bound for $P \sim O\left(d^{\alpha}\right)$ Power Assignment

0

- Assume we can schedule R nodes in parallel.
- The left-most receiver x_{r} faces an interference of $R \cdot \rho / 2^{\alpha}$
\rightarrow yet, x_{r} receives the message, say from x_{s}.
- How large can R be?
- The SINR at x_{r} must be at least β, and hence

$$
\frac{\frac{\rho \cdot d\left(x_{s}, x_{r}\right)^{\alpha}}{d\left(x_{s}, x_{r}\right)^{\alpha}}}{N+R \cdot \frac{\rho}{2^{\alpha}}} \geq \frac{\rho 2^{\alpha}}{2^{\alpha} N+\rho R} \geq \beta
$$

- From this, it follows that R is at most $2^{\alpha} / \beta$, and therefore...
... at least $\mathrm{n} \cdot \min \left\{1, \beta / 2^{\alpha}\right\}$ time slots are required for all links!

Any $P \sim O\left(d^{\alpha}\right)$ power assignment algorithm has scheduling complexity:

Lower Bounds and Lessons Learned...

$\bigcirc \longrightarrow 0$

- The trivial algorithm (scheduling each node individually) requires n time slots.

$$
\mathrm{S}(\Psi) \in \mathrm{O}(\mathrm{n}))
$$

- Any algorithm with $P \sim O\left(d^{\alpha}\right)$ power assignment requires $\Omega(\mathrm{n})$ time slots.

$$
\mathbf{S}(\Psi) \in \Omega(\mathrm{n})
$$

- Any algorithm with uniform power assignment requires $\Omega(\mathrm{n})$ time slots.

$$
\mathbf{S}(\Psi) \in \Omega(\mathrm{n})
$$

Observations:

- Theoretical performance of current MAC layer protocols almost as bad as scheduling every single node individually!
- Current MAC layer protocols have a severe scaling problem!
- Theoretically efficient MAC protocols must use non-trivial power levels!

Can we do better...?

0

- Can we break the $\Omega(\mathrm{n})$ barrier...?
- Observation: Scheduling a set of links of roughly the same length is easy...
\rightarrow Partition the set of links in length-classes
\rightarrow Schedule each length-class independently one after the other...
- The problem is...
\rightarrow there may be many (up to n) different length-classes
\rightarrow We must schedule links of different lengths simultaneously!
- How can we assign powers to nodes?

```
                        e.g. uniform and ~\mp@subsup{d}{}{\alpha}}\mathrm{ examples before
```

\rightarrow Making the transmission power dependent on the length of link is bad!

- We must make the power assigned to simultaneous links dependent on their relative position of the length class!

Can we do better...?

- A node v in length-class λ and a link of length d transmit roughly with a power of

$$
P(v) \approx \beta^{\lambda} \cdot d^{\alpha}
$$

Intuitively, nodes with small links must overpower their receivers!

- Unfortunately, it still does not work yet....
- ...we also need to carefully select the transmitting nodes!

Ooops, now it gets complicated...!

Can we do better...?

$0 \longrightarrow 0 \longrightarrow 0$

- Yes, we can... ... but it is somewhat complicated!

Compare to $\Omega(\mathrm{n})$

- Our results are [Moscibroda, Wattenhofer, INFOCOM 06]:

$$
\text { Problem } \Psi \text { can be scheduled in time: } \quad \mathbf{S}(\Psi) \in \mathbf{O}\left(\log ^{2} \mathbf{n}\right)
$$

What about scheduling more complex topologies than Ψ ?

In any network, a strongly-connected topology can be scheduled in time: $\quad \mathbf{S}($ Connected $) \in \mathbf{O}\left(\log ^{3} n\right)$

What about arbitrary set of requests?
Any topology can be scheduled in time:

$$
\mathbf{S}(\text { Arbitrary }) \in \mathbf{O}\left(\mathbf{l}_{\mathrm{in}} \cdot \log ^{2} \mathrm{n}\right)
$$

The Three Witches (Talk Outline)

- Introduction
- Why MAC is important

- Orthodox MAC
- Witch \#1: The Chicken-and-Egg Problem
- Witch \#2: Power Control is Essential
- Witch \#3: Models, Models, Models!

Let's Talk about Models!

- Why models for sensor networks?
- Allows precise evaluation and comparison of algorithms
- Analysis of correctness and efficiency (proofs)
- Goal of model designer?
- Simplifications and abstractions, ... but not too simple.
- There are models for connectivity, interference, algorithm type, node distribution, energy consumption, etc.
- Survey by Stefan Schmid, Roger Wattenhofer, WPDRTS 2006
- This talk: A few examples for connectivity models

Example: Comparison of Two Algorithms for Dominating Set

 -Algorithm 1

- Algorithm

- Ous $0^{e^{2}} \cos ^{2} \times 1 /$ approximation
to mance OK

Algorithm 2

- Algorithy
- 1 ty $0^{a^{2}} b^{0^{2}} /$ /node

\square The model determines the distributed complexity of a problem

Connectivity Models

General
 Graph

UDG

Unit Ball
Graph

Connectivity: Bounded Independence Graph (BIG)

- How realistic is QUDG?
- u and v can be close but not adjacent
- model requires very small d in obstructed environments (walls)

- However: in practice, neighbors are often also neighboring
- Solution: BIG Model
- Bounded independence graph
- Size of any independent set grows polynomially with hop distance r
- e.g. $O\left(r^{2}\right)$ or $O\left(r^{3}\right)$

Connectivity: Unit Ball Graph (UBG)

-
- \exists metric (V, d) describing distances between nodes $\mathrm{u}, \mathrm{v} \in \mathrm{V}$ such that: $\begin{aligned} & d(u, v) \leq 1:(u, v) \in E \\ & d(u, v)>1:(u, v) \notin E\end{aligned}$
- Assume that doubling dimension of metric is constant
- Doubling dimension: log(\#balls of radius r/2 to cover ball of radius r)

Models can be put in relation

\qquad

- Try to proof correctness in an as "high" as possible model
- For efficiency, a more optimistic ("lower") model might be fine

The model determines the complexity

References

1. Folk theorem, e.g. Kuhn, Wattenhofer, Zhang, Zollinger, PODC 2003
2. Kuhn, Wattenhofer, PODC 2003

- Improved: Kuhn, Moscibroda, Wattenhofer, SODA 2006
- CDS by Dubhashi et al, SODA 2003

3. Kuhn, Moscibroda, Wattenhofer, PODC 2005
4. Alzoubi, Wan, Frieder, MobiHoc 2002
5. Wu and Li, DIALM 1999
6. Gao, Guibas, Hershberger, Zhang, Zhu, SCG 2001
7. Wattenhofer, MedHocNet 2005 talk, Improving on Wu and Li
8. Kuhn, Moscibroda, Nieberg, Wattenhofer, DISC 2005
9. Kuhn, Moscibroda, Wattenhofer, PODC 2004

My Own Private View on Networking Research

Class	Analysis	Communi cation model	Node distribution	Other drawbacks	Popu larity
Imple- mentation	Testbed	Reality	Reality(?)	"Too specific"	5%
Heuristic	Simulation	UDG to SINR	Random, and more	Many...! (no benchmarks)	80%
Scaling law	Theorem/ proof	SINR, and more	Random	Existential (no protocols)	10%
Algorithm	Theorem/ proof	UDG, and more	Any (worst- case)	Worst-case unusual	5%

Conclusions

- MAC Layer is important
- Not much (theoretical) work done
- There are issues
- chicken-egg
- power control
- models
- It seems that the algorithms/foundations community is striving for new, more realistic models
- I showed parts of the connectivity hierarchy
- But there is much more, everything in flux
- Thanks to Thomas Moscibroda, Fabian Kuhn, Stefan Schmid, and more of my students for their work.

Roger Wattenhofer
EHH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

BACKUP

Lower Bound for $P \sim O\left(d^{\alpha}\right)$ Power Assignment

-
- Assume we can schedule R nodes in parallel.
- The left-most receiver x_{r} faces an interference of $R \cdot \rho / 2^{\alpha}$
\rightarrow yet, x_{r} receives the message, say from x_{s}.
- How large can R be?
- The SINR at x_{r} must be at least β, and hence

$$
\frac{\frac{\rho \cdot d\left(x_{s}, x_{r}\right)^{\alpha}}{d\left(x_{s}, x_{r}\right)^{\alpha}}}{N+R \cdot \frac{\rho 2^{\alpha}}{2^{\alpha}}} \geq \frac{\rho}{2^{\alpha} N+\rho R} \geq \beta
$$

- From this, it follows that R is at most $2^{\alpha} / \beta$, and therefore....
.... at least $n \cdot \min \left\{1, \beta / 2^{\alpha}\right\}$ time slots are required for all links!

Any $P \sim O\left(d^{\alpha}\right)$ power assignment algorithm has scheduling complexity:

(((Notes Page)))

-
- Witch \#1: The Chicken-and-Egg Problem
- Dynamics...
- Witch \#2: Power Control is Essential
- UDG stimmt nicht...
- Witch \#3: Network Models

- More material
- Reading list on www.dcg.ethz.ch

Of Theory and Practice...

Practice

Theory

There is often a big gap between theory and practice in the field of wireless ad hoc and sensor networks.

Of Theory and Practice...

$$
0
$$

- What is the reason for this chasm...?

- Theoreticians try to understand the fundamentals
- Need to abstract away a few technicalities...

What are technicalities...???

- Abstracting away too many „technicalities" renders theory useless for practice!

Avoid Starvation - Idea

2) In each time-slot, increase counter by 1.
3) When reaching $\sigma \Delta \log n$, choose color and move to state \mathcal{C}
4) With probability p_{k}, transmit $M_{\text {Verification }}$ (counter, c) and set counter to

$$
\text { counter }:=\max \{\text { counter }, \gamma \Delta \log n\}+1
$$

5) When receiving $\mathrm{M}_{\text {Verification }}\left(\right.$ counter $\left.^{*}, \mathrm{c}\right)$ from another node:

Cascading resets..? If counters are within $\gamma \Delta \log n$ of one another \rightarrow Reset counter!

This method achieves both correctness and
quick progress (in every region of the graph)!

Avoid Starvation - Idea

- Consider a node v entering state \mathcal{K} at time t_{v} and verifying color c
- We show that by time $t_{v}+O(\Delta \log n)$, at least one neighわor w of x has transmitted (broadcast!) without collision.
- w has counter at least $\gamma \Delta \log n+1$
- All neighbors of w verifying c
- either reset their counter
- or have a counter that is
at least $\gamma \Delta \log \mathrm{n}$ away from w's counter.
\rightarrow w cannot be reset anymore by nodes in \mathcal{K} !
$\rightarrow \mathrm{w}$ may get $\mathrm{M}_{\text {color }}$ from a node $x \in \mathcal{C}$ that has chosen the color c earlier!
x covers a constant fraction
of the disk of radius 2 !

Avoid Starvation - Idea

$\mathrm{O} \longrightarrow 0$

- After a constant number of repetitions, the disk will be covered
\rightarrow node v either chooses c or receives $\mathrm{M}_{\text {color }}$ and verifies $\mathrm{c}+1$
\rightarrow The argument repeats itself for $\mathrm{c}+1$
- Because the set of leaders is sparse
\rightarrow v must verify only up to color $\mathrm{c}+\mu$, for $\mu \in \mathrm{O}(1)$
W.h.p, every node spends only $\mathrm{O}(\Delta \log \mathrm{n})$ time-slots in state \mathcal{K}

In the proof, we similarly avoid starvation in all states!

- Specifically, we prove that: $T_{\mathcal{W}}, T_{\mathcal{A}}, T_{\mathcal{R}}, T_{\mathcal{K}} \in O(\Delta \log n)$ Hence,

$$
T=T_{\mathcal{W}}+T_{\mathcal{A}}+T_{\mathcal{R}}+T_{\mathcal{K}} \in O(\Delta \log n)
$$

Simulation

- The hidden constants in the big-O notation are quite big.
- Simulation shows that this is an artefact of "worst-case" analysis.
- In reality, it is sufficient to set $\alpha:=10$.
\rightarrow Running time is at most $t<10 \cdot \log ^{2} n$

With current hardware: BTnodes, Scatterweb, Mica2, etc.

Raw transmission rate:	$\sim 115 \mathrm{~kb} / \mathrm{s}$
Switch time trans \rightarrow recv:	$\sim 20 \mu \mathrm{~s}$
Switch time recv \rightarrow trans:	$\sim 12 \mu \mathrm{~s}$
Paketsize of algorithm:	~ 20 Byte
\rightarrow Lenght of one time-slot is $<3 \mathrm{~ms}$	

Initializing 1000 nodes takes time < 3 seconds!

The Importance of Being Clustered...

- Clustering
- Virtual Backbone for efficient routing
\rightarrow Connected Dominating Set
- Improves usage of sparse resources
\rightarrow Bandwidth, Energy, ...

Clustering helps in

bringing structure
into Chaos!

Dominating Set

-
- Clustering:
- Choose clusterhead such that:

Each node is either a clusterhead or has a clusterhead in its communication range.

- When modeling the network as a graph $G=(V, E)$, this leads to the wellknown Dominating Set problem.

Dominating Set:

- A Dominating Set DS is a subset of nodes such that each node is either in DS or has a neighbor in DS.
- Minimum Dominating Set MDS is a DS of minimal cardinality.

Yet Another Dominating Set Algorithm...???

- There are many existing DS algorithms
- [Kutten, Peleg, Journal of Algorithms 1998]
- [Gao, et al., SCG 2001]
- [Jia, Rajaraman, Suel, PODC 2001]
- [Wan, Alzoubi, Frieder, INFOCOM 2002 \& MOBIHOC 2002]
- [Chen, Liestman, MOBIHOC 2002]
- [Kuhn, Wattenhofer, PODC 2003]
- Q: Why yet another clustering algorithm ?
- A: Other algorithms - with theoretical worst-case bounds - make too strong assumptions! (see previous slides...)
\rightarrow Not valid during initialization phase!

Overview

- Motivation

Model

- Algorithm

Analysis

- Conclusion

Outlook

Clustering Algorithm - Results

- With three communication channels

$$
\begin{aligned}
& \text { In expectation, our algorithm computes a } \\
& O\left(\frac{1}{d^{2}}\right) \text { approximation for MDS in time } \\
& \qquad O\left(\frac{\log N}{d^{2}}\left(\log \Delta+\frac{\log N}{\log \log N}\right)\right)
\end{aligned}
$$

- Measurements suggest that $0.5<\mathrm{d}<1$.
\rightarrow Constant approximation!
- The time-complexity thus reduces to
$O\left(\frac{\log ^{2} N}{\log \log N}\right)$ for $1 \leq \Delta \leq N^{1 / \log \log N}$
$O(\log N \log \Delta)$ for $N^{1 / \log \log N} \leq \Delta \leq N$

N : Upper bound on number of nodes in the network
Δ : Upper bound on number of nodes in a neighborhood (max. degree)
d: Quasi unit disk graph parameter

Clustering Algorithm - Basic Idea

0

- Use 3 independent communication channels Γ_{1}, Γ_{2}, and Γ_{3}. \rightarrow Then, simulate these channels with a single channel.
- For the analysis: Assume time to be slotted
\rightarrow Algorithm does not rely on this assumption
\rightarrow Slotted analysis only a constant factor better than unslotted (similar to ALOHA)

Clustering Algorithm - Basic Structure

-

Upon wake-up do:

1) Listen for $\alpha \cdot \log ^{2} N /\left(d^{2} \log \log N\right)$ time-slots on all channels upon receiving message \rightarrow become dominated
\rightarrow stop competing to become dominator
2) For $j=\log \Delta$ downto 0 do
for $\alpha \cdot \log N / d^{2}$ slots, send with prob. $p_{1}=\eta d^{2} 2^{-\log \Delta+j}$
upon sending \rightarrow become dominator
upon receiving message \rightarrow become dominated
\rightarrow stop competing to become dominator
3) Additionally, dominators send on Γ_{2} and Γ_{3} with prob. $p_{2}=\eta d^{2} \log \log N / \log N$ and $p_{3}=\eta d^{2} \log \log N / \log ^{2} N$.

Clustering Algorithm - Basic Structure

0

- Each node's sending probability increases exponentially after an initial waiting period.

- Sequences are arbitrarily shifted in time (asynchronous wake-up)

Analysis - Outline

$0 \longrightarrow 0$

- Cover the plane with (imaginary) circles C_{i} of radius $\mathrm{r}=\mathrm{d} / 2$
- Let D_{i} be the circle with radius $R=1+d / 2$
- A node in C_{i} can hear all nodes in C_{i}
- Nodes outside of D_{i} cannot interfere with nodes in C_{i}
- We show: Algorithm has $\mathrm{O}(1)$ dominators in each C_{i}
- Optimum needs at least 1 dominator in D_{i}

Constant Approximation
for constant d

Analysis - Outline

1. Bound the sum of sending probabilities in a circle C_{i}

Remember: Due to asynchronous wake-up, every node may have a different sending probability
2. Bound the number of collisions in C_{i} before C_{i} becomes cleared
3. Bound the number of sending nodes per collision
4. Newly awakened, already covered nodes will not become dominator

Analysis

Lemma 1: Bound sum of sending probabilities in C_{i}

- Def: Let $s(t)$ be the sum of sending probabilities of nodes in a circle C_{i} at time t , i.e., $s(t):=\sum_{k \in C_{i}} p_{k}(t)$

For all circles C_{i} and all times t , it holds that $s(t) \leq 3 \eta d^{2}$ w.h.p.

Analysis

\circ

- Proof of Lemma 1 :
- Induction over all time-slots when (for the first time)
$s(t)>\eta d^{2}$ in a circle C_{i}. (Induction over multi-hop network!)
- Let t^{*} be such a time-slot
- Consider interval $\left[t^{*}, \ldots, t^{*}+\alpha \log n / d^{2}-1\right]$

$\longrightarrow \quad$ Nodes double their sending probability
\longrightarrow New nodes start competing with initial sending probability

Analysis

$\mathrm{O} \longrightarrow 0$

- Proof of Lemma 1 (cont)
- Existing nodes can at most double

- New nodes send with very small probability

$$
s\left(t+\alpha \log n / d^{2}-1\right) \leq 3 \eta d^{2}
$$

\rightarrow Next, we show in the paper that $\mathrm{i}\left[t^{*}, \ldots, t^{*}+\alpha \log n / d^{2}-1\right]$ there will be at least one time-slot in which no node in $D_{i} \backslash C_{i}$, and exactly one node in C_{i} sends.
\rightarrow After this time-slot, C_{i} is cleared, i.e., all (currently awake) nodes are decided.
\rightarrow Sum of sending probabilities does not exceed $3 \eta d^{2}$

Analysis - Results

- For each circle C_{i} holds:
- Number of dominators before a clearance in $O(1)$ in expectation
- Number of dominators after a clearance in O(1) w.h.p
\rightarrow Number of dominators in C_{i} in $\mathrm{O}(1)$ in expectation
- Optimum has to place at least one dominator in D_{i}.

In expectation, the algorithm compute a $\mathrm{O}\left(1 / \mathrm{d}^{2}\right)$ approximation.

- Reasonable values of d are constant \rightarrow Constant approximation!

Three Channels \rightarrow Single Channel

- Three independent communication channels not always feasible
- Simulation with a single channel is possible within $O(p o l y \log (\mathrm{n}))$.
- Idea:
- Each node simulates each of its multi-channel time-slots with O(polylog(n)) single-channel time-slots.
- It can be shown that result remains the same.

> Algorithm compute a $\mathrm{O}\left(1 / \mathrm{d}^{2}\right)$ approximation for MDS in polylogarithmic time even with a single communication channel.

Random Node Distribution

- Theoreticians often assume that,

nodes are randomly, uniformly distributed in the plane.

This assumption allows for nice formulas

But is this really a „technicality"...?
How do real networks look like...?

Like this?

Or rather like this?

Random Node Distribution

- In theory, it is often assumed that,

nodes are randomly, uniformly distributed in the plane.

This assumption allows for nice formulas

Most small- and large-scale networks feature highly heterogenous node densities.

At high node density, assuming uniformity renders many practical problems trivial.
\rightarrow Not a technicality!

Unit Disk Graph Model

- In theory, it is often assumed that,

nodes form a unit disk graph!

Two nodes can communicate if they are within Euclidean distance 1.

This assumption allows for nice results
Signal propagation of real antennas not clear-cut disk!

Algorithms designed for unit disk graph model may not work well in reality. \rightarrow Not a technicality!

Some complicated algorithm to compute not-quite-coloring

A much simpler algorithm to compute 2-hop-coloring

Algorithm 2 TODO!

1. Each cell, depending on position, has a unique predefined number between 0 and 15.
2. Fetch a not-yet-taken small integer in your cell
3. Your color is your number plus
4. That's it.

Connectivity (1)

- Which nodes are adjacent to a given node v ?
- Example: Unit Disk Graph
- Classic Model from computational geometry
$-\{u, v\} \in E \Leftrightarrow|u, v| \leq 1$
- Pro
- Very simple
- Analytically tractable
- Realistic in unobstructed environments
- Contra
- Too simple
- Not realistic in inner-city networks with many buildings etc.

Connectivity (2)

- More realistic: the Quasi UDG (QUDG)
$-\{u, v\} \in E \Leftrightarrow|u, v| \leq \rho$
$-\{u, v\} \notin E \Leftrightarrow|u, v|>1$
- otherwise: It depends!
- It depends...
- ... on an adversary,
- ... on probabilistic model,
- etc.!

- Advantage: Accounts for a certain flexibility

Connectivity Put into Perspective (1)

- Fact: UDG is a QUDG
$-\rho=1$

- Fact: However, in the QUDG with constant ρ, the set of nodes in radius r can always be covered by a constant number of balls of radius $r / 2$ and hence:
- Fact: QUDG is a UBG

Connectivity Put into Perspective (2)

- Fact: The size of the independent sets of any UBG is polynomially bounded, i.e., the UBG is a BIG.
- Finally, a BIG is of course a special kind of a general graph (GG).

Roger Wattenhofer
ETH

[^0]: And so on...

