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Abstract

Email is undoubtedly one of the most important applications used to com-
municate over the Internet. Unfortunately, the email service lacks a crucial
security mechanism: It is possible to send emails to arbitrary people with-
out revealing one’s own identity. Additionally, sending millions of emails
costs virtually nothing. Hence over the past years, these characteristics have
facilitated and even boosted the formation of a new business branch that
advertises products and services via unsolicited bulk emails, better known as
spam.

Nowadays, spam makes up more than 50% of all emails and thus has
become a major vexation of the Internet experience. Although this problem
has been dealt with for a long time, only little success (measured on a global
scale) has been achieved so far. Fighting spam is a cat and mouse game where
spammers and anti-spammers regularly beat each other with sophisticated
techniques of increasing complexity. While spammers try to bypass existing
spam filters, anti-spammers seek to detect and block new spamming tricks
as soon as they emerge.

In this dissertation, we describe the Spamato spam filter system as a mul-
tifaceted approach to help regain a spam-free inbox. Since it is impossible
to foresee future spam creation techniques, it is important to react quickly
to their development. Spamato addresses this challenge in two ways. First,
it has been designed to simplify the integration of multiple spam filters. By
combining their different capabilities, a joint strike against spam promises
the detection of more harmful messages than any individual solution could
achieve. And second, we actively support collaborative spam filters that har-
ness the collective knowledge of participating users. Such filters are therefore
capable of learning about and eliminating new types of spam messages at an
early stage.

Hundreds of participants use Spamato everyday. The results presented
in this dissertation provide insights into real-world operating environments
rather than test bed scenarios often used in other projects. The results
underpin our thesis that a concerted and collaborative filtering approach is
an effective weapon in the arms race against spam.





Zusammenfassung

Das Versenden von Emails ist zweifellos eine der bedeutensten Anwendun-
gen, um über das Internet zu kommunizieren. Leider weist der Email-Dienst
eine entscheidende Sicherheitslücke auf, die es ermöglicht, Emails an beliebige
Personen zu verschicken, ohne die eigene Identität preiszugeben. Außerdem
ist das Versenden von Nachrichten nahezu kostenlos. Diese beiden Kriterien
haben in den letzten Jahren entscheidend dazu beigetragen, dass sich eine
neue Branche entwickeln konnte, in der mit unerwünschten Werbe-Emails –
besser bekannt als Spam – versucht wird, Produkte und Dienstleistungen zu
vermarkten.

Heutzutage macht Spam mehr als 50% aller Emails aus und ist somit zu
einem der größten Ärgernisse im Internet-Alltag geworden. Obwohl an die-
sem Problem bereits seit einiger Zeit gearbeitet wird, konnten bisher (global
betrachtet) kaum sichtbare Erfolge erzielt werden. Die Spam-Bekämpfung
stellt sich als eine Art Katz-und-Maus-Spiel dar, in dem Spammer und Anti-
Spammer sich gegenseitig mit immer ausgefeilteren Methoden konfrontieren.
Während Spammer nach Möglichkeiten suchen, um bestehende Spamfilter zu
umgehen, versuchen Anti-Spammer, neue Spam-Tricks möglichst schnell zu
erkennen und zu bekämpfen.

In dieser Dissertation beschreiben wir das Spamato Spamfilter-System
als einen vielseitigen Ansatz, um wieder Kontrolle über die eigene Inbox
zu erlangen. Da es unmöglich ist, die zukünftige Entwicklung neuer Spam-
Nachrichten vorherzusehen, ist es umso wichtiger, diesen möglichst schnell
entgegenwirken zu können. Spamato stellt sich dieser Herausforderung in
zweierlei Hinsicht. Zum einen wurde Spamato so konzipiert, dass die Inte-
gration mehrerer Spamfilter vereinfacht wird. Die Kombination ihrer ver-
schiedenen Fähigkeiten erlaubt ein gemeinsames Vorgehen gegen Spam, das
eine höhere Erkennungsrate als die Verwendung einzelner Filter verspricht.
Und zum anderen unterstützen wir kollaborative Spamfilter, die das kollek-
tive Wissen von Benutzern zum Einsatz bringen. Solche Filter sind daher in
der Lage, neue Arten von Spam-Nachrichten frühzeitig zu erkennen und zu
beseitigen.

Hunderte von Benutzern verwenden Spamato regelmäßig. Die in dieser
Arbeit aufgeführten Resultate geben einen guten Einblick in das reale Ein-
satzumfeld der Spamfilter, anstatt nur Testbett-Szenarien zu beleuchten, wie
es in vielen anderen Projekten der Fall ist. Die Resultate untermauern un-
sere These, dass ein vereintes und kollaboratives Vorgehen gegen Spam eine
effektive Maßnahme darstellt.
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Chapter 1

Introduction:

Mastering Spam

Let me introduce you to something that is fun,
exciting and most of all enjoyable...

(April Frederick <eojutuetglubgmt@kykernel.com>, 5/27/2006)

Email is undoubtedly one of the Internet’s killer applications. It satisfies the
basic human need for communication and has become mission critical in every
organization. Billions of emails are delivered each day connecting people
around the globe. Unfortunately, not all emails are sent for serious purposes.
More precisely, the majority of all emails circulating on the Internet are
unsolicited bulk emails, in short: spam.1

To prevent spam from becoming email’s killer application, a plethora of
countermeasures have been proposed, for instance legal regulations, economic
burdens, DNS-based attempts, and a variety of solutions exploiting different
spam filtering techniques. However, the fight against spam has only been
modestly successful so far: Recent studies report that currently more than
70 percent of all emails are spam, and that no improvement has been detected
over the past years.

The Simple Mail Transfer Protocol (SMTP) is the root of all evil. Its
authors did not foresee the danger of organized misuse, thus failing to devise
a mechanism to prevent the flooding of millions of inboxes. Particularly,
the lack of reasonable authentication schemes enables spammers to operate
incognito. Proprietary mechanisms, such as the Sender ID Framework and
the DomainKeys system, promise to help alleviating this deficiency, but it
might take years before they are widely deployed and adopted.

1There is no standard definition for the term spam. In this thesis, we adopt the
definition by Cormack and Lynam [22]: Spam is “Unsolicited, unwanted email that was
sent indiscriminately, directly or indirectly, by a sender having no current relationship
with the recipient.”
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A significant improvement of the current situation can only be achieved on
a global scale. While governments around the world are slowly beginning to
enact and enforce laws for punishing spammers, legal regulations suffer from
national limitations. Although known mass spammers like Wayne Mansfield
have been committed to prison in Australia, similar business in China or
Russia are still considered legal. Even the U.S. CAN-SPAM Act, one of the
first anti-spam laws in the world, has not effected a decline in the number of
companies spamming from the United States’ own territory.

We believe that no panacea exists to remedy the spam pest. Probably,
even combinations of the aforementioned solutions will not eliminate spam
in the near future. If one assumes that spammers will always be able to
advertise their products by email, the primary task is to prevent people from
reading these messages.

In this thesis, we describe the Spamato spam filter system as a multi-
faceted solution to the spam vexation. While spam filters do not combat the
creation of bulk emails, they avoid the task of manually separating spam from
legitimate (ham) messages. However, a single filter can fail when spammers
accomplish to conceal their real intentions. As two heads are better than
one, Spamato’s basic intention is to bundle a variety of complementary spam
filters, which concertedly seek to master the ever increasing flood of spam
messages. At first glance, implementing a spam filter system might seem
an easy task: receive an email and return whether it is ham or spam. But
that is by far not the whole story: “Where does the message actually come
from?”, “How can filter results be combined?”, and “What to do with the
overall classification?” are only a few questions that we will answer starting
in Chapter 2.

In Chapter 3, we will take a closer look at the six default Spamato fil-
ters. Among them are three collaborative spam filters that harness the col-
lective knowledge of spam fighting communities. In a nutshell, if one user
denounces an email as spam, collaborative spam filters remove similar emails
from other inboxes as well. However, such filters are prone to manipulation
if implemented without caution. For example, imagine the discontent that
would be caused if someone reported common newsletters as spam to the
community. Such scenarios are prevented by the Trooth trust system, which
will be detailed in Chapter 4.

In Chapter 5, we will evaluate the capability of collaborative spam filters
to match similar emails. For this purpose, we define several performance
criteria that we use to compare the filters when tested on two different email
corpora. For the first corpus, we manually categorized spam emails into
classes of similar emails. The second, flat corpus is used to verify the results
regarding misclassifications among ham and spam emails.

To support the multifaceted nature of Spamato, we provide a software
architecture that is extendable in several respects. For instance, additional
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filters or tools, such as whitelists, can easily be plugged into our system to im-
prove the accuracy of the entire system. The foundation of this extendability
is based on the plug-in framework presented in Chapter 6.

Spamato is a real-world project running out-of-the-box on arbitrary desk-
top machines. It is written in Java and seamlessly integrates into several
email clients, such as Thunderbird and Outlook. We will highlight some of
the project’s milestones in Chapter 7 and also present usage statistics. Fur-
thermore, we will discuss the results of the Spamato filters. The analyzed
data was taken from our statistics server, which stores information about
detected spam messages of hundreds of users.

Finally, we will conclude this thesis in Chapter 8, where we will also give
a brief outlook on future research directions.





Chapter 2

The Spamato Framework

Are you perhaps interested in buying SPAMATO.COM ?
(Jessy Timber <j.timber@yahoo.com>, 12/26/2005)

Spamato is a spam filter framework [3]. It does not filter any emails on
its own; it even lacks the capability to distinguish between spam and ham
messages. The main purpose of Spamato is to establish an extendable system
that allows the bundling of several components that detect spam in concert.
Spamato provides only the bare framework for this task; additional plug-ins—
the tools, nuts, and bolts of the system—do the real job. Figure 2.1 gives a
rough overview of the Spamato architecture and its interacting components.
In this chapter, we present the design decisions that underlie the Spamato
framework and discuss its central concepts.

A bare framework is of no use without those nuts and bolts. One key
characteristic of Spamato is its extendability—the capability to fill the empty
space in the framework with building blocks called plug-ins. The support of
several independent spam filters as plug-ins for the system was a driving
consideration when designing Spamato. We provide information about the
filters to be bundled with the framework when deploying the Spamato system
as a whole in Chapter 3. In Chapter 6, we describe the plug-in framework
which lays the foundations for Spamato and can be used for other applications
as well.

One question that arises when dealing with more than one spam filter
concerns the order in which they should be processed. We could run them
one at a time. However, if the processing time of different filters varies signif-
icantly, we might end up waiting a great amount of time until we get all their
responses. We could run all of them concurrently. But if the effectiveness
of filters differs, invoking those with greater impact first seems more to the
point. The Spamato framework does not define the filtering order; it is the
task of a filter process component to define it and to activate the filters in this
order. Based on different parameters such as the runtime, the effectiveness,
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Add-ons

Optional Plug-ins

Plug-in Container

Spamato Base

Filter Process
Decision Maker

Web Configuration

Bayesianato

Comha

Domainator

Earlgrey

Razor

Ruleminator

Filter History

Mail Utilities

Plugin/Update Manager

Statistics Engine

Trooth

...

Figure 2.1: A rough overview of Spamato’s architecture: The Spamato Core
filters emails received from Add-ons with the help of spam Filters and (op-
tional) Plug-ins.

and any other related information, it is capable of laying out the ordering in
which filters will check messages intelligently.

The combination of different spam filters has many advantages, as several
filters can catch more spam than a single one. One challenge, though, when
working with two or more filters is how to combine their results. For instance,
imagine a situation where one filter draws the conclusion that an email is
spam and another filter thinks it looks legitimate. Is it spam or ham? In
this case, we might also have to determine if all filters are equally effective
or if we should assign more value to specific results. Spamato does not
provide an answer to these questions. But it provides the means to let others
decide: A decision maker can be plugged into the framework to draw the
final conclusion based on the result of each single filter.

Obviously, the concepts of filter processes and decision makers are related.
As we will see later, the filter process component calls the decision maker
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whenever an email has to be classified. In Sections 2.2 and 2.3, we detail
these concepts and show how they are combined to filter spam.

Spam filters, the filter process, and the decision maker are the most im-
portant components in the Spamato framework. When given an email, they
decide how to classify it—to tell the good from the bad. But Spamato is not
restricted to these components. In fact, the number of other plug-ins in the
Spamato system is greater than the number of spam filters. Although these
plug-ins do not contribute to the effectiveness of spam filtering, they improve
the overall usability, thereby enhancing the user and the developer experi-
ence. For instance, the filter history component presents the filter results in
a way that helps understand the filter process. By doing this, it answers the
question “Why has a specific message been classified as spam?”—an inter-
esting piece of information for both users and developers. In Section 2.4, we
present some of the additional plug-ins and show how they are integrated in
the Spamato framework.

So far, we have suggested that Spamato can classify emails only: We have
neither addressed the question how these emails are delivered to Spamato
nor what to do about the results. In fact, Spamato does not care! But it is
obvious that a user does care. To reconcile these conflicting views, add-ons
are connecting Spamato with the source of an email. Our preferred source is
an email client, such as Outlook or Thunderbird, which delegates an email
to Spamato and presents the result to the user, for instance by highlighting
or moving detected spam messages to a special “junk” folder. We detail this
aspect in Section 2.5, where we also describe alternative approaches.

As we will see in the next sections, Spamato is extendable in many ways.
Its current purpose is to filter spam—hence its name. On the other hand,
the framework we describe here can also be useful to enhance the handling of
email in general. We sketch some of our future ideas in Section 2.6, presenting
the Emailato.

A final purpose of Spamato is to encourage other developers to implement
their own spam filters and arbitrary plug-ins. We also like to see Spamato
ported to email clients other than those that are already supported. We
provide an open-source framework which makes it easy to enhance it with
new technologies. Developers are relieved of the burden to re-invent the
wheel for fundamental operations such as parsing emails or analyzing results.
Spamato provides the general environment of a viable anti-spam solution and
controls the final deployment.

2.1 Related Work

SpamGuru is a server-side spam filter system incorporating several email clas-
sifiers [88]. It is a commercial, closed-source project developed by IBM and
is integrated with the Lotus Note Suite, which provides a feedback channel
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for the users. The authors note that future releases will contain a public API
so that third-party and user-provided classifiers can be supported. However,
it is unclear in which form developers will be able to do so.

SpamGuru uses a highly optimized “filter pipeline,” in which its filters
are ordered to maximize the message throughput of a server. In the pipeline
process, each filter assigns a score to the email checked, which can be positive
to indicate the spamminess of an email and negative for ham. Once the score
exceeds a spam threshold, the filter process is stopped and the mail is handled
as spam, for instance marked as such and forwarded to the client. Similarly, if
the score falls below a ham threshold, it is immediately handled accordingly.
Messages whose score is somewhere in between can be marked as borderline
cases.

The pipeline process routes emails through filters of increasing complexity
and cost. It starts with simple whitelist or blacklist tests while more elaborate
filters, such as the Chung-Kwei [78] pattern-based algorithm, are invoked
last. A final linear super-classifier is used to combine the weighted results
of the individual filters. By experimentation, it was found that even the
combination of two classifiers can be beneficial.

SpamGuru exhibits a very sophisticated filtering approach. In contrast to
Spamato, though, it seems to be a rather monolithic block whereas Spamato
is much more flexible. Furthermore, Spamato is mainly intended to run as a
client-side spam filter and its architecture allows integrating it with different
email clients. On the other hand, we could improve our decision maker and
adopt some of the SpamGuru’s ideas regarding a linear super-classifier.

SpamPal is an open-source SourceForge project licensed under the GPL
[110]. It is an email proxy for Windows users supporting POP and IMAP
accounts. It has been written in C and provides an extension interface to add
third-party plug-ins as Windows DLLs. So far, over 30 plug-ins have been
contributed to the project, which is utilized by approximately 50000 users.

As in SpamGuru, an email is routed through a filter pipeline. But in
contrast to SpamGuru, each filter can flag an email either as definite ham
or spam; no scores are assigned. In fact, the developer’s guide of SpamPal
states that once the “spam” flag has been set, subsequent classifiers should
not further check an email. This clearly contrasts the approach we have
motivated for Spamato, where we want to employ as many filters as possible
(or at least as necessary). It also shows the inflexibility of SpamPal’s filter
process and the simplicity of its decision maker.

Although we assess the extension mechanism of SpamPal to be inferior
compared to ours, it also allows for the addition of arbitrary filters and utility
plug-ins. Several extension points are provided by the SpamPal framework,
for instance to filter only detected domains or header information. Further-
more, information assembled by one filter can be stored in a session object
to be used by other filters as well. Finally, also a default configuration mech-
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anism has been designed, which is similar to what is provided by the plug-in
framework we use for Spamato.

SpamPal is an email proxy limited to the Windows environment. In
contrast, Spamato cannot only be used as a proxy but can also directly
be integrated into email clients, which is more user-friendly especially for
receiving feedback. Furthermore, as Spamato is written in Java, it is portable
to other operating systems besides Windows. However, SpamPal’s proxy and
plug-in architecture allows for filter types which Spamato currently does not
support. For instance, SpamPal is able to download and check only the
headers of an email, while filters in the Spamato system are always provided
with the complete email.

SpamAssassin is probably the most widely used spam filter system with
millions of installations [86][140]. It is an open-source project hosted by the
Apache group, written in Perl, and available for several platforms. Usually, it
is directly combined with an SMTP server or invoked from email processing
tools such as Procmail; client-side proxy installations are possible but rare.

SpamAssassin literally contains hundreds of spam (and ham) tests. And it
can easily be extended with custom regular expressions or more sophisticated
Perl code. When checking an email, each rule assigns a positive (spam) or
negative (ham) score to it. If the final score exceeds a given threshold, it
is deemed to be spam and tagged as such. The default scores for each rule
have been determined using a fast “Perceptron Learner” on a large spam and
ham email corpus [26]. The scores can be adjusted manually or by retraining
them on user-specific email archives.

SpamAssassin is a professional spam filter system that is intended to be
maintained by a trained administrator rather than by a desktop PC user. In
contrast, Spamato tries to provide similar capabilities on the client-side in a
user-friendly manner. For instance, Spamato filters can be configured using
a web browser interface whereas in SpamAssassin one has to edit plain-text
files. Moreover, SpamAssassin provides only a rudimentary feedback channel:
Emails can be reported or revoked by running a command line tool for which
the email has to be stored in a text file. In the Spamato system, emails can
comfortably be reported by clicking a button.

Using Spamato in combination with SpamAssassin seems an interesting
option. Many companies use SpamAssassin on their email servers and add
some header lines to the email that contain the filtering result. We utilize this
result as a spam indicator in the Ruleminator (see Section 3.4), relying thus
on information provided by SpamAssassin. An alternative approach, which
we might look at in the future, is to invoke SpamAssassin in the normal filter
process.

The Email Mining Toolkit (EMT) [91] is a data mining system that is
used to compute behavior profiles and email models based on user email
accounts. In addition, it has been extended to filter spam as well. In the
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filter process, several machine learning algorithms are employed. A meta-
classifier combines their results to reduce the overall misclassification rate
[44].

Although the EMT comprises different spam filtering techniques and can
be extended with similar ones, it has not been designed as a pluggable sys-
tem supporting arbitrary filters. The filter process does not allow for easy
modification of the ordering of filters, and the overall system is rather static
as opposed to Spamato’s flexibility. Furthermore, it is unclear how the pro-
posed meta-classifier algorithms would perform in a system with many filters
whose results are just binary spam/ham decisions rather than confidence in-
tervals. Nonetheless, it would be interesting to combine their filter system
with Spamato, which might be possible as both are written in Java.

The EMT has first been used to analyze offline email archives. The
Profiling Email Toolkit (PET) is a wrapper for the EMT that allows for
online statistics; an extension for the Thunderbird email client, which handles
all incoming messages, is described in [43]. The idea of the PET is similar
to our add-on approach. But in contrast to the PET, we have given proof of
its compatibility with other email clients.

There is a variety of other spam filter systems which combine multiple
spam filters in order to approach spam in a multifaceted way. But since they
usually do not provide any extension mechanisms, they are not comparable
to what Spamato aims for.

2.2 The Filter Process

In the filter process, all spam filters are invoked to check emails. The com-
bination of the classifications of all filters results in a spam or ham decision.
The structure of the filter process is not fixed by the Spamato framework.
It can be modified to meet different requirements, such as the time it takes
to filter a message, the resources used to achieve this, or the consideration
of different capabilities of spam filters. The requirements themselves depend
on several properties, such as the environment in which Spamato is being
used, the number of emails received daily, or simply personal preferences.
For instance, considering resource consumption is much more important on
the server side than on the client side: A server might have to check sev-
eral thousands or even millions of emails per day, a client only tens or a few
hundreds. Just like the selection of the right number of neurons or percep-
trons in a neural network or its hierarchy is important to adapt to changes
in its environment, an effective anti-spam solution depends on the number of
components, their properties, and their ordering in its filter process.
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Figure 2.2: In the Simple Filter Process, each spam filter checks an email one
after the other. All results are evaluated in a decision maker which returns
the overall decision to the add-on and also notifies all spam filters.

In Section 2.2.1, we describe our first approach of a filter process com-
ponent that had no real requirement other than to work. With its simple
structure, it was performing well for a small number of similar filters and few
emails to be checked. But it lacked performance and flexibility where these
conditions were not met.

Our second approach is described in Section 2.2.2. Here, we considered
the different running times of filters and implemented a new concept of pre-
checkers—spam or rather ham filters that definitely know when they face a
legitimate email. Thus, we introduced a kind of layering in the filter process,
where filters are ordered depending on their properties and their types. We
also added post-checkers to our filter process, which are notified with the
final decision of the filter process.

The third approach is a future project as it has not been released yet.
As outlined in Section 2.2.3, it takes the idea of layering even further. By
arranging not only pre-checkers and spam filters but also pre-processors and
explicit filter phases, the filter process gains an additional level of flexibility
that leads to faster results while using less resources. For example, a pre-
processor can calculate data, such as URLs contained in an email, for several
subsequent filters, thereby avoiding redundant work. And very fast filters
that check the header information of an email only could be invoked before
collaborative filters query a server.

So far, we have talked about the filter process. When an email is manually
reported or revoked by the user, a simpler approach can be used. We shortly
describe how to handle reports and revokes in Section 2.2.5.
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2.2.1 A Simple Filter Process

The structure of the Simple Filter Process (SiFiP) is depicted in Figure 2.2.
In the SiFiP, emails are processed in three steps:

(1) When an email arrives, a new filter process is initiated. The email is
checked by all spam filters consecutively.

(2) After all filters have checked the email, all results, that is whether a
filter result is positive or negative, are sent to the decision maker. The
decision maker then calculates the overall decision.

(3) The decision maker publishes the overall decision to two destinations:

• The add-on receives the decision and usually moves spam messages
to a special junk folder.

• All filters receive the decision and can adapt to the result. For
instance, a Bayesian-based filter can update its token table.

This approach is rather simple and has several weaknesses. First, the
number of concurrent checks is unbounded. That is, whenever a new email
arrives also a new filter process is started. Consequently, the overall resource
consumption is unbounded and the use of this filter process might lead to a
shortage of memory or CPU power. Second, the decision maker is activated
not until all filter results are available. A very slow filter, for instance a
collaborative one that suffers from a slow network connection to a server, can
protract the whole process. Third, only the add-on and all spam filters are
notified of the overall decision. Other plug-ins, such as the statistics engine
or the filter history component, which are also interested in the decisions,
have to “disguise” themselves as spam filters in order to get the necessary
information. And finally, all filters are considered to be equal; they can
decide on “spam” or “ham” only (but not on “definitely ham” or “probably
spam”). While this is not a particular problem of the filter process but of
the definition of the capabilities of spam filters in general, the filter process
would have to manage more elaborate spam filters which the SiFiP cannot
do.

We will take a closer look at the filter process when we tackle these problems
in the next section. We will also define some general concepts that we have
identified in the lessons learned here.

2.2.2 The Current Filter Process

We have designed our Current Filter Process (CuFiP) to satisfy new require-
ments and generalize the earlier approach. We introduced two new concepts:
A pre-checker is a special kind of spam filter that can veto in order to stop
the filter process early. They are often referred to as “whitelist” components,
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Figure 2.3: Our current filter process is structured as follows: After an email
has arrived, pre-checkers can veto against its further processing. Then, all
spam filters check the email concurrently. The final decision is determined by
a decision maker, which publishes the outcome to all registered post-checkers.

as they definitely consider an email to be ham; further spam filters are not
employed. Note that pre-checkers are complementary to spam filters as they
detect ham rather than spam. We have introduced this concept mainly to
reduce the number of false positives, as it is not necessary to check obvious
ham emails by spam filters. In contrast to pre-checkers, post-checkers are
called after an email has been classified. It is provided with the final deci-
sion and can process it further, for instance to learn from the outcome or to
update statistics.

The CuFiP is illustrated in Figure 2.3. It passes emails through the
following five phases:

(1) When an email arrives, a new filter process is initiated. First, the email
is concurrently checked by all pre-checkers.

(2) If one of the pre-checkers vetoes against further processing, that is if
one of them can definitely classify the message as ham, we return this
result to the add-on and proceed with step 5.
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(3) Otherwise, the email is concurrently checked by all spam filters.

(4) After all filters have checked the email, all results, that is whether a
filter considers a message to be spam or ham, are sent to the decision
maker. The decision maker then calculates the overall decision.

(5) The decision maker sends the overall decision to two destinations:

• The add-on receives the decision and usually moves spam messages
to a special junk folder.

• Post-checkers are notified about the outcome for further process-
ing.

This approach improves over the SiFiP in several ways. First, pre-
checkers offer an important feature that allows for example integrating sender
whitelists: Emails from trusted senders do not have to be examined. Al-
though pre-checkers are similar to spam filters voting for ham only, there
is an additional constraint: They have to be light-weight in terms of their
resource consumption and should be very fast. The whole pre-check phase
is completed within milliseconds whereas the full filter process can take sev-
eral seconds. Of course, this depends on the actual implementations of pre-
checkers and spam filters. But besides helping to improve the filtering accu-
racy by selecting definite ham messages, pre-checkers also help to reduce the
resources that would be necessary when scrutinizing emails thoroughly.

Another asset of this filter process is the explicit identification of post-
checkers. The SiFiP contains this concept implicitly by notifying all spam
filters of the decision maker’s result. Here, we describe this concept in a
general form allowing any plug-in to register for decision events using the
extension mechanism. All plug-ins, including spam filters, might (but do
not have to) be post-checkers and can thus analyze and respond to the final
decision.

In the previous section, we have criticized the SiFiP mainly in four points:
the problem of an unbounded number of concurrent emails being checked,
the fact that all filter results are necessary to derive the final decision, the
problem that plug-ins have to be “in disguise” to be notified of decision
events, and that all filters are handled equally. The latter two points of
criticism have been solved by introducing pre-checkers and post-checkers.
We have addressed the other two problems as follows:

To solve the first issue, we use a thread pool with a limited number of
threads in the filter process. That is, we allow only a specific number of emails
to be checked concurrently. This gives some control over the resources used
and can easily be adjusted to different environments. A simple but effective
technique.

Solving the second problem is more difficult because one has to determine
a decision before all filters have calculated their result. To accomplish this,
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we need a decision maker that can classify an email having incomplete infor-
mation only. In the CuFiP, all filters start checking an email at (roughly) the
same time. As filters vary in their processing time, they will consequently
finish their tasks at different points in time. We have a decision maker clas-
sify an email whenever a new spam filter result is available. The decision
maker can determine a pre-decision when satisfactory results are collected.
For example, if 6 out of 10 filters have voted for spam, a decision maker
could pre-decide on spam without regarding further filter results; similarly, if
a large number of all filters have voted for ham, a preliminary ham decision
cannot be questioned by outstanding spam results.

A pre-decision is defined to be final once it has been calculated. The
associated decision maker will not change its mind even if more spam or ham
results become available. Thus, a pre-decision can be returned to the user’s
email client and increases the filtering speed experienced by the user.

Of course, not all decision makers are able to calculate pre-decisions, as
this depends on their algorithms. Also, the processing time and accuracy
of spam filters influence the capability to derive quick pre-decisions. We
show in Section 2.2.4 that the overall gain in terms of responsiveness can be
significant.

However, there is one downside to this approach: We do not want to—or
even cannot—always stop filters even though we might not need their results
anymore. This has two reasons. On the one hand, we are interested in all
filter results to analyze their behavior. We use this information for statistical
reasons and also to learn which filters perform best. The latter is specifically
of interest to build better decision makers that rely on previous results. On
the other hand, from a technical point of view, if a filter does not react to
a “we-don’t-need-you” signal, at least in Java there is just no mechanism to
actually stop it. That means we can notify the add-on of the pre-decision,
but we still have to wait until the last filter finishes, that is after an email
has completely been checked.

2.2.3 A Future Filter Process

In this section, we develop some ideas for a Future Filter Process (FuFiP),
which we plan to release in version 1.0 of Spamato.

First, we introduce pre-processors as plug-ins that prepare information,
such as the URLs found in an email or an HTML-free version of its body,
for subsequent components in the filter process. Pre-processors run before
any filters are called so that the latter can rely on data calculated by pre-
processors. Thus, redundant work is reduced and the filtering speed is in-
creased.

Next, we rename pre-checkers to ham-checkers and introduce their ana-
logue as spam-checkers. Spam-checkers are spam filters that definitely know
when a message is spam; they provide the possibility to “blacklist” emails.
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For example, in a company, often server-side spam filters exist which flag
messages before they arrive in a user’s inbox. Spam-checkers are now able to
sort out these “pre-checked” emails without scrutinizing them in the (prob-
ably expensive) spam filter phase. Although this concept conflicts with our
credo that many spam filters are better than one, we believe that in some
cases this approach is not only justifiable but also preferable. The subse-
quent spam filter phase remains in which a decision maker determines the
final outcome.

Finally, post-checkers are renamed to post-processors to comply with our
new naming scheme. Additionally, post-processors can analyze not only the
final decision but all information that has been calculated by all components
in the filter process.

We describe several pre-processors and post-processors in Section 2.4.
Since some filters also integrate these notions, we will turn our attention to
this topic again in Section 3.

The development of our filter processes has lead to a finely grained layering.
We have started with spam filters only in the SiFiP, added pre-checkers and
post-checkers in the CuFiP, and injected pre-processor and spam-checker
layers now. Continuing this evolution consistently, we introduce a general
filter process as shown in Figure 2.4.

The FuFiP contains an arbitrary number of filter phases connected in
series. A filter phase bundles several filters and a decision maker that calcu-
lates the decision for this phase. The entire filter process stops when one of
the decision makers calculates a final decision or the last phase has finished.
The assumption is that filters and decision makers are different in each phase.
That is, using our former terminology, the decision maker in the ham-checker
phase concludes “ham” if one of its associated filters classifies a message to
be ham, the decision maker in the spam-checker phase evaluates to “spam”
if one filter votes for spam, and the decision maker in the spam filter phase
evaluates to “spam” or “ham” based on its inherent algorithm. In fact, the
whole filter process can be regarded as a filter phase that calls “sub filter
processes,” or in other words: filter processes (or phases) can recursively be
combined.

The FuFiP can now easily be modified to integrate further layers without
changing its structure. Accordingly, only new filter/decision maker compo-
nents need to be defined. Additionally, the order in which the phases have
to be run is fixed. Within each phase, filters and decision makers may be
changed without influencing other phases.

Further improvements

Currently, we assume that spam filters are content filters. Spamato delivers
the complete mail including its headers and body part to all spam filters
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Figure 2.4: The future filter process connects several filter phases in series.
In each phase, a decision maker evaluates the results of filters. If a decision
can be determined, the filter process stops and returns the decision to the
add-on. Otherwise, it proceeds with the next filter phase. Pre-processors
can calculate data for subsequent filters to decrease redundant work. Post-
processors are similar to post-checkers and can analyze the final decision.
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regardless of what kind of check they perform. One idea is to split filters
into groups of header filters and content filters and call header filters in a
separate filter process first. This would be advantageous in two respects:
First, fewer resources are used, as only a small part of the message has to be
downloaded. Additionally, header filters are usually faster, as they perform
only simple analysis or regular expression matches. And second, this prevents
from downloading possible harmful attachments containing viruses to the
user’s machine.

We have motivated the concept of filter processes with the argument that
it can structure the ordering of the spam filters. So far, we have tackled this
problem by introducing the layering architecture for a hierarchical, type-
based ordering. Also, thread pools are used to call spam filters concurrently.
A further idea is to order spam filters depending on their processing time and
their effectiveness. For instance, if it were possible to get the most significant
filter results first, a ham or spam pre-decision could prevent the launching
of time-consuming collaborative filters. We have touched upon this topic
before, but in the FuFiP it is possible to order filters within each filter phase
separately—introducing an even more powerful mechanism to tune the whole
filter process.

A downside, though, is that implementing these ideas increases the com-
plexity of the filter process; the management overhead for users and devel-
opers might outweigh their benefits. Therefore, we have decided to exclude
these features in the next Spamato release and to keep them for future work.

2.2.4 Comparison of the SiFiP and the CuFiP

We have conducted two experiments to prove the superiority of the current
over the simple filter process. We were particularly interested in what benefits
are derived from the use of pre-checkers and pre-decisions as introduced in
the CuFiP above in terms of saved processing time. We cannot show the
advantages of the FuFiP empirically since the rationale for this approach
was to make a design decision to support managing complex filter processes.
We also have not implemented any spam-checkers yet, but we are confident
that their employment would bear a similar gain as we show here for pre- (or
ham-)checkers.

For the experiments, we have collected usage data of ten voluntary par-
ticipants over a period of several weeks. The surveyed data provide informa-
tion about the total number of ham and spam messages users received and
about the time Spamato needed to process these emails. For privacy reasons,
we usually do not collect this kind of detailed information. Thus, we have
not been able to compile such data from all Spamato users in our statistics
database. The users were running Spamato with different add-ons (see Sec-
tion 2.5), email clients, computers, and operating systems. Nonetheless, we
think that this has only little impact on the results presented here.
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Figure 2.5: Distribution of email categories. This overview reflects the gen-
eral impact of pre-checkers and pre-decisions, as both shorten the processing
time of emails. The emails of 10 users are classified into different ham and
spam categories: veto emails have been detected by a pre-checker, pre-ham
and pre-spam emails have been classified as a pre-decision, and full-ham and
full-spam emails have been checked by all filters before classification.

Collected Data

We have divided the legitimate emails into three groups: emails that have
been detected by a pre-checker (veto emails), emails that have been detected
before all filters have processed it (pre-ham emails), and emails that have
been classified as ham only after being processed by all filters (full-ham
emails). Similarly, we categorize spam emails into pre-spam emails and full-
spam emails; note that there is no spam complement to veto emails. False
positives and false negatives are not considered here. That is, in our analysis,
false positives are spam and false negatives are ham messages.1 Unless oth-
erwise noted, all values were determined using a min-spam decision maker
(see Section 2.3.1) with the default min-spam value of 2.

Figure 2.5 shows the number of emails per category and user (normalized).
For example, 40.4% of all emails of User 1 are ham emails: 34.1% veto,
6.2% full-ham, and very few pre-ham emails. Similarly, 59.6% are spam
messages: 59.3% have been detected as pre-spam and 0.3% as full-spam
messages. In total, there are 11036 messages to which User 1 contributed the
largest number of 4877 messages and User 8 only 145. 37.8% of all emails are

1The actual number of false negatives and false positives was insignificantly low. Thus,
dropping this kind of information does not influence the overall result.
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Figure 2.6: This chart provides information about the average processing
time of emails separated by categories and users; note the logarithmic scale of
the time axis. Generally, veto emails can be detected within few milliseconds,
pre-spam messages are detected within the first second, and a full check
performed by all filters costs up to 10 seconds of processing time.

ham (28.6% veto, 1.8% pre-ham, 7.4% full-ham) and 62.2% are spam emails
(61% pre-spam, 1.2% full-spam).

It is noteworthy that, on average, about 76% of all legitimate emails were
detected by a pre-checker. Also, almost no spam email has to be checked
by all filters since a pre-decision sorts out such messages earlier in the filter
process.

Figure 2.6 shows the average processing times of the filter process per
email category and user; note the logarithmic scale on the time axis. For this
chart, we do not consider pre-ham results because their occurrence is too
low. Furthermore, the “full” times is for both full-ham as well as full-spam
emails. For example, for User 1, veto decisions have been made on average
within 19 milliseconds, spam pre-decisions within 914 ms, and processing all
filters took about 8.6 seconds. For all users, on average, veto decisions took
18 milliseconds, spam pre-decisions 605 ms, and processing all filters took
about 7.1 seconds. Note that the high “full” times are dominated by the
processing time of collaborative filters, such as the Earlgrey or Razor filter
(see Chapter 3); mainly, unpredictable network latency and server load can
lead to these extreme values.
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Figure 2.7: The benefit of pre-checkers is calculated as the ratio between
the average veto and the full-check times. As can be seen, for most users a
pre-checker takes less than 0.5% of the processing time a full check would
usually take. That is, it decreases the average time spent on processing a
ham email by a factor larger than 200.

On the Benefit of Pre-Checkers (Fast Ham Decisions)

From the given numbers, we can calculate the benefit gained when employing
pre-checkers rather than performing full checks. We express this benefit as
the saved time by dividing the average time of pre-checks (vetoes) by the
average time of full checks. This benefit is depicted in Figure 2.7 for each
user.

For example, the value for User 1 means that, on average, a pre-check
takes only about 0.23% of a full check. That is, a pre-check speeds up the
processing of ham emails for User 1 by a factor of about 450. Except for
User 2, whose average pre-check time is higher than for the others, all values
are well below 0.5%. Averaged over all users, a positive pre-check is almost
400 times faster than a full check; instead of 7 seconds, it takes only 18
milliseconds. Although we have not measured the impact of spam-checkers
as described in the FuFiP, we believe that they could provide a similar gain.

On the Benefit of Pre-Decisions (Fast Spam Decisions)

Using pre-decisions when the overall result of the filter process can be settled
without waiting for further filter results also speeds up the filter time realized
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Figure 2.8: The benefit of pre-decisions is calculated as the ratio between the
average pre-spam and full-check times. As can be seen, a spam pre-decision
takes only between 1% and 13% of the processing time a full check usually
needs.

by users. We establish the benefit as in the previous section by dividing the
average time of pre-decisions by the average time of full checks. The benefit
is depicted in Figure 2.8 for each user.

For example, the value of User 1 means that, on average, a spam pre-
decision can be made in about 10.6% of the time necessary for a full check.
In other words, the speed up factor is approximately 10. The values differ
between 0.8% and 12.6%. Averaged over all users, the value is about 8.6%.

2.2.5 The Report and Revoke Process

The user can manually report and revoke emails which have been misclassi-
fied. A report is when a user labels a message to be spam and a revoke when
a user labels a message to be ham. Reports are usually associated with false
negatives—emails that have not been detected as spam by the filter process.
Analogously, a user revokes a false positive whenever a legitimate email has
wrongly been classified as spam.

Reports and revokes build an important feedback mechanism that helps to
recall and rectify previous decisions. Additionally, it helps to train (machine-)
learning filters, such as Bayesian-based ones, and provides collaborative filters
with data for their databases. As the handling of reports and revokes is
similar, we will use the term “reports” for both reports and revokes in the
remainder of this section.
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The report process is simple compared to the filter process. All spam
filters are provided with reported emails in sequence. It is not necessary to
process user feedback concurrently, as there is no need to have them processed
fast. In fact, we put emails into a queue and have a single consumer thread
handle them. In addition to filters, report-processors (and revoke-processors)
can be registered to be notified of these events. Such plug-ins include for
example the statistics engine and the filter history, which we describe later
in Section 2.4.

Despite the simplicity of the report process, there is one challenge: A
reported email has to be handled after the filter process has announced its
final decision (if there is any). With pre-decisions it is possible that reports
arrive from a fast reactive user before the final decision has been determined.
They would thus be handled in the wrong order, which would be counter-
productive. For example, imagine the case in which a legitimate email has
been determined to be spam. As a pre-decision, the wrong result is sent to
the email client before all filters are finished. A fast reacting user corrects the
mistake and revokes the email. Now, the revoke event is sent to a Bayesian-
filter which treats the tokens in the email to be ham tokens. After all filters
have checked the email, the final decision, which is still spam, as it cannot
differ from the value of the pre-decision, is also handled by the Bayesian-
filter—but now the tokens are considered to be spam. This example shows
why the ordering of final decisions and report events matters and that it is
therefore important to be guaranteed.

2.3 The Decision Maker

The decision maker is an important building block in the Spamato framework.
The plug-in architecture allows modifying its implementation easily. The
general task of a decision maker is to aggregate several spam filter results in
order to determine the overall classification of an email. The classification is
usually “ham” for legitimate emails or “spam” for unsolicited emails. It can
also be “unknown” if the number of available filter results is too low or the
results are too ambiguous to decide for the one or the other. The main goal
of a decision maker is to detect as many spam messages as possible (true
positives) while minimizing the number of false positives.

We have experimented with several decision makers before implementing
the simple but effective Min-Spam Decision Maker, which is described in the
next section. It works well for a small number of distinct and powerful spam
filters like those deployed with the current version of Spamato. However,
with a growing number of more light-weight spam filters, for instance by
creating rules with the Ruleminator testing for common but imprecise spam
indicators, other approaches might be more appropriate; we present some
ideas in Section 2.3.2.
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2.3.1 The Min-Spam Decision Maker

Our current Min-Spam Decision Maker (MiSDeM ) is rather simple: It allows
defining the minimal number of results that have to be “spam” in order to
classify a message as such. For example, a min-spam value of 1 means that
only one spam filter has to consider an email to be “spam” to have an overall
classification of “spam.” This means to accept every single “spam” result as
granted—an approach that would make sense only if each spam filter had a
very low false positive rate. In fact, a min-spam value of 1 can be used in the
spam-checker phase, where exactly this behavior is desired (see Section 2.2.3).
Also, a similar approach with a min-ham value of 1 is used in the pre-checker
phase of the CuFiP as described in Section 2.2.2. For the general spam filter
phase, though, it is definitely not appropriate to select such a low value.

To achieve different accuracy levels, the value can be adjusted to meet
a user’s expectation. As Spamato is a multi-filter system that tries to take
advantage of the combined capabilities of several filters, we have chosen a
default min-spam value of 2. Surprisingly, although this value is still very
low, it has proved to be quite effective for most users running the default
Spamato system.

The MiSDeM allows for pre-decisions and thus meets one of the require-
ments for a fast filter process as described in Section 2.2. Whenever the
min-spam criterion is fulfilled, that is if the number of spam filters that have
decided on “spam” equals (or is greater than) the min-spam value, a “spam”
pre-decision can be made (#spam ≥ min spam → spam). Analogously, a
“ham” pre-decision can be made if the sum of “spam” and outstanding results
is less than the min-spam value (#spam+ #missing < min spam → ham).

One disadvantage of this approach is that it does not consider “ham”
results. For example if 2 of 100 spam filters vote for “spam” and the other 98
for “ham,” a message is still branded as spam in total. The MiSDeM does not
consider the number of “ham” results against the number of “spam” results.

Furthermore, the MiSDeM treats every spam filter equally. It does not
consider whether they have calculated correct results in the past. Particu-
larly, the number of false positives that a spam filter has been responsible
for is not taken into account.

2.3.2 Related and Future Work

For the future, we plan to implement a decision maker that automatically
adjusts the min-spam value in the case of too many misclassifications. More-
over, considering different weights for filters depending on their specific num-
ber of false positives appears promising.

A similar approach is taken by SpamAssassin [140]: Each filter adds its
specific score to the final result. However, the scores have been determined
a priori by analyzing a large corpus of spam and ham emails and are not
adjusted unless they are re-trained on a new corpus.
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Sakkis et al. describe two stacked generalization techniques, which they
use to combine two machine learning filters [82]. In the SpamGuru project
[88], a super-classifier combines the weighted results of each filter. Similar
strategies have been analyzed in the EMT systems [44, 87]. A good overview
is given in [49].

All these techniques indicate an advantage of combined results over indi-
vidual results. However, these techniques have been applied to filters whose
results reflect a confidence value, for instance a value between 0 and 1. It
has to be examined how they would perform on a large set of binary results,
which are returned by most Spamato filters.

2.4 Spamato Plug-Ins

Besides the plug-ins described so far and the filters, which we detail in Chap-
ter 3, the Spamato system contains a variety of additional “productive” plug-
ins. These plug-ins are not directly involved in the filter process—they have
no impact on the filtering success. However, they are an added value to the
user experience or indirectly support filters. In the following, we highlight
only the most relevant plug-ins and show how they are integrated as pre-
processors or post-processors into the Spamato framework. Components of
minor importance are summarized in Section 2.4.7.

2.4.1 Local Web Server

The local web server plug-in, also referred to as the web config plug-in, pro-
vides a way to let other plug-ins manage their settings via a common web-
browser interface. In fact, the local web server itself can also be configured
using its own capabilities. Most filters and the other plug-ins described in
this section use this facility to interact with users.

Our first approach to configuration was to provide a dialog-based Java
Swing UI. But starting the work on the Spamatoxy, this attempt was ren-
dered useless, as the proxy does not necessarily run on the user’s computer
but can reside on any remote machine—probably running directly on an
email server. The web-browser interface closes this gap and enables Spamato
to be employed in practically any environment.

2.4.2 Statistics Engine

The statistics engine is a post-processor which collects information about
the decisions calculated in the filter process. It is also a report- and revoke-
processor in order to be notified when users recall decisions of the filter
process. Particularly, we are interested in the number of detected spam
messages and the number of false negatives and false positives. Furthermore,
the statistics engine analyzes the performance of filters, that is in how many
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Figure 2.9: The filter statistics overview shows the number of checked emails
and detected spam and ham messages for each filter.

spam detections (and false positives) each filter has been involved. The
gathered data is processed locally on the user’s computer and presented on
the filter overview page as illustrated in Figure 2.9.

The data is also sent to a statistics server for further analysis. The server
stores a complete decision log; as such, it is comparable to the filter history
component storing data for all users rather than for a single one. More
specifically, we store for each checked email an entry that shows which filter
has voted for spam or ham2; report and revoke entries can be linked to checks
to see why they have been classified as ham or spam in the first place. In
addition, the data stored contains information about the properties of each
filter and the decision maker users might have modified. Finally, we also
log which add-on a user employs since some filters might depend on their
capabilities.

Some of the results discussed in Chapters 7 and 5 are derived from the
database containing collected data from all Spamato users. Thus, the statis-
tics engine allows getting information about the Spamato system as a whole.
Thereby, it helps find possible deficiencies but also represent a working sys-
tem since we can show online usage statistics on our web page.

2To preserve a user’s privacy, we log only those ham results which contain at least
one (wrong) spam classification of a filter; we do not store data about pure ham results.
Furthermore, the statistics engine is of course optional—it can easily be disabled or
deleted by the user.



2.4. SPAMATO PLUG-INS 37

Figure 2.10: This filter history page shows an overview of filtered emails.
Clicking on the subject line reveals why a message has been classified as
spam or ham. With the rudimentary search function, a user can browse
through particular filter results, looking for instance for emails that have
been detected by a specific filter. The report and revoke buttons allow to
give direct feedback to Spamato from this overview.

2.4.3 Filter History
The filter history is a post-processor for filter, report, and revoke events. It
stores “historical” data about the filter process and logs the complete trace of
all emails checked by Spamato. Users and developers similarly benefit from
the filter history, as it provides useful information to both of them. Also
spam filters and other plug-ins can use this data for their purposes.

Figure 2.10 shows an overview page generated by the filter history com-
ponent. It presents exact details about why a message has been considered
spam or ham. Furthermore, a rudimentary search function allows browsing
quickly for particular results (such as spam detected by filter X) only. Users
can also report and revoke emails from this overview. This feature is par-
ticularly important for the Spamatoxy in combination with POP3 accounts
since in this case this is the only way to collaborate with Spamato.

The overview (as well as a more detailed view not shown here) is also
helpful during the test and debug phase of the development cycle of a new
filter. Looking at a web page is much easier than parsing a large log file by
hand—provided that the developer prepares the data accordingly. Another
part of the filter history generates charts of the processing time per filter,
which facilitates to identify bottlenecks. These features make the filter his-
tory a very useful component, as it helps to detect inconsistencies even after
the deployment of filters and related plug-ins.
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Finally, the filter history plug-in serves as a decision cache, which can be
queried by other plug-ins. Particularly, filters can revert to a former decision
(including their own result) instead of repeatedly scrutinizing an email. For
example, the Domainator (see Section 3.3) uses this cache to see whether a
specific domain has been checked before. If so, and given that the check is not
too old, it just returns the same result instead of searching for it on Google
again—which would clearly take much longer. Thus, the caching feature
indirectly increases the filtering speed and helps to consume less resources.

2.4.4 Whitelisting of Trusted Senders

The trusted senders plug-in is a post-processor which automatically learns
trusted senders from filter decisions. A sender is identified by its email ad-
dress, which is considered to be trusted if it has been seen in several legitimate
emails received by the user. The actual number of necessary ham messages
can be adjusted by the user with the help of the web configuration; the
default value is 2.

The primary purpose of this plug-in is to serve as a pre-processor for
the Ruleminator (see Section 3.4). The “Trusted Senders” rule is by default
used as a ham-checker. That is, whenever a message from a trusted sender
is received, the email is automatically classified as ham. Similarly, the “Dis-
trusted Senders” rule can be used alone or in combination with other rules
to mark messages as spam.

Related and Future Work

The trust values of persons are associated with the number of emails received
from them. Therefore, this whitelist also reveals the most active contacts—
an added value for the user since this information can be used to derive the
importance of contacts like the correspondent maps in [80] or analyze social
networks as in [14].

Currently, we use only the email address of a sender to identify the legit-
imacy of an email. Since email addresses can easily be forged by spammers,
this can become a critical issue in our system. Leiba et al. describe in [56] a
method to extract the IP addresses of the SMTP servers on the way from the
sender to the client. This additional information could be used to distinguish
between the real sender and a pretended one. Also the integration of sender
verification systems, such as the Sender ID [62] or Yahoo! Domain Keys [6],
could be used to improve the accuracy of our simple approach. Note how-
ever that, with very few exceptions, we have not received emails with forged
known email addresses yet.

Ceg lowski and Joshua Schachter implemented the Loaf [103] system to
share email addresses to allow for trusted friend-of-friend relationships. They
use bloom filters to abandon privacy issues: Email addresses are not shared in
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plain text, but as a bit set that can only be used to query for email addresses.
Loaf information could be used in our trusted senders plug-in to increase the
knowledge about trusted senders not seen before—but known to a friend.

Garris et al. propose the Reliable Email (RE:) system [33] that combines
the ideas of a sender verification system and Loaf with high security con-
siderations: trusted and verified chains of friends without exposing private
information. However, integrating this system with Spamato is complicated,
as it relies on dedicated RE: servers.

2.4.5 Detection and Whitelisting of URLs and Domains

Three of Spamato’s filters are URL-based, which means that they check
whether the URLs (or rather the domains) contained in an email are asso-
ciated to known spam in some way. Although parsing an email for URLs is
not an expensive operation, we have outsourced this work to the url plug-in
to avoid redundant work.

Detection of URLs

Extracting domains from a URL is sometimes a tedious undertaking. Spam-
mers tend to obfuscate their advertised domains, which makes it hard to find
the real domain. Ken Schneider gave a talk at the Spam Conference 2004
about URL obfuscating techniques [85]—most of them are still in use to con-
fuse investigators. Also Hulten et al. report in [45] about the ongoing trend
to impede the identification of URLs. We present some of these techniques
and discuss our solutions.

HTML encoding schemes are rather simple problems where we can rely
on the built-in Java functionality. For instance, http://%77%77%77%2E%73%
70%61%6D%6D%65%72%2E%63%6F%6D links to the same page as http://www.

spammer.com.

A harder task is to resolve HTTP-redirectors. For example, we can de-
tect that http://rds.yahoo.com/*http://www.spammer.com actually refers
to www.spammer.com rather than rds.yahoo.com.

Another frequently used trick is to add meaningless sub-domains or paths
to a domain: http://spammer@some.silly.domain.here.spammer.com.au/

xyz/abc still links to spammer.com.au.
Reputable hosting platforms, such as GeoCities [113], might unintention-

ally host spam content. For instance, let us consider the spam page on
http://geocities.yahoo.com.br/spammer. The usual approach would lead
to identifying geocities.yahoo.com.br as a spam domain—which it defi-
nitely is not. Our approach to this problem is to prepend the relevant path
as a virtual sub-domain to the detected domain—resulting in the suspicious
domain spammer.geocities.yahoo.com.br, which can be handled like every
other domain.
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Finally, URL shortening services, such as TinyURL [146], suffer from
the same problem: Honest services are misused to provide spam content.
For example, the URL http://tinyurl.com/k6zdg actually links to www.

spammer.com. While we do not resolve the real domain, we can still handle
this as in the example before. That is, we treat k6zdg.tinyurl.com rather
than tinyurl.com as a spam domain.

Of course, all of these techniques can be combined by spammers and will
be correctly resolved by our algorithm.

As said before, we can handle some of these problems solely with the help
of Java libraries. The more elaborate techniques are tackled with an extended
top level domain list, which we have derived from the Razor sources [135]
as well as from [125]. This list has a simple syntax. For example, Austrian
domains are described as follows:

(at) 2

(at).(ac|co|gv|or) 3

Domains ending in .ac.at, .co.at, .gv.at, and .or.at are thus considered
to have 3 relevant domain parts, while all other domains ending in .at have
only 2. For example, www.spammer.at resolves to spammer.at whereas www.

spammer.co.at resolves to spammer.co.at.
GeoCities and TinyURL domains are handled similarly by introducing a

second parameter which denotes how many path entries have to be consid-
ered. For example, the entry for GeoCities domains is as follows:

(br).(com).(yahoo).(geocities) 4 1

Here, the 1 denotes that the first path entry has to be prepended to a domain
consisting of 4 parts as described above.

Whitelisting of URLs

The url plug-in also maintains a whitelist of known ham URLs. Domains
of ham emails are automatically added to the list and gain trust in relation
to the frequency in which they appear; analogously, the trust value of spam
domains is decreased. Similarly to the whitelist used for trusted senders,
trusted URLs can be considered ham URLs and do not have to be checked.

2.4.6 Deobfuscation of (HTML-)Text

Besides the aforementioned URL tricks, spammers also try to conceal their
real intentions by obfuscating the HTML content of an email. John Graham-
Cumming mentions a variety of different techniques in “The Spammers’ Com-
pendium” [36][116]. Also Danny Goodman reports on several methods to
confound spam fighters [35].
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For example, writing some parts of the text in the background color
confuses Bayesian-based filters. The HTML block

<font color=’white’>T</font>s

<font color=’white’>R</font>p

<font color=’white’>I</font>a

<font color=’white’>C</font>m

<font color=’white’>K</font>!

will usually be rendered as s p a m ! rather than TsRpIaCmK!. The first
combination of letters attracts the user, while the latter cannot correctly
be classified by a filter for the same reason as it would not be readable
by humans. One possible countermeasure is to reveal the real spammer’s
intention by purifying the text to appear as spam! to filters.

Many other examples exist where spammers add bogus HTML tags, re-
place characters with similar looking ones3, embed <form>-tags, or play
around with the capabilities of cascading style sheets. Even worse, spam-
mers regularly develop new ideas on how to abuse HTML to hamper the
filtering success.

To address this issue in Spamato, we introduced the deobfuscator plug-
in, which calculates a purged text form of the message as a pre-processor.
Filters such as the Bayesianato (see Section 3.2) can request the plain text
to prevent being confused by weird tokens. Furthermore, the mere fact that
such HTML obfuscation methods are employed in an email is a good indicator
for spam; the Ruleminator (see Section 3.4) relies on such information in its
classification round.

The deobfuscator comprises several countermeasures to help identify the ac-
tual content of an email. However, as spammers refine their attacks [92], it is
only able to cope with some commonly known techniques even though several
authors [55][70][97] are committed to solving this problem. Adapting to new
requirements will remain an ongoing duty. Nevertheless, once implemented,
it is an easy task to add such methods to the deobfuscator plug-in.

2.4.7 Other Plug-Ins

Spamato contains several other plug-ins of lesser importance and smaller
scope, which we mention here for completeness. For example, the sound
plug-in plays a short jingle whenever a spam message has been detected,
the logging plug-in provides a common logging facility used by all plug-ins,
the mail plug-in facilitates the parsing of emails, the server plug-in bundles
several utility functions we use when communicating with servers, such as
for sending data to the statistics server or querying the Earlgrey filter server,

3The author of [150] has shown that there are about 1.3 ·1021 different ways of writing
“Viagra” by exchanging characters with similar looking ones, for instance “\/1@9r/-\.”
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Figure 2.11: With the Spamato toolbar (screenshot taken from Outlook), it
is possible to collaborate with the Spamato system by reporting or revoking
emails. Furthermore, it shows some informative data, such as the number
of detected spam messages, and allows accessing the Spamato configuration
pages.

and the chart plug-in creates images of graphs for results presented on the
configuration web pages of a plug-in.

The tray and proxy plug-ins contained in the Spamatoxy as well as the
localserver plug-in that connects Outlook and Thunderbird with Spamato
will be discussed in Section 2.5. We also integrated the Trooth plug-in to
secure collaborative filter systems, which is the topic of Chapter 4. Finally,
the plug-in system itself is partially implemented as a plug-in. We explain
this interesting concept in Chapter 6.

2.5 Spamato Add-Ons

An add-on is to Spamato what an email server is to an email client: the
source of all emails. An add-on connects an email client to Spamato so
that incoming emails can be checked without user interaction. Emails are
automatically forwarded to the Spamato system, where they are scrutinized
in the filter process. Its decision is returned to the add-on, which acts on
behalf of Spamato: Detected spam messages are moved to a special “junk”
folder whereas legitimate emails are directed into the inbox. In short, an add-
on provides the means to make Spamato a user-friendly spam filter system
which is capable of transparently replacing the default spam filter solutions
built into many email clients.

In case of misclassifications, the add-on addresses a second task: It al-
lows the user to give feedback to the Spamato system by reporting or re-
voking emails directly from the email client. For this, it is integrated into
the email client’s user interface—usually by providing a Spamato toolbar as
shown in Figure 2.11. The described mechanism can also be used to train
(machine-)learning filters such as the Bayesianato (see Section 3.2). Fur-
thermore, the Spamato toolbar enables a user to participate in collaborative
spam filter networks, such as harnessed by the Earlgrey and Razor filters (see
Sections 3.6 and 3.7 for more information).
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The Spamato Core is written in Java and is completely independent of
any email client or platform. However, the development of add-ons inher-
ently depends on the email client and their implementation varies largely:
We have to cope with different programming languages, operating systems,
audiences, and generally depend on the “goodwill” of the development team
to intelligently open their client for third-party integrations.

In the next section, we list some requirements which an email client has to
support in order to allow the implementation of an add-on. In Sections 2.5.2
to 2.5.4, we then describe our add-ons and discuss some of their pitfalls.
Finally, in Section 2.5.5, an alternative approach is presented as a proxy
component which is completely independent of the email client. It is not
embedded into an email client but resides between the client and an email
server. Thereby, it is able to intercept and check incoming emails before they
are forwarded to the client.

2.5.1 Requirements

An email client has to support the development of add-ons by providing an
extension mechanism that allows changing and enriching its default behav-
ior. This is usually achieved with an API that opens the client for foreign
developers. The API gives access to the client’s internal data, such as emails
or folders, and allows the developer to manipulate it. Furthermore, the email
client has to provide extension points, also called an event or callback mech-
anism, that allows performing user actions upon specific events, such as the
arrival of new emails. Finally, it has to be possible to be able to modify the
user-interface in order to interact with the user.

An alternative solution is to directly change the email client’s source
code. This is possible, though, only for open-source projects or for an “in-
house” development, where the source code is available. The final product
would then be a new email client into which the Spamato system would be
seamlessly embedded. However, the deployment of such a solution is difficult:
Users would have to switch to a new email client, which would cost the user
much more effort than the optional (and easily reversible) installation of an
add-on. Therefore, we only follow the idea of adding Spamato as a stand-
alone product rather than embedding it directly.

For Spamato, we have identified several requirements which must be met in
order to enable a client to interact with Spamato. Figure 2.12 illustrates a
brief overview of the necessary functionality, which has similarly been imple-
mented in all add-ons.4 We present the four main concepts as follows:

4The implementation of these concepts in the Spamatoxy described in Section 2.5.5
differs slightly, as it is not integrated into an email client. But they have been adopted
and are similarly applied.
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Email

Email Action

 Email 

 Result 

Figure 2.12: This figure illustrates the general concept of an add-on: The
email client notifies the add-on of incoming emails and the add-on checks
them using Spamato. The result is handled by the add-on, for instance by
moving spam messages to the “junk” folder.

Launching Spamato

To make use of Spamato, it is necessary to launch it when the email client
starts. An optimal solution depends on two features: First, the email client
has to provide an “OnStartup” event to which we can subscribe. And second,
it needs to be capable of launching external applications. Particularly, we
have to start a new Java process in which the Spamato application runs.
Desirable but optional is also an “OnStop” event, which can be used to
reasonably shut down Spamato when the client stops.

An alternative for the first feature is to start Spamato only when it be-
comes necessary for the first time. That is, the launch would be delayed and
executed upon another event, for instance when a new email arrives. The
second requirement can also be achieved by starting Spamato independently
of the email client, for example manually with its own launcher or whenever
the operating system starts.

Handling Email Events

Besides the aforementioned “OnStartup” event, notification of different email
events is also necessary. Most importantly, the add-on has to know when a
new email arrives. This event should also contain information about the
email itself to prevent the add-on from searching through all folders to locate
it.

Furthermore, the user can manually report and revoke misclassified e-
mails. Whenever the user clicks a button in the Spamato toolbar, the email
client has to provide the add-on with the associated information allowing it
to handle the selected emails accordingly.

Finally, the email client has to support a feature which we call a re-check.
We perform re-checks in regular intervals, for instance hourly, to repeatedly
check unread emails in the inbox that have been classified as ham so far.
For this, it is necessary to be able to access all folders and emails and check
whether they are read or unread. The motivation for this feature is that—in
the meantime between two check attempts—collaborative spam filters might
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have learned that the considered email has to be classified as spam rather
than ham.5 A re-check can thus better reflect the collected information of
such filter networks. Of course, only people who do not check their email for
a long time benefit from this feature, for instance when running the email
client all night. Therefore, this feature is optional rather than compulsory.
However, a re-check executed in very short intervals, for instance every 10
seconds, can also be used as a viable approach if the email client does not
provide any “NewMail” events as described above.

Communicating with Spamato

After an email event has been sent to the add-on, it is forwarded to Spamato.
To accomplish this, it is necessary to communicate with Spamato in some
way. On the one hand, check, report, and revoke commands have to be sent
to Spamato. On the other hand, the replies to check commands have to be
received and parsed.

Communication can take place in two ways: either by using the input
and output streams associated with the launched Spamato process, or by
spawning a local interprocess or socket connection to a Spamato plug-in. We
have chosen the second approach, as this allows to open several connections
in parallel and eases the concurrent handling of requests.

Taking Actions

Once Spamato has classified an email and has sent the result back to the
add-on, actions need to be taken. For example, detected spam messages
have to be moved to a special “junk” folder or messages have to be marked
as “checked by Spamato.” In either case, it is necessary to interact with the
email client, which has to execute the according actions on behalf of Spamato.
Similarly, in case the user manually reports or revokes emails, the messages
have to be moved to the “junk” folder or back to the inbox, respectively.

In future versions of Spamato (see Section 2.6), more elaborate actions
might have to be executed. For instance, emails could be highlighted in
different colors, reordered to reflect priorities, or we might even add new GUI
elements to show additional information about an email. In general, the API
of an email client has to be powerful enough to enable such extension ideas
and to make their implementation as feasible as possible.

5Anecdotally, the author of [104] compares this approach in a humorous way with
Schrödinger’s (or rather Heisenberg’s) uncertainty principle: As long as a user does not
check the inbox, unread emails are in an “uncertain” state—they are both spam and not
spam at the same time until observation. That is to say, a spam filter should monitor
unread emails incessantly until the user reads them. This is what the re-check mechanism
is supposed to do.
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2.5.2 Spamato4Outlook

Spamato4Outlook (S4O) was the first add-on to be implemented. The lessons
learned here have helped to develop the other add-ons. S4O is a Windows-
only add-on bound to Microsoft Outlook 2002/XP and 2003. Older versions
of Outlook and Outlook Express are not supported, as they are either more
restrictive (Outlook 2000) or provide a completely different extension mech-
anism (Outlook Express).

The add-on was implemented using Visual Basic as well as Visual C#
for some utility methods. The Outlook Object Model (OOM) exposes many
internals of Outlook to add-on developers. It is possible to fulfill all require-
ments defined above; subscribing to the necessary events as well as accessing
and manipulating data is possible. Also, adding the Spamato toolbar is suf-
ficiently supported by the Outlook API.

The communication part was implemented using a socket connection to a
local server plug-in, which is started as part of the Spamato system. We used
a simple messaging scheme where all commands (check, report, revoke) were
embedded into an XML-styled message. For instance, for a check, we sent
the entire email (as far as it can be recovered from the OOM) from the add-
on as plain XML-text to the local server and waited for a reply containing
the result—either “ham” or “spam.”

This approach has three advantages: First, processing XML data is sup-
ported by several utility libraries which make it easy to parse such messages
in Visual Basic as well as in Java. Second, a message in the XML format
can contain several entities of information (such as the request type, the
source code of the email, and the spam/ham decision) and can be extended
to provide for future requirements (such as to mark a message green or to
set it to high priority). And finally, this solution can easily be ported to
other email clients. Particularly, it is obvious that all email clients are able
to open a socket connection, as email clients are inherently network-enabled.
Furthermore, XML is a de-facto standard and, therefore, we can assume that
XML libraries also exist for other clients. In fact, the same solution has been
re-used with only slight modifications in the add-on for Thunderbird (see
Section 2.5.3).

Unfortunately, using the OOM was not always satisfactory. For instance,
security warnings appearing when trying to access the body of an email
rendered a solution for Outlook 2000 useless. In Outlook 2003, it is still
impossible to get the full header information of an email or to access the
complete source text as received by the client.6 Furthermore, we had to
work around a bug in the event system that prevents Outlook from firing a
“NewMail” event when more than 16 emails arrive simultaneously. In this

6Additional tools, such as Outlook Redemption [143], could be used to ease the imple-
mentation. However, they are neither open-source nor licensed under the GPL. Therefore,
we have not been able to use such solutions in the context of Spamato.
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case, we had to use the re-check mechanism to detect unread messages in the
user’s inbox.

Another problem we had to solve was the enhanced feature set that Out-
look provides, which includes, apart from emails, also contact, to-do, and cal-
endar entries. Furthermore, email accounts can be backed by a POP3, IMAP,
Exchange, or web-mail server. While most of these features are shielded from
the developer, still some details are exposed and must be handled appropri-
ately.

Overall, implementing the add-on for Outlook has been a tedious but suc-
cessful task. It works well for most people working in different environments
and is the number-one add-on according to the download statistics on Source-
Forge.

2.5.3 Spamato4Thunderbird

Spamato4Thunderbird (S4T), like most other extensions for Thunderbird, is
written in JavaScript; the XML User-interface Language (XUL) in combina-
tion with Cascading Style Sheets (CSS) is used for the user interface. The
extension mechanism of Thunderbird is well engineered although it lacks a
good documentation.7

All requirements have been met; Thunderbird provides useful events when
starting up, upon email arrivals, and when shutting down. For the commu-
nication part, we have been able to adopt the local server of S4O modifying
only one property: Not the actual email is sent with the XML message, but a
reference to a local file in which the message has been stored by Thunderbird
is transmitted. The local server can read the complete source text of the email
from a file and forward it to the filter process. Having the original source
text enables us to parse the complete message, access all MIME-parts, detect
anomalies, and handle attachments. This is a major advantage compared to
the Outlook solution, as it opens a variety of new filter possibilities.

Of course, also the extension mechanism of Thunderbird has some prob-
lems. For instance, most method calls that might take a longer time to be
completed, such as downloading messages from an email server, are handled
asynchronously. This makes programming more complicated, as the logic of
a single activity is spread over several methods called by the Thunderbird
framework rather than by the extension itself.

In contrast to S4O, S4T is platform independent; it runs on Windows as
well as on Linux without further modifications. As argued above, the local
server plug-in served well as a general-purpose solution for email clients other

7The only useful documentation can be found as part of the online reference on
XULPlanet [152], which extracts its information from the Mozilla source code. For-
tunately, with the increasing popularity of Firefox and Thunderbird, a large number
of additional information can be found on the Internet. However, a complete official
reference is still missing.
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than Outlook. Although it was not possible to make an exact copy of the
Outlook add-on, we took advantage of the lessons learned in the previous
implementation, which significantly eased the development of S4T. Adding
further requirements to support new Spamato features can now easily be
implemented in both add-ons since they share many similar concepts.

2.5.4 Spamatozilla

Spamatozilla (S4M) is the Spamato extension for the old-fashioned Mozilla
Mail, which comes as part of the Mozilla Suite (now known as SeaMonkey).
It is very similar to S4T, but differs in one important aspect: it misses the
local server plug-in. Instead, we can make use of Java directly from the
JavaScript code using a facility called LiveConnect. LiveConnect enables us
to call the Spamato filter process without using a socket connection—the
JavaScript code has full access to all Java classes.8

The LiveConnect bridge eased the aforementioned problems regarding the
asynchronous handling of method calls via callback functions. Instead, it is
possible to execute a usual “spamato.checkMail(mail)” call and wait for
its answer. However, as Spamato is a very advanced extension that accesses
the network and writes to the local file system, the Java security system, by
default, blocks most initiated activities. To overcome this restriction, it was
necessary to modify the user’s security settings before starting Spamato—an
operation which is not directly supported by the email client.

2.5.5 Spamatoxy

The Spamatoxy (S4X) is special, as it is no genuine add-on. It is not bundled
with a specific email client but provides a general solution for any otherwise
not supported email client, including Outlook Express, Pine, and Apple Mail.
Nevertheless, we call it an add-on since it performs the same task: filtering
emails with the Spamato system.

The Spamatoxy is an email server proxy. That is, it resides between
the email client and the real email server. All commands are transparently
tunneled through the proxy before being delivered from the client to the
server and vice versa. The proxy checks all incoming emails using Spamato
and performs actions depending on the results. Regarding a spam message,
it can either mark the message with a “SPAM” notice in the subject line, add
a “Checked By Spamato” header, or directly move the message to the “junk”

8Notice that Spamatozilla was implemented before Thunderbird became popular.
That is, Spamatozilla is the predecessor of S4T although we skip this detail in our dis-
cussion. This is also the reason why we did not re-use the complete S4T code but instead
tried the LiveConnect bridge. On the other hand, we were not able to adopt the Live-
Connect solution for S4T since LiveConnect relies on Sun’s Java Plug-in, which is part
of the Mozilla Suite but not of Thunderbird.



2.5. SPAMATO ADD-ONS 49

Email Checked

Email

Other

Commands

Other

Commands

Figure 2.13: This figure illustrates the concept of the Spamatoxy. Emails
from the server are intercepted, checked by Spamato, appropriately marked,
and then delivered to the email client. Commands not related to the down-
load of emails are transparently tunneled by the proxy.

folder. Messages classified as ham are forwarded without special comment.
In Figure 2.13, the basic design of the proxy system is depicted.

The Spamatoxy is written entirely in Java and runs as a plug-in in the
Spamato framework; as such, it can be used on all Java-enabled platforms.
It is usually bundled with a tray icon component that is used for similar
tasks as the Spamato toolbar. Since the handling of the tray bar varies
on different platforms, it must be implemented in a way that depends on
the underlying operating system. But the tray icon plug-in is not essential
for the functionality of the Spamatoxy; thus, it also runs in a console-only
environment.

Using the web config plug-in, it is possible to define several “services”
that refer to email accounts which the proxy should take responsibility for.
The proxy supports POP3 as well as IMAP accounts9; both types can be
used with SSL encryption. In order to employ Spamato, users only have to
alter their server settings in the email client, now pointing to localserver

and the specified service port. For POP3 accounts, it is also necessary to
define a new filter rule (in the email client) that moves emails whose subject
line begins with “SPAM” to the “junk” folder.

One of the most difficult issues when implementing the Spamatoxy was
that email clients and servers do not always adhere perfectly to the RFCs
[130, 117]. Although we depend only on a very restricted subset of commands
of the email protocols, different clients and servers often do not handle them
in compliance with the standards. That is, if a client or server has not been
tested with our proxy, it might limit the functionality of the Spamatoxy.
However, fixing such bugs is usually a matter of minutes when users provide
us with the relevant information.

In contrast to the other add-ons, the Spamatoxy can be run on any
machine—it is not restricted to the user’s local computer. It can even be
run in parallel with the email server. This provides for an additional fea-

9Pure Web-mail providers such as Hotmail or Yahoo! Mail can be connected to using
additional tools such as MrPostman [121].
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ture: A single Spamatoxy installation can be used to serve several different
users concurrently. However, the current version of the underlying plug-in
mechanism does not allow to distinguish between different users. That is,
all users would have to share a single data set, for instance for trusted users
or good and bad tokens. Nevertheless, this property of the Spamatoxy is
far-reaching: Once the plug-in mechanism supports multi-user installations,
Spamato can also be employed in the server-side spam filtering domain that
is currently not addressed by any other add-on.

In the following, we will present some details regarding the different imple-
mentations of the POP3 and the IMAP services.

Handling POP3 Accounts

The Post Office Protocol (POP3 ) is a simple protocol used to download
emails stored on a server. For the proxy, the only relevant command is
RETR(ieve); all other commands can be relayed without further consideration.
A RETR is sent from the client to the server in order to download the email
specified by a message number; the reply of the server contains the email’s
plain source text as received from the original sender.

Before the proxy delivers an email to the client, it reroutes it through
Spamato. The classification result from the filter process (spam or ham)
can be expressed either by flagging the subject line with a “SPAM” tag or
by adding a “X-Spamato: YES/NO” header. The marked email is then
forwarded to the email client, where an appropriate action can be taken by
applying a filter rule (e.g., move spam to the “junk” folder).

Using POP3 accounts with the Spamatoxy has two main disadvantages.
First, all emails have to be checked sequentially because the email client
can request them only individually due to protocol limitations. That is, the
filter process is the dominant factor determining the delivery speed since all
emails have to be checked before they can be delivered to the client. It would
be possible to implement a pre-fetch mechanism downloading and checking
several emails simultaneously. But this would not necessarily reflect the
user’s will, wasting much bandwidth in the worst case.

The second point is concerned with the capability to provide feedback to
the Spamato system—for learning and collaborative filters—and is usually
achieved through the Spamato toolbar. Our first approach was to implement
an SMTP feedback channel. That is, emails have to be forwarded through a
special SMTP service of the proxy in order to be handled as reports or revokes
by Spamato. However, emails are often forwarded inline, without headers,
and enriched with automatic footer text by email clients; by default, only
few clients forward email in an untouched form as an attachment. Thus, it
was not possible to rebuild the email in its original form. Now, for POP3
accounts, the only convenient way to report and revoke emails is provided
by the filter history plug-in (see Section 2.4.3).
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Handling IMAP Accounts

The Internet Message Access Protocol (IMAP) is more elaborate than POP3,
containing a variety of commands to access and manipulate emails and fold-
ers. Fortunately, as in POP3, we have to consider only one relevant com-
mand: The FETCH command is used by the client to order one or multiple
emails from the server.10 The server answers with the full source text of the
requested emails, which can be checked by Spamato.

We have experimented with two different approaches to handle FETCH

commands. For our first solution, we opened an additional connection to the
email server used exclusively to download emails. This approach promised
to decrease the complexity of parsing and reassembling commands on the
main connection. However, one drawback outweighed the advantages, as we
realized in our practical tests: Some IMAP servers do not allow more than
one connection from the same IP address or for the same user. Consequently,
the second download connection is either not established—we cannot access
the emails—or the main connection is being dropped—the email client closes
the connection to the proxy.

Therefore, we have chosen another solution, where we intercept all com-
mands that are exchanged between client and server. Whenever the server
now sends an email message, it is detached from the command stream and
checked by Spamato. All other commands are tunneled without interruption.
In case the email is classified as spam, we are now able to move it automat-
ically to the “junk” folder on the server without notifying the client; ham
messages are just forwarded to the client.

The second solution is being complicated, as different commands can be
intermixed, several FETCH commands and their replies can be nested, and
the client as well as the server are allowed to send commands to the oppo-
site party at arbitrary times. Furthermore, some IMAP servers introduce
optional or even proprietary commands which can confuse the proxy and
the client. Nonetheless, our current Spamatoxy has proven to run well in
different environments.

The feedback capabilities of the IMAP proxy have significantly been im-
proved compared to the POP variant. We have introduced the concept of
intelligent folders, which can be used directly from an email client. When-
ever a user moves a message to the “junk” folder, it is considered to be spam
and, thus, handled as a report in the Spamato system. Similarly, moving a
message from the “junk” folder to the inbox relates to a revoke. This way,
collaborating with Spamato is as easy as it is with the Spamato toolbar.
Of course, using the filter history plug-in for reporting and revoking is also
possible.

10The FETCH command takes either a sequential message number associated with the
current ordering in a folder or, as a UID FETCH, a unique message number remaining fixed
even after a folder content has been modified (addition or deletion of emails). We address
both as FETCH, as they can similarly be handled.
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2.6 Concluding Remarks

In this chapter, we have shown that Spamato is extendable in several ways.
The framework allows adding spam filters, custom filter process and decision
maker components, as well as plug-ins for many purposes. Spamato can
be embedded into email clients or supplied with emails in any other way.
Spamato offers a variety of extension points. It has been implemented in
Java and runs on all major operating systems.

In this section, we give a brief outlook on our future plans for Spamato.
Currently, the main task of Spamato, as the name promises, is to fight unso-
licited emails in a user’s inbox. In this thesis, we describe several techniques
that help to identify messages that should rather be outside of than in this
box. Although the detection of spam is one of the main concerns users are
confronted with daily, it is not the only issue they face. Especially those
users who receive large volumes of emails each day often feel overcharged
and helpless handling the sheer amount of messages.

The term triage denotes “a process in which things are ranked in terms
of importance or priority” (answers.com). Regarding emails, a triage system
can, for example, suggest which emails should be handled first and for which
an answer can be delayed for another day. It is also possible to categorize
emails by topic, to provide social background information, to analyze the
user’s email behavior, or to collect and automatically process useful infor-
mation such as appointment dates from an email. For more information on
email triage see [23, 68, 12, 48].

Generally, Spamato is able to integrate email triage functionality. In fact,
some of the plug-ins, such as the senders whitelist, already provide data that
goes beyond mere spam filtering and could be useful to help organize emails.
But two conceptual things are missing in order to employ Spamato as a full-
fledged triage system: a mechanism to present triage information to the user
and a mechanism to receive appropriate feedback from the user.

Our current implementation allows only to move messages within the
email client and to present some information on web configuration pages.
Using the Spamato toolbar, the user is also able to give minimal feedback
(reporting/revoking emails) to the Spamato system. But this is not sufficient.
An email triage system should seamlessly be integrated into an email client
and provide further capabilities. For example, the reordering of emails or the
highlighting of important messages in different colors seems to be a useful
procedure to support users. Also, the embedding of additional information—
such as the number of emails exchanged or the summarized content of pre-
vious topics in the same thread—directly into the email view can help users
to organize their inbox. Furthermore, the user must be able to revise, anno-
tate, and change the data provided by the triage system in order to train the
system and to better reflect the user’s demands.
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From a technical point of view, to fulfill these requirements, it is necessary
to extend the current communication protocol between Spamato and an add-
on as well as the capabilities on both sides. On the one hand, Spamato will
not only send filter results but also triage data to the add-on. In turn, this
information has to be parsed and somehow mapped to the API and the user
interface of an email client. On the other hand, the add-on has to enable
users to interact with the Spamato system in an advanced way. This requires
an easy to use user interface and will result in additional commands being
sent to Spamato and its triage plug-ins.

Besides using the email client, add-on, and web configuration, we are
also investigating other facilities to ease the interaction between users and
Spamato. For instance, we have implemented a gadget for the Google Sidebar
that shows information about the latest emails which have been checked by
Spamato. Thereby, we are following the ideas of tools like SNARF [69] that
present triage information outside an email client. Although email and triage
data is then partially separated, this solution offers additional possibilities
such as a cleaner user interface.

The long-term goal of the Spamato project is to turn into an “Emailato,”
which almost automatically handles all kinds of emails on behalf of the user.
Emailato would be like a personal, smart secretary who sifts the emails and
forwards only the most important ones at the right time with the necessary
side information to the user. Organizing the inbox would become an easy
task. Solving rather than searching for the real problems could again take
most of the user’s attention.





Chapter 3

Spamato Filters

This is not SPAM, it’s OPT-IN MAILING.

(AlexJ <webmaster@virginsmania.com>, 5/28/2006)

The Spamato system has been designed to leverage several spam filters in
order to achieve a high filter accuracy. In Chapter 2, we have describe how the
filter process invokes spam filters and how their results are combined using
a decision maker. As mentioned in the introduction of this dissertation, a
variety of different filter techniques exist. In this chapter, we present the
default spam filters which are deployed with the latest release of Spamato.

We start with summarizing the previously mentioned pre-checkers in Sec-
tion 3.1. The Bayesianato is a classic Bayesian-based, statistical spam filter
which is described in Section 3.2. The Domainator is a URL-based filter
that classifies messages based on information found on search engines such
as Google; it is presented in Section 3.3. Section 3.4 covers the rule-based,
heuristic Ruleminator filter. In the last three sections of this chapter, we
present different collaborative spam filters. We detail the general concepts
of collaborative filters in Section 3.5. Thereafter, the Earlgrey, Razor, and
Comha filters are described in Sections 3.6, 3.7, and 3.8, respectively.

We analyze different collaborative spam filters in Chapter 5. A compari-
son of our spam filters and real-world experiments are presented in Chapter 7.

3.1 Pre-Checkers

Pre-checkers (or ham-checkers in the terminology of the FuFiP, see Sec-
tion 2.2) are special spam filters which can veto against the further processing
of an email if they definitely know that an email is ham. In this case, the
filter process will be aborted without using any subsequent spam filters. We
make use of this concept in the following three cases.
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Veto Rules (Ruleminator)

By default, the Ruleminator (see Section 3.4) contains a rule that uses the
trusted senders plug-in (described in Section 2.4.4) to veto for ham when a
message from a trusted sender is detected. The rule can also be combined
with other constraints, or inverted to filter out distrusted senders (in which
case it would not be a pre-checker anymore). Furthermore, the Ruleminator
also provides the possibility to declare user-defined “veto” rules. For example,
it is possible to specify particular subjects or header entries that identify
known ham emails from newsgroups.

Verified Content (Trooth)

The Trooth system (see Chapter 4) uses a challenge/response mechanism
to verify the email address of a user. The challenge email received by the
user contains a special identifier which the Trooth pre-checker is looking for.
When detected, such an email is further processed to finish the registration
and can definitely be considered legitimate.

Revoke Protection

When a user revokes an email, the message is usually moved back to the user’s
inbox. As new emails in the inbox are checked by Spamato, it is possible that
the message is being classified as spam again. This pre-checker makes sure
that revoked emails are always considered to be ham.

3.2 Bayesianato

The Bayesianato is a statistical spam filter based on Paul Graham’s popular
essay “A Plan for Spam” [114]. The basic idea of this filter is to take all
words contained in an email and then to combine their spam probability
in accordance with Bayes’ theorem. Graham’s work has initiated numerous
theoretical and practical projects in this area; we discuss some of them in
Section 3.2.2. For the Bayesianato, we have taken many ideas from [98],
which describes the most important criteria of statistical spam filters and is
a comprehensive reference for general information on this topic.

Tokenization

In the domain of statistical spam filtering, we process features or tokens
extracted from emails. The procedure of extracting these tokens is referred to
as tokenization. There are several ways to tokenize an email. In the simplest
case, tokens are just single words. Advanced tokenization techniques combine
several consecutive words, try to reassemble and deobfuscate odd-looking
words or phrases, and use special markers for header and URL information.
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By default, the Bayesianato considers single words, no punctuation such as
“!” or “?”, and handles domain information as a single token such as “www.
spammer.com”. The user can configure the tokenization behavior, for instance
to deobfuscate HTML code before tokenizing emails (using the deobfuscator
plug-in as described in Section 2.4.6).

Calculating Token Probabilities

The spam probability of a single token can also be computed in different
ways. A simple method to calculate the spam probability P (t) for a token

t is given as P (t) =
Nspam(t)

Nspam(t)+Nham(t)
, where Nspam(t) denotes the number

of occurrences of token t in a spam message and Nham(t) the corresponding
number related to ham messages. In the Bayesianato, we use the more so-
phisticated formula taken from [96] with the default values for the parameters
set to C1 = 1 and C2 = 2:

P (t) = 0.5 +
Nspam(t) − Nham(t)

C1· (Nspam(t) + Nham(t) + C2)

Calculating the spam probability with this formula has the nice property
that the value will be around 0.5 for low occurrence numbers—expressing a
high level of uncertainty as one would expect in case a token has rarely been
seen before.

Combining Token Probabilities

The last component of a statistical classifier is concerned with the com-
bination of the single token probabilities. Paul Graham suggests to take
n = 15 to 20 of the most significant tokens—that is, the tokens with the
highest and lowest spam probability—and calculates the overall spamminess
S according to Bayes’ theorem as:

S =

�n

i=1 P (ti)
�n

i=1 P (ti) +
�n

i=1(1 − P (ti))

Values calculated by this formula tend to be rather extreme—being near
to 0 or almost 1. Uncertain results are missing but usually desired, as un-
certainty can decrease the false positive rate (but also increases the number
of false negatives).

Brian Burton, as many other researchers and developers, tweaked a vari-
ety of parameters in his SpamProbe system [17]. In SpamProbe, for example,
a larger number of tokens are considered, which can also be used more than
once; essentially, this puts more weight on frequent tokens. As a second
method, we combined these extensions with Robinson’s geometric mean al-
gorithm to calculate the spamminess as described in [98]. The algorithm
leads to values that are better distributed over the interval [0..1] and thereby
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also express uncertainty more often than in the previous case. When the
result is near 0.5, an email is classified as “unknown” rather than ham or
spam.

Gary Robinson improved the geometric mean method and presented his
inverse chi-square algorithm in 2003 [79], which has now been adopted in
many statistical filter systems. For this method, all tokens with a spam
probability less than 0.1 and greater than 0.9 are considered.

All three variants are part of the Bayesianato filter. The user can choose
whether they should be employed separately, in which case all three algo-
rithms provide their results to the decision maker, or combined such that the
Bayesianato returns only one result for all of them.1

3.2.1 Starting from Scratch

Statistical filters are learning filters. They have to be trained in order to
discern legitimate from spam messages accurately. Statistical filters rely on
historical data seen in the past to adjudicate upon good and bad in the future.
Therefore, they can only be as good as their training strategy, which includes
the composition of the email corpus (received spam and ham messages) and
the time of learning.

The email corpus should contain about the same amount of spam and
ham messages from the same recent time period. Paul Graham denotes that
a large imbalance in the number of emails could lead to a skewed token set
as more tokens are known for one of the two classification types. However,
Jonathan Zdziarski mentions in [98] that most filters should experience a
good performance even with a ratio of 70:30. For the corpus, it is more
important to account for emails from a recent time period because the users’
email behavior as well as the content of spam emails change over time: Recent
emails contain tokens which cannot be assessed when the prior training has
been conducted on obsolete data.

The “Train-Until-No-Errors” (TUNE) technique can be used as an initial
attempt to train a statistical filter. This technique tries to learn from the
given corpus unless no (or very few) misclassifications are being made. The
TUNE approach can also be employed to re-train a filter once in a while to
overcome the mentioned content drift of emails. For this, it would however
be necessary to store all emails received in a specific time period, which can
be cumbersome and expensive.

Many filters, including the Bayesianato, have an auto-learning mechanism
which allows learning from emails just passed through the filter. Beginning
with an empty set of tokens, every newly seen email can be used to train
the filter—provided that the actual classification is known, either by manual

1Note that the current version of Spamato includes only the “Paul Graham” algo-
rithm. Early results reported from beta-testers using all three algorithms indicate that
the third approach performs slightly better than the other two.
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feedback from a user or by adopting the overall decision of a multi-filter
system (which can be corrected by the user in case it has been wrong). Once
the filter has learned enough tokens, it can start to evaluate newly arriving
emails on its own.

As mentioned above, to handle the content drift the token set of a statisti-
cal filter should constantly be readjusted. Common techniques are discussed,
for example, in [96] and [98]. In the “Train-Everything” (TEFT) procedure,
the overall decision is always fed to the filter no matter how it has classified
the regarding email. However, doing this can lead to an overstimulation, as
the data set becomes too volatile containing a very large number of insignifi-
cant tokens. The “Train-On-Error” (TOE) strategy overcomes this problem
by learning only from misclassified emails, allowing thus to correct previous
errors. Unfortunately, the TOE strategy recognizes a content drift only after
producing false positives. In a multi-filter system such as Spamato, though,
this is irrelevant as long as other filters overrule the Bayesianato’s result.

The Bayesianato provides the described auto-learning techniques, which
can be selected by the user. Using the mail archive maintained by the filter
history plug-in, also the TUNE approach could be applied.

3.2.2 Related Work

The Bayesian-based and other statistical and machine-learning filtering tech-
niques have been analyzed and improved by numerous researchers. The high
number of research papers results from the fact that these techniques are
not only used in the spam filtering domain but also for text classification in
general. It is beyond the scope of this dissertation to describe all of them.
Instead, we want to highlight a few interesting concepts, knowing that several
others are missing.

Bayesian-based filtering in the context of spam filtering has first been
described in [72] and [81]. However, Graham’s “Plan for Spam” [114] is
probably more frequently cited. A recent overview of different Bayesian-
based algorithms is given in [65]; Zdziarski is also discussing several aspects in
[98]. In [96], the author compares six different statistical filtering techniques.
Another recent comparison of several algorithms is presented in [21].

Bayesian-based classifiers, which separate not only spam from ham but
which are also used to sort emails into different categories, have been pro-
posed, for instance in [77] and [73]. The POPFile spam filter system [115] is
also able to assign emails to more than two (spam/ham) categories using a
Bayesian-based approach.

Some work has been done to answer the question “How can Statistical
Filters be Attacked?” To beat a statistical filter, a spammer has to find
good words in order to conceal the real intention of a spam email. Different
results—presented for example in [37, 93, 60, 61]—indicate that for this pur-
pose it is necessary to send many emails enriched with random additional
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words. Using this technique to bypass a single user’s filter or that of a single
company is possible but very expensive in terms of the number of emails that
have to be sent. Infiltrating all statistical filters, is a futile endeavor.

A “solution” to this problem is presented by Aycock and Friess [11]. They
describe a threat that allows for sending highly personalized spam emails. In
their paper, they assume that spyware could be used to send emails, which
cannot be distinguished from those normally sent, by reproducing a user’s
normal vocabulary or email style. Still, a spammer has to get his message to
the receiver, for instance by adding a link to click on. That is, a multifaceted
approach such as Spamato can detect such messages by other indicators.

A statistical filter engine is part of many existing commercial and open-
source spam filter systems. In the SpamAssassin system, a Bayesian rule
exists [140]. Greg Louis, the author of Bogofilter, has experimented with sev-
eral variants of statistical filters [102]. The CRM114 Discriminator embodies
six different classifiers; a Bayesian-based filter is complemented, for example,
by a very effective Markovian-based one [106]. The DSPAM project “sup-
ports many different mathematical paradigms including Bayes, Chi-Square,
Geometric, and Markovian Discrimination” [108].

3.3 Domainator

The Domainator is a URL-based filter that searches for domains found in an
email on search engines. We use the number of listed entries as an indicator to
discriminate between spam and ham domains and classify emails accordingly.
The Domainator can be seen as a “meta” domain blacklist filter, as the search
results often contain pages of public blacklists indexed by search engines.
Although this technique can be used with many search engines, so far we
have employed only Google in the Domainator. Besides providing data about
domain names, Google has the advantage that it can also be used to gather
further information such as the number of referring pages.

In the next section, we are motivating this idea further, showing that ham
and spam domains usually produce very different results when searching for
them on Google. Section 3.3.2 details the classification algorithm used in the
Domainator, which we evaluate in Section 3.3.3. We discuss the algorithm
in Section 3.3.4 and close presenting some related work.

3.3.1 Motivation and Preliminaries

We collected about 2000 domains from private spam and ham corpora, our
statistics database (see Section 2.4.2), and different bookmark collections.
The domains were classified as spam (800) or ham (1200) domains based on
manual examination.

For each domain, we sent seven different queries to the Google search
engine in order to determine the base criteria as input for our algorithm.
The criteria and the queries are summarized in Table 3.1.
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Criterion Search Query

Domain “<domain>”
Link link:<domain>

Related related:<domain>

Site site:<domain>

Spam <domain> spam
Blacklist <domain> blacklist
SpamBlacklist <domain> spam blacklist

Table 3.1: Search queries used to calculate the criteria values.

For example, the value of the Spam criterion was obtained for the domain
“spammer.com” with the query “spammer.com spam”, which searched for web
pages that contain the string “spammer.com” as well as “spam”. Notice that
we were not interested in the search results themselves but only in the number
of results found by Google.

In addition to these absolute criteria, we derived the following relative
criteria: Spam′ = Spam

Domain
, Blacklist′ = Blacklist

Domain
, and SpamBlacklist′ =

SpamBlacklist

Domain
. If the Domain value equaled 0, the relative criteria were also

set to 0.
A manual examination of the collected data showed that ham domains

had high values for the absolute criteria whereas high values of relative cri-
teria are good indicators for spam domains. As an example, Figure 3.1
illustrates the results for the Domain and the Spam criteria. As can be
seen, spam domains are clustered in the lower left area of the chart; ham
domains are distributed over the whole area and generally tend to higher
values. Note the logarithmic scaling of the axes. Also recall the fact that the
value of the Spam criterion is always lower than the associated value of the
Domain criterion, as the former is more restrictive.

Our observations are summarized in Table 3.2. These results were the
motivation for the development of the Domainator algorithm as described in
the next section.

3.3.2 The Classification Algorithm

Generally, we consider an email to be spam if at least one domain contained
in the message is classified as such. A domain is analyzed in the following
five phases.

Searching on Google

We determine the values for the seven criteria as described before. If all
values for the criteria are 0, then the algorithm can be aborted. In this case,
the classification of the inspected domain is “ham.”
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Domain vs. Spam Criterion

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

log(Domain)

lo
g

(S
p

a
m

)

    Spam       Ham

Figure 3.1: Illustration of the Domain and Spam criteria. Spam domains are
clustered in the lower left area of this figure. They can be distinguished well
from ham domains. Note the logarithmic scaling of both axes.

Indicator for. . .
Criterion Spam Domains Ham Domains

Domain O -

Link - O

Related - +

Site O ++

Spam’ + O

Blacklist’ + O

SpamBlacklist’ ++ O

Table 3.2: Capability of different criteria to discriminate between spam and
ham domains. A criterion marked with “-” has a very low impact, “++”
denotes a very high discrimination factor, and “O” and “+” are in between.
Also see Table 3.4.

Calculation of Scores
We assign a positive spam score si(x) to a relative criterion Ci if its value
x exceeds a spam threshold value STi (see Formula 3.1); similarly, an abso-
lute criterion receives a spam score if its value is below the spam threshold
(Formula 3.2):
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si(x) =

��
�

S≤x,≥STi

S≥STi

if x ≥ STi

0 otherwise
(relative criterion) (3.1)

si(x) =

��
�

S≥x,≤STi

S≤STi

if x ≤ STi

0 otherwise
(absolute criterion) (3.2)

S≤x,≥STi
denotes the number of all initially known spam domains (see

Section 3.3.3) whose criterion values are less than or equal to x and greater
than or equal to STi. The other variables are defined accordingly.

Similarly, a relative (absolute) criterion Ci has a positive ham score hi(x)
in case its value is less (greater) than or equal to a ham threshold HTi, as
shown in Formulas 3.3 and 3.4, respectively:

hi(x) =

��
�

H≥x,≤HTi

H≤HTi

if x ≤ HTi

0 otherwise
(relative criterion) (3.3)

hi(x) =

��
�

H≤x,≥HTi

H≥HTi

if x ≥ HTi

0 otherwise
(absolute criterion) (3.4)

The actual values for STi and HTi are heuristically derived from the
initially known “master” domain set described in the previous section. Their
values are summarized in Table 3.3.

Criterion Ci Type STi HTi

Domain absolute 9 8
Link absolute 3 2
Related absolute 1 0
Site absolute 65 64
Spam’ relative 0.059 0.109
Blacklist’ relative 0.007 0.017
SpamBlacklist’ relative 0.007 0.015

Table 3.3: Thresholds for applying spam and ham scores to search criteria.
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Criterion wspam
i wham

i

Domain 8 4
Link 4 20
Related 4 80
Site 8 100
Spam’ 60 10
Blacklist’ 100 10
SpamBlacklist’ 150 10

Table 3.4: Criteria-specific weights to express different significance levels.

Criteria-specific Weighting

In this step, we calculate the weighted and normalized sum of all spam (S)
and ham (H) scores, respectively:

S = � i(si·w
spam
i )

� i wspam
i

and H = � i(hi·w
ham
i )

� i wham
i

The weights wspam
i and wham

i are criteria specific. They represent dis-
crimination factors which reflect the different significance values of the crite-
ria. The default values are shown in Table 3.4. They have been derived from
the initial domain set and the results presented in Table 3.2.

Considering Aggressiveness

The Domainator provides a further, user-specific parameter which can be
used to adjust the aggressiveness of the algorithm. The minimal value of
0 effectively disables the Domainator, as all domains would be considered
ham; using the maximal value of 1 would classify every domain as spam.2

The default value is A = 0.5.

S′ = S·

�
A

1 − A
if A ≤ 0.5

1 otherwise
and H ′ = H ·

�
1 − A

A
if A ≥ 0.5

1 otherwise

Finding a Decision

The final result R = S′ − H ′ denotes whether the considered domain is
classified as spam (R > 0) or ham (R ≤ 0). In Table 3.5, we present example
results for three manually chosen domains.

2To avoid a high number of false positives, we multiply the aggressiveness by 0.9
before calculating S’ and H’.



3.3. DOMAINATOR 65

ethz.ch memoryics.info computermadnessone.com

Domain 20300000 3 54
Link 16700 0 0
Related 0 0 0
Site 14900000 0 0
Spam 128000 1 46
Blacklist 17200 1 20
SpamBlacklist 11000 1 19
Spam’ 0.0063 0.3333 0.8519
Blacklist’ 0.0008 0.3333 0.3704
SpamBlacklist’ 0.0005 0.3333 0.3519

Score -0.5186 0.5736 0.6464
Classification Ham Spam Spam

Table 3.5: Example results for three selected domains.

3.3.3 Evaluation

We evaluated our initial domain set with the presented algorithm. Figure 3.2
illustrates the ratio of false positives and false negatives in dependence of the
value of the aggressiveness. With the default aggressiveness of 0.5, there have
been 10 false positives (0.8%) and 92 false negatives (11.5%). In general, an
aggressiveness value between 0.1 and 0.8 seems appropriate, smaller or larger
values lead to high misclassification rates.

Of course, the algorithm was tuned to calculate good results for the initial
domain set. To counter this criticism, we analyzed an additional domain set
that did not contain any domains of the initial set. In total, there were
about 2000 domains—1000 spam and 1000 ham domains—which had been
collected during the normal usage of Spamato by several participants. The
domains were immediately analyzed when they arrived in the users’ inboxes.
As expected, the results are slightly worse than for the initial set but still
acceptable: The Domainator produced 11 false positives (1.1%) and 181 false
negatives (18.1%). In Chapter 7, we present further results from all Spamato
users which, unfortunately, perform worse.

3.3.4 Discussion

The Domainator leverages search engines to identify spam. One problem
with this method is that search engines have to index web pages before the
Domainator can make use of them. While some of our query results can be
obtained from the considered domain itself, other information, such as for
the Spam criterion, need to be published by people or systems sharing their
knowledge on the Internet. In other words, the Domainator can only be as
good as the information provided by others. Moreover, the Domainator can
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Impact of the Aggressiveness on the Misclassification Ratio

0%

10%

20%

30%

40%

50%

60%

70%
0

.0
0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

Aggressiveness

M
is

c
la

s
s

if
ic

a
ti

o
n

 R
a

ti
o

 [
%

]

False Positives False Negatives

Figure 3.2: Impact of the aggressiveness value on the misclassification rate.

act only in a time-shifted way, as it has to wait for other people to publish
and for the search engine to index the relevant data.

If a search engine does not provide enough information about a domain,
the Domainator is not able to classify it appropriately. Treating an unknown
domain—that is, one that has not been indexed by a search engine—as spam
seems a bad idea, as for instance many private homepages might not be listed
on a search engine. Nevertheless, the question is how often a person receives
such an unknown domain. If ever, there is a high probability that it has been
received from a trusted sender (see Section 2.4.4).

As the Domainator utilizes external information, this raises the question
whether this information can be trusted. We believe that the reputation of
large search engines, such as Google, is good enough to completely rely on
their data. Although they might control the publication of their search index
at will, they definitely do not have any interest in impeding the identification
of spam domains. The question remains if people can manipulate a search
engine’s index to mislead the Domainator. The main motivation of spammers
would obviously be to give their spam domains a reputable touch. But also
the other case—lowering the trustworthiness of ham domains—seems attrac-
tive as it can lead to a high number of false positives which would question
the entire filter approach. Both problems are related to “web spam” in gen-
eral: Spammers try to manipulate the index of a search engine by controlling
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huge server farms and thousands of domains which reference each other in
order to gain a high page rank [39, 94]. Detecting web spam attacks and
reducing their impact on search engine results will similarly lower the capa-
bility of spammers to deceive the Domainator. As for now, we think that this
problem is neglectable and that we can fully trust the search results found
on Google.

A problem with the search results is that some domains seem to be spam
related although they belong to the opposite. For instance, the domains
spamato.net and spamassassin.org both contain the word “spam” which
results in a high value for the Spam criterion. In fact, the Domainator clas-
sifies spamato.net erroneously as spam (with the default aggressiveness of
0.5). The same problem also holds for companies which try to sell anti-spam
products or work in this area. The best way to handle such domains is to rely
on a domain whitelist as described in Section 2.4.5. Another problem is that
some domain names might actually be contained in others. For instance, the
domain spammers.com is contained in anti-spammers.com. Therefore, results
for spammers.com benefit from the good reputation of anti-spammers.com.
Similarly, the Domainator can treat ham domains worse than appropriate if
they are part of the name of a spam domain.

Our algorithm depends on three parameters: the threshold values, the
weights, and the aggressiveness. As described above, the aggressiveness is a
value that can be adjusted by the user whereas the values for the thresholds
and weights have been heuristically determined after examining our initial
domain set. Although the Domainator performs well with the current set-
tings, the values might be subject to change if the properties of ham and
spam domains evolve. Currently, the values are fixed and therefore cannot
reflect any changes. It is possible to modify the values either with each new
version of the Domainator (if necessary) or leave it to the user to manually
adjust them. A better solution, though, would be to automatically opti-
mize the values based on the experience gained during the normal usage of
Spamato.

Finally, we do not want to conceal the fact that the Domainator produces
a high amount of network traffic. For each query sent to Google, the Do-
mainator receives about 10 to 20 kB of data. On total, this results in 70 to
140 kB of data (per domain!) which stresses the user’s network connection
in addition to the inspected spam message. For the same reason, the Do-
mainator is rather slow in deciding on spam or ham, as it has to wait for all
replies. To tackle this problem, we have implemented a caching strategy to
query Google only if it has not been done in a specific time interval before.
Also, the domain whitelist helps to decrease the number of queries sent to
Google.

Overall, we think that the Domainator is a good complement to other
URL-based filters.
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3.4 Ruleminator

The Ruleminator is a rule-based or heuristic filter. It allows defining static
rules that classify a message based on properties of the headers or the body
part of an email. For example, the word “viagra” in the body of an email is a
good indicator for spam and emails that claim to have been sent years ago (or
in the future) can be deemed spam as well. A rule can define a matching of
different kinds: For example, they can match an exact phrase (subject equals
“Hi”), start or end with a phrase (subject starts with “!SPAM”), contain a
phrase (the body contains “viagra”), or match an arbitrary regular expression
(body matches “(?is).*img.*?src.*?cid:.*”). In addition to spam rules, it is
also possible to build ham and veto rules. Ham rules just decide on ham
rather than on spam, whereas veto rules are invoked in the pre-check phase
of the filter process (see Section 2.2) and can thus veto for a ham classification
(without considering any spam filter).

Filter rules of these kinds can be defined in most email clients, such as
Outlook or Thunderbird, without the assistance of Spamato. What makes
the Ruleminator special is its capability to incorporate the results of other
plug-ins and filters. For instance, a default veto rule of the Ruleminator is
to classify a message as ham if it has been sent by a trusted sender—which
has been verified by the trusted senders plug-in described in Section 2.4.4,
not by the Ruleminator.

Rules can also be combined in order to define more powerful expressions.
For instance, an email that contains embedded images and has been sent
by a distrusted person is more suspicious than each of the single constraint
expresses. Such a “meta” rule also allows combining the results of different
spam filters, which renders the Ruleminator a kind of “pre” decision maker.

One weakness of rule-based filters is that rules are usually very specific;
they identify only a particular type of spam (or ham) emails. For instance, a
spam rule that looks for “viagra” in an email cannot filter emails that contain
“vi@gr@” or even “cialis.” The Ruleminator is able to express more powerful
rules as described above. But, in general, rule-based filters tend to contain a
lot of weak rules that are hard to understand and maintain. This often leads
to a high number of misclassifications, which is of course undesired.

Another drawback of heuristic filters is that rules are usually static and
cannot adapt to feedback from the user. For instance, the “viagra” rule will
always incriminate emails that contain this keyword even if a user works for
Pfizer—it cannot learn. In Spamato, some rules, such as the (dis-)trusted
senders rule, rely on the capability of plug-ins which allow them to adjust
their behavior and thus overcome this weakness. However, most user-defined
rules are static which can again lead to a high number of misclassifications.
Only a sophisticated decision maker which weighs the rules in accordance to
their past performance can help alleviate this problem.
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From a technical point of view, new rule types can easily be added to
enhance the capabilities of the Ruleminator. Currently, we are working on
an implementation to use scripting languages, such as Ruby, to define new
rules without modifying the Java source code of the Ruleminator. This will
allow to create very sophisticated rules at runtime—at least for users with
programming skills.

Default Rules

The Ruleminator contains by default three spam and one veto rules. The
“Trusted Senders” rule vetoes against further processing of an email if its
sender is whitelisted (checked with the trusted senders plug-in, see Sec-
tion 2.4.4). Similarly, the “Distrusted Senders” rule votes for spam if the
sender of an email is not on the whitelist. In addition, the “Distrusted CID”
rule also checks whether an email contains an embedded image (detected
if a “cid:” reference exists). Finally, the “PreChecked” rule tests whether
an email is already flagged as spam by other spam filters, for example by
SpamAssassin.

3.4.1 Related Work

SpamAssassin [140] is a popular server-side spam filter which incorporates
several hundreds of light-weight spam rules. It is usually invoked by other
mail processing tools such as Procmail [132] or MIMEDefang [120]. From a
technical perspective, it is similar to the Spamato system. Since version 3.0
of SpamAssassin, it is possible to extend its capabilities with plug-ins which
are comparable to Spamato’s plug-ins. SpamAssassin also allows to declare
meta rules which are rules that combine the results of several other rules.

As mentioned before, most email clients provide user-defined filter rules.
With such rules, most often specific emails that share a common identifier,
for instance newsletters, are moved to a special folder. In other words, filter
rules are used to sort known ham messages rather than to distinguish between
ham and spam.

RIPPER [19] automatically learns rules to sort texts into categories. In
the ifile [77] filtering system, a Bayesian approach is taken to classify emails.
The FogBugz system [119] also uses a Bayesian-based filter to sort emails in a
bug tracking system; this concerns the separation of “technical questions from
sales-related questions” and has also been employed to filter spam emails.
Pantel and Lin [73] describe the SpamCop system that is used for spam
classification as well as to organize emails in general. The POPFile spam
filter [115] application can also be used to detect spam besides categories for
legitimate emails.

A few systems allow sharing rules among users. Jung and Jo [47] describe
a system in which collaborative software agents exchange rules. The rules
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are automatically generated containing email features, for instance embedded
URLs. Garg et al. describe a similar system in [32]. Both systems, though, do
not seem to be employed in a real-world scenario. In contrast, the “Camel’s
Eye” spam filter proxy [153] also includes a sharing facility for rules and can
be used for practical purposes.

3.5 Collaborative Spam Filters

Collaborative spam filters3 harness a collectively maintained knowledge base
containing information about spam and ham emails. They take advantage
of the fact that spam is sent by the millions and that users who receive
such emails can help each other to sort them out. In a nutshell, the general
procedure is as follows: When an email is received, it is first queried against
a global database. If it is listed, the email is considered to be spam and
automatically removed from the user’s inbox. Otherwise, the user has to
classify it manually either as ham or spam. In case of spam, the email
is reported to the database and can, in turn, help to identify similar spam
received by other users. Thus, the chief principle of collaborative spam filters
is to share the common knowledge about spam emails among participants.

Of course, no user would like to see all emails being sent in a plain text
format to a central database since legitimate emails are inherently of private
nature. To overcome this problem, emails are represented as fingerprints—
also called digests, hashes, or signatures—that cannot be used to deduce the
actual content of emails; thus, the privacy of users is guaranteed. Since spam-
mers often mischievously modify the content of an email, the most important
property of a fingerprinting algorithm is to be insensitive to such modifica-
tions. Slightly modified emails have to be mapped to the same fingerprint in
order to be recognized as similar in the database. That is, a good fingerprint
algorithm must be tolerant to “noise” but must still be able to preserve a
high discriminative factor, preventing thus false positives.

Calculating a cryptographic hash, for instance using the SHA1 algorithm
[138], for an entire email text is not very promising, as even the addition
of a single character to the email will result in a completely different fin-
gerprint. Also, relying on irrelevant information, for instance considering
only the sending date, will not meet the requirements. Therefore, mean-
ingful features of an email are usually selected in order to achieve a stable
fingerprint. Examples of common features include letter frequencies [66], sig-
nificant words, shingles or token sets [47, 66, 16, 18, 52, 20], selected n-grams
[99, 24, 84, 63, 31][135, 123], phrases, sentences, or paragraphs [30, 15], and
URLs [47, 95, 3][135].

3Note that collaborative spam filtering is not collaborative filtering. The latter de-
notes a mechanism to recommend items to users of similar interest. See Chapter 4 for
more information.
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Note that not all of these algorithms are specific for the detection of spam.
Detecting similarities in data is important in a variety of domains, including
the detection of copyright infringements and plagiarism [89][107], the com-
parison of image and audio data [40, 58], and the optimization of storage and
caching strategies in distributed file systems [76]. However, the spam domain
is probably the only area in which adversaries, namely spammers, actively
try to penetrate such algorithms in order to generate different fingerprints of
similar emails.

An obvious weakness with collaborative spam filters in general is the
bootstrapping problem: A few users will always experience undetected spam
messages, because someone has to be the first receiving and reporting a new
kind of spam email. Users who check their inbox only once a day are more
likely to benefit from such filters than users who constantly check for new
emails. That is, collaborative spam filters—taken on their own—are not
able to guarantee a 100% protection of spam. In a spam filter system like
Spamato, however, this is not a problem since other types of spam filters can
bridge this gap.

A related point is that collaborative spam filters depend on the number
of participating users or rather the number of reported spam emails. They
become more effective as more users join their network. Furthermore, they
also suffer from a free-riding problem where users only query the filter net-
work without contributing to it (by reporting spam emails). In order to
increase the number of known spam emails, spam traps, also known as tar
pits or honey pots [75], can be employed. Spam traps consist of email ad-
dresses which are published on the Internet and are automatically harvested
by spammers using email crawlers. As these email addresses are never used
for normal communication, incoming emails can, by default, be considered
spam and thus reported to the spam filter network. Nowadays, millions of
such fake email addresses are part of spammers’ email lists and assist the
work of collaborative spam filters.

So far, we have assumed that reported emails can automatically be turned
into indicators of spam. Unfortunately, the real world is more complicated.
Users can, by accident or intendedly, report arbitrary emails as spam—even
legitimate newsletters from Amazon or security warnings from Microsoft.
Manually maintaining a server-side whitelist for known ham fingerprints can
help alleviate this problem but it also increases the management effort. In or-
der to remove such messages by the community, once a false positive has been
produced, messages can be revoked from the system. However, a straight-
forward implementation of this mechanism would enable spammers to revoke
all their advertisements and, thus, would render collaborative spam filters
useless.

A trust or recommendation system is usually employed to observe a col-
laborative spam filter network. Here, reports and revokes and the identifi-
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cation of their associated users are registered in a database. Users receive a
trust value that expresses their conformity with the overall decision, for ex-
ample a decision by the majority. Querying the database for the fingerprint
of an email then considers the ratio between reports and revokes weighted by
the trust values of the voting users. We further detail this topic in Chapter 4
when we describe the Trooth trust system, which is a plug-in in the Spamato
spam filter system.

A general problem of centralized systems is their vulnerability to (dis-
tributed) denial of service (DDOS) attacks. A single server or database can
easily be turned off by addressing it with continuous requests in high volumes.
Blue Frog, a former collaborative anti-spam solution that effectively tried to
perform DDOS attacks on spammers—which is also known as a “filters fight
back” approach—, has recently been put out of business after itself has been
the victim of such an attack [101]. The Okopipi project [126] aims to become
a distributed, peer-to-peer replacement for the Blue Frog anti-spam solution
being thus immune to this vulnerability.

The authors of [99] also describe a collaborative peer-to-peer filter that
stores the collectively known fingerprints in a distributed hash table rather
than in a central database. [13] describes a mechanism to efficiently search
for similar files in a peer-to-peer system. [25] is an email-server-based collab-
orative spam filter system in which information about known spam messages
is exchanged between SMTP servers. Since the SMTP network is likewise
distributed, this approach is also resilient to DDOS attacks. [38] and [53]
also take advantage of the SMTP but are employed on the client-side: Fin-
gerprints (and other information) of known spam messages are exchanged
using the normal email distribution channel to collaboratively fight spam.

Just like the Domainator, collaborative spam filters have to send data over
the network in order to classify an email. The amount of data transferred is,
compared to the Domainator, relatively small. Still, each email causes further
network traffic, which might be discouraged. Due to the network latency, this
filter technique also delays the evaluation of an email. To limit the data sent
to a server and to decrease the time it takes to classify an email, a common
approach is to use local caching and whitelisting mechanisms that store data
about known fingerprint classifications. Before querying the global database,
the locally available information is searched and, if a matching fingerprint is
found, the previous results can be applied.

3.5.1 Related Work

We have already cited many of the related projects in this area. As men-
tioned, only a few of them have been employed to filter spam. Most of the
work is used “offline” to analyze a given set of files for finding similar ones.
A good introduction can be found in [15] and [30]. Here, we will only detail
a few techniques that have particularly been designed for the spam domain.
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Ko lcz et al. [52] describe an improvement of the original I-Match algo-
rithm [18] outperforming it in a spam filtering application. The basic idea of
the original I-Match algorithm is rather simple: All unique words of an email
that are also contained in a pre-compiled lexicon are hashed to generate a
fingerprint. While this method is insensitive to changes in the order of words,
the addition or deletion of words, which also have to be in the lexicon, results
in a modified fingerprint. [52] proposes the usage of several lexica that are
derived from the original lexicon by eliminating a small random fraction of
original terms. Instead of using a single fingerprint, a fingerprint is calculated
for each lexicon and one or a small number of fingerprints have to match in
order to consider messages similar.

We see one major problem with this technique: The rather large lexica
have to be deployed to all participating clients. Furthermore, they cannot
easily be updated in order to adapt to changes in the commonly used (spam)
words. Nevertheless, it would be interesting to see how the improved I-Match
algorithm would perform using different lexica derived locally, for instance
from each user’s token set managed by the Bayesianato.

Metzger et al. [66] propose a twofold filtering technique. They call the
first one a Support Vector Machine (SVM) approach, which is essentially
similar to I-Match. In the second method, they determine the frequency of
representative letters of each email and use the difference of the frequencies
for each letter as a similarity metric: Similar (spam) emails should have
about the same “letter histogram” whereas different emails do not. We have
analyzed this idea and present the results in Chapter 5.

The Usenet Binary Spam Filter (UBSF) [148] is used to block unsolicited
binary content (such as images) from binary Usenet groups.4 The entire data
is hashed using an MD5 algorithm. The resulting fingerprint can be queried
using a HTTP request such as http://archive.xusenet.com/ubsf.html?

q=439cd6b58e60b328c3b1e4cc95be69cb. Although the UBSF is currently
not employed for email spam, we comment on it here, as images embedded
in spam emails become a growing annoyance [131]. The weakness of this
algorithm, however, is that MD5, as a cryptographic hash algorithm, is very
sensitive to changes in the data. Since spammers have started to send slightly
modified pictures, for instance by changing the background color or adding
randomly distributed pixels to the picture, this technique cannot be used in
this form for detecting similar emails.

Damiani et al. [24] describe a fingerprinting algorithm that is similar to
Nilsimsa [123]. Nilsimsa works roughly as follows: A sliding window of size
five is moved over the entire email text. For each window, several trigrams
are calculated. Each trigram is hashed to one of 256 buckets and its bucket
counter is increased by one. In the final 256-bit fingerprint, a bit is set to 1 if

4Anecdotally, binary Usenet groups are mostly used to share adult content which is
also an area in which spammers advertise the most. So readers of such newsgroups might
not really be averse to see spam message of this kind.
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the associated bucket counter exceeds a given threshold. The threshold value
is the average bucket size for each bucket previously determined by analyzing
a large number of emails. Two fingerprints are considered to be similar if at
least 152 bits at the same position have the same value.

Damiani et al. propose two simple modifications to this approach. First,
they use the median instead of the average value when calculating the fin-
gerprint. And second, the number of bits that have to be equal in order to
consider fingerprints similar is increased to 182. In Chapter 5, we present
some results for both approaches.

3.6 Earlgrey

The Earlgrey5 filter is a URL-based collaborative spam filter. It uses the url
plug-in (see Section 2.4.5) to extract the URLs or rather the unique domains
contained in an email. It then checks whether the domains appear in the
central Earlgrey database and if so, it considers the email as spam. A more
detailed description of the filter process is as follows:

(1) Extract all unique domains D from an email using the url plug-in. If
all domains in D are whitelisted, classify the message as ham and stop.

(2) Otherwise, send D to the Earlgrey server.

(3) The Earlgrey server removes all server-side whitelisted domains from
D, which results in D′.

(4) A single MD5 hash is calculated of all domains in D′: H = MD5(D′).

(5) H is queried against the Earlgrey database, which contains the number
of reports and revokes for H .

(6) The result R = #reports

#reports+#revokes
is sent to the client.

(7) If R is larger than a user-defined threshold, the message is considered
spam, otherwise it is ham.

This sequence is not quite complete because the Earlgrey filter addition-
ally depends on the Trooth trust system in order to prevent malicious users
from harming the system. Figure 3.3 depicts the complete system and illus-
trates the cooperation of the Earlgrey and the Trooth system. In Chapter 4,
we describe the Trooth system and give a detailed example for filters using
it in Section 4.5. Here, we only sketch the real process.

5From Wikipedia.com: “The term URL is typically pronounced as either a spelled-
out initialism (’yoo arr ell’) or as an acronym (earl or ural as in the Ural Mountains).”
Moreover, Earlgrey is a black tea which the author of this dissertation likes to drink in
the evenings. This filter has nothing in common with Greylisting [57].
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Figure 3.3: Illustration of the Earlgrey filter. Domains contained in an email
and the user identifier are sent to the Earlgrey server. A hash is calculated
for which the Trooth server returns the reports and revokes including their
users. This information is forwarded back to the Earlgrey client. The client
part of the Trooth system determines whether the original email is spam or
ham.

Steps (5) to (7) are only executed as described above if R is near to one;
this is referred to as the majority heuristic in the Trooth system. Otherwise,
a selected number of reports and revokes as well as the identifiers of the
users who cast them is sent to the client. The client weights the reports
and revokes in accordance with the trust value of the users which the Trooth
system maintains on the client side. The fraction R′ of the trusted report
and revoke values is calculated as in step (6). Finally, step (7) can be applied
using R′ instead of R.

Reporting and revoking of emails is performed similarly: All domains
are sent to the Earlgrey server, which stores a hash of the set of all non-
whitelisted domains and the user identification (verified by Trooth) in the
database. To adjust the trust values of users, the Earlgrey server (in com-
bination with the Trooth system) also returns the identification of assenting
and dissenting users.

Caching and Whitelists

On the client side, the Earlgrey filter employs the caching facility provided by
the filter history plug-in (see Section 2.4.3) to reduce the number of requests
sent to the server. Before sending a request for a new message, the client
searches for results in the cache and applies a previously determined result
if found. In order not to conflict with re-checks (see Section 2.5.1), the time
a result stays in the cache is shorter than the interval for re-checks.

The client-side domain whitelist is maintained by the url plug-in. The
server-side whitelist can manually be updated by the administrator. Since
client requests are logged, it is also possible to automatically promote do-
mains that have often been queried but never reported.
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General Problem: No Domains

Obviously, URL-based filters in general cannot evaluate emails that contain
no URL. The Earlgrey filter classifies such emails as “unknown” rather than
ham. We have analyzed 90000 emails from our statistics database: about
78000 contained at least one URL. Therefore, a URL-based filter can only
evaluate approximately 86% of all emails. In other words, this means that
they have a minimal false negative rate of 14% (regarding all emails).

Future Work

For the future, we plan to implement an Earlgrey extension for the Firefox
browser. The extension can warn users when they open the pages of a spam
domain that is listed in the database. This would also be a protection for
unaware users that are directed to a phishing page.

3.6.1 Related Work

The Earlgrey filter differs from the Domainator, as it does not query a search
engine but our own database. Furthermore, the Trooth trust system makes
sure that no malicious user can tamper with the system.

Yeh and Lin [95] describe a URL-based technique which works with a local
database rather than a global, collectively maintained one. The database can
however be shared but access to it is restricted to a single company. This
solution can only be successful if the user base of the system is large enough.

The Whiplash algorithm in the Razor system considers a message to
be spam if one domain is tagged as spam. In contrast, the Earlgrey filter
considers a message to be spam if the hash of all domains contained in an
email is spam. Many emails contain only a single domain; in this case, the
Whiplash and the Earlgrey algorithm calculate the same result, as there is
no difference in evaluating a single domain or the hash of a single domain.

However, there is an increasing number of emails linking to more than
one domain; we refer to these as multi-domain emails in contrast to single-
domain emails, which contain only one domain. In [3], we investigated 13750
spam messages and discovered that about 5800 (42.4%) of them contained
more than one domain and about 1000 (7.3%) emails referenced even ten
or more distinct domains. The reason for this enrichment of URLs is that,
for example, spammers use images in their messages that are loaded from
different legal online shops or that they link to trustworthy sources to affirm
their legitimacy. It is also a common practice to insert several fake domains
to spam messages for the only purpose of misleading URL-based filters.

The drawback of the Whiplash filter is that when spam messages are
reported to the Razor network, also ham domains which are probably con-
tained in a multi-domain email are discredited. This means that for example
a message which contains only a single ham domain that was reported as
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part of another multi-domain email before will subsequently be classified as
spam, too.

The Earlgrey filter is immune to this problem. The fingerprint of a multi-
domain email, which might also contain one or more ham domains, does not
conflict with any other fingerprints derived from the same ham domains.
That is, a message containing the ham domain A has a different finger-
print than a message that contains A and the real spammer’s domain B.
However, the Earlgrey filter has another problem: Just like spam messages
interspersed with random text chunks paralyze a hash-based spam filter (like
the Ephemeral algorithm in the Razor filter), random insertion of constantly
changing fake domains alters the fingerprint and makes it impossible for this
filter to uniquely identify the message. In Chapter 7, we show how the Earl-
grey and Whiplash algorithms compete against each other.

URL blacklists, such as [144] and [149], are similar to the Earlgrey filter
since they blacklist domains contained in spam emails. Querying for a domain
is performed using a DNS lookup. For instance, if the domain spammer.

com.sc.surbl.org can be resolved, spammer.com is blacklisted by SURBL,
otherwise not. In contrast to the Earlgrey filter, these blacklists provide a
rather harsh “this is spam/ham” policy: There is no confidence value as it
can be derived from the number of reports and revokes. Moreover, an often
stated criticism of blacklists is that they are too aggressive in listing domains.
It is rather hard to convince the administration of such blacklists to remove
a legitimate domain once it has been added to their index. In our system,
Trooth maintains trust values for reporters and revokers on the client side in
order to allow for a user specific rating of domains.

DNS blacklists, such as those maintained by Spamhaus [141] and SORBS
[139], do not blacklist domains contained in an email but IP addresses of
SMTP servers from which spam has been sent in the past. This mechanism
is especially useful, as it can be used to block emails before they are delivered
to the receiver. Jung and Sit report in [46] that the MIT Artificial Intelli-
gence Laboratory was able to block about 80% of all spam emails using DNS
blacklists in 2004. However, such systems suffer from the same problem as
URL blacklists.

Han et al. propose a collaborative URL spam filter to block link spam
in blog systems [41]. Motivated by the work in [53] and [24], they perform
an adaptive percolation search to find link spam among blogs which is based
on random walks and probabilistic broadcasts in the graph of trusted blogs.
Unlike our approach, they do not query a central database but use locally
cached information or a periodic search mechanism to identify similar spam
links. If the number of positive replies from other blogs exceeds a given
threshold, a blog entry is considered spam.
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3.7 Razor

Vipul’s Razor [135] is an open-source6 spam filter originally written in Perl.
We have re-implemented a fully compliant Java derivative from the original
Perl source code as well as from the protocol specification described in [142].
Our Razor implementation is part of the Spamato system and has been pub-
lished under the GPL. It has also been adopted in the Camel’s Eye filter
written by Jörg Zieren [153].

Finding Servers

The classification of a message as spam or ham is a process of several steps in
the Razor network. The Razor client regularly has to discover the available
servers to be able to check, report, and revoke messages. The following steps
are performed by the client to build a list of available servers:

(1) A set of discovery servers (D) is collected using the Domain Name
System: The client tries to resolve the IP address of domains of the
form X.razor2.cloudmark.com, where X is a character of the list (a, b,
..., z). The characters are used in ascending order and this loop stops as
soon as the address resolution fails, indicating that no more discovery
servers are available. All resolved IP addresses build the set D.

(2) The client connects to a server in D. If the connection fails, a connec-
tion to another discovery server in D is tried to be established. If no
connection attempt is successful, the system fails.

(3) The client requests a set of catalogue servers (C) and nomination
servers (N). Catalogue servers are used to check if a message is spam;
nomination servers are used to report and revoke messages.7

(4) D, C, and N are stored on the client and are regularly updated, for
instance once a week.

In the first step, several discovery servers are searched for. Once they
have been found, several catalogue and nomination servers can be looked up.
That is, the Razor network has a replicated structure which makes it difficult
to perform a DDOS attack against the servers.

6The client of the Razor filter is licensed under the open-source Artistics License. The
server, however, has not been published.

7Note that it is undocumented how and when entries reported to the nomination
servers are shared with the catalogue servers.
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Filter Engines

The Razor filter contains two different engines used to identify similar emails.
The Whiplash engine is a URL-based filter, which we have already described
in Section 3.6.1. The Ephemeral engine is a fuzzy hash-based filter that works
as follows:

(1) The client connects to one of the catalogue servers in C.

(2) The server sends a seeding number s for the random generator used in
the client.8

(3) The client picks two disjunct windows of the email body based on the
seed s and hashes their characters.

(4) The client checks if this hash value is known to the server it is connected
to.

(5) The server’s reply contains the classification (spam/ham) and also a
confidence value that is derived from the number of reports and revokes
and the trust values of their associated users.

A message is considered to be spam if the classification sent from the
server is spam and if the confidence value exceeds a threshold value which
can be adjusted by the user.

To report a message as spam, the entire spam message is usually sent
to a nomination server. For a revoke, only the locally computed hashes are
transferred.

Trust Evaluation System

The Trust Evaluation System (TeS) is the server-based trust system of the
Razor network. Only little information is known about TeS since no details
have been published—neither about itself nor about the server code. Ac-
cording to [74], the TeS is responsible to determine which hash values that
have been reported to the nomination servers are forwarded to the catalogue
servers. For this, it is obvious that the TeS has to take those users more seri-
ous who have reported or revoked messages in compliance with a majority of
other users. Those users who did not assent to the majority in the past will
only have little influence on future decisions. However, the exact algorithm
of the TeS is kept as a trade secret.

8The motivation to receive a seeding number from the server is to allow for changes
in the client-side algorithm. However, in the last two years, the seeding number has
never changed. We assume that it is very simple for spammers to adapt to a new seed.
Therefore, changing it would only be a short-term solution. Another explanation is that
once the seed has changed, all known hashes stored on the servers would be rendered
useless, as they cannot be matched with the Ephemeral algorithm using the new seed.
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Remarks on the Implementation

Re-implementing the Perl source code of Razor was not a trivial task. First,
the code contained some mistakes which we, although knowing better, could
not fix in the Java code, as our solution would otherwise have become incom-
patible with the original code. Second, we discovered some flaws in the code
which we reported to the Razor community and which have been fixed since
then. Particularly, until October 2004 revoked messages have been sent in
clear text to the nomination servers. That is, messages that a user consid-
ered ham—and therefore of private nature—were sent to the Razor network,
where they probably were stored for later usage. See [136] for more infor-
mation. And third, Razor usually runs on Unix systems and depends on the
native drand48() method of the GNU C Library, which is not available in
Java. Particularly, we had to implement a compatible version of the IEEE
754 floating point standard [118] in Java.

3.7.1 Related Work

The implementors of Razor founded the company Cloudmark, which dis-
tributes commercial anti-spam products, for instance the Cloudmark Desktop
for client-side users [105]. In addition to the Whiplash and the Ephemeral
engines, the Cloudmark products use several other fingerprinting algorithms,
which are however not yet supported by the Razor client.

The Pyzor [134] project was initially started in order to provide a Python
implementation of the Razor filter. However, since Razor has not published
the source code for their servers, the author of Pyzor decided to build a new
filter; the Pyzor client and servers are licensed under the GPL and are hosted
on SourceForge. Pyzor uses a similar hashing algorithm as implemented in
the Ephemeral engine of Razor. Since the fingerprints are not compatible, the
Pyzor network is distinct from the Razor network and runs its own servers.

The Distributed Checksum Clearinghouse (DCC) filter [137] incorporates
three fingerprinting algorithms. The body algorithm just hashes the complete
body of an email; only equal messages will therefore match. The other two
algorithms, fuz1 and fuz2, calculate different fuzzy hashes over parts of the
message body. They match even for emails which have slightly been modified
but share a common origin. The concrete implementation of the DCC filter
has been published as open-source. However, the code has intentionally
been written in “ugliest,” uncommented C such that spammers cannot easily
conceive the details.

NiX Spam [124] is another filter that calculates a fuzzy hash of an email.
For this, it first cleans the body of an email by employing deobfuscation
techniques and removing HTML tags. The purified text can then be hashed
and compared to other fingerprints in the database. The filter is written in
Perl and is available as open-source.
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Razor, Pyzor, DCC, and NiX Spam can easily be integrated into server-
side anti-spam filter systems such as SpamAssassin. We have compared the
quality of the former three and present the results in Chapter 5. We have
not been able to analyze NiXSpam as the authors provide only a Procmail
script but no client application, which we need in our framework to extract
the calculated fingerprints.

3.8 Comha

The Collaborative Multi Hash (Comha) filter has been inspired by the work
of Zhou et al. [99]. The general idea is to select several text parts of an
email as fingerprints. In this scenario, emails are defined to be similar if the
number of matching fingerprints exceeds a given threshold. A more detailed
description is as follows:

(1) Move a sliding window of width w over the entire text of an email and
compute for each position a hash value of the selected text.

(2) Choose the largest9 n distinct hash values and store them in the fin-
gerprint set F .

(3) Send F to the Comha server.

(4) The server determines all matching fingerprints by querying its report
and revoke databases. For each matching rank m = 1..n, it returns
the value of matching emails for both reports (#emailsrp

m ) and revokes
(#emailsrv

m ).

(5) The classification on the client is determined as one of four cases, tested
from (a) to (d):

(a) Ham, if the highest matching rank of reports is below a threshold
t.

(b) Ham, if the highest matching rank of revokes is greater than the
highest matching rank of reports.

(c) Spam, if there are no revokes in the highest matching rank of
reports.

(d) Ham or spam, if the highest matching rank of reports and revokes
are equal. The result is calculated as r = #reports

#reports+c·#revokes
,

where c denotes a weighting factor that reflects the importance of
revokes compared to reports. If r is greater than or equal to 0.5,
the message is considered spam, otherwise it is ham.

9We could also choose the smallest values or the values that are nearest to any other
number. To increase the robustness of the fingerprints, in the sense of fewer collisions,
it is also possible to combine different selections.
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From the results presented in Chapter 5 and from empirical analysis, we
have derived the values of the parameters in the deployed Comha filter as
w = 20 and n = 10. Furthermore, the parameter t is set to 4 and c to 2
by default; both values can be adjusted by the user. Note that it is not
possible to change w, as this would render all calculated fingerprints futile.
To support other values of w, it would be necessary to maintain a database
for each value of w. Choosing a different value for n would be possible, but
we decided to fix its value to reduce the handling complexity.

Moreover, it is possible to specify the minimal number of reported emails
that are necessary not to classify a message as ham in step (5). By default,
this value is set to 2. This means that at least 2 reports must be sent to
the server for the highest matching rank; if there is only one report for the
highest matching rank, the next lower matching rank is considered.

The Comha filter also incorporates the Trooth system to ensure that no
user can maliciously subvert the filter’s integrity. For this, also the trust
values of the reporters and revokers for the highest-ranked matches are con-
sidered in step (5b) to (5d) of the algorithm. That is, for example for case
(5b), only if the sum of all revokers’ trust values exceeds a threshold the
message is considered ham.

3.8.1 Related Work

As mentioned before, we have taken some ideas from the work of Zhou et
al. [99]. They describe a collaborative spam filter which stores the fingerprints
in a distributed hash table (DHT) rather than in a central database. Their
approach is interesting, as a peer-to-peer system which underlies the DHT is
more robust against DDOS attacks than our server-based system. However,
managing trust relationships in a peer-to-peer system is more complicated.

Manber describes the arguably first approach to find similar files with
this technique in [63]. Schleimer et al. describe their Winnowing algorithm
in [84], which is also an n-gram-like technique. Muthitacharoen et al. [67]
propose an algorithm specifically designed to find similar files in a distributed
file systems; this technique has been improved in [31].



Chapter 4

The Trooth Trust System

I NEED TRUTHFUL PERSON IN THIS BUSINESS BECAUSE I DON’T WANT TO MAKE MISTAKE;
I NEED YOUR STRONG ASSURANCE AND TRUST.

(Dr. Rane Jack <dr ranejack2003@yahoo.co.uk>, 4/4/2006)

In the previous chapter, we described several collaborative spam filters. When
a user reports a spam message, similar emails are automatically eliminated
from other users’ inboxes. However, it remains the question why a user
should (implicitly) allow other, unknown users to remove messages from the
own inbox. What if the other user is “a bad guy” or a spammer revoking
all the Viagra messages? What if the other user deems all the beloved AOL
newsletters to be spam?

In this chapter, we tackle these questions introducing the Trooth trust
system [5]. In the Trooth system, a user does not blindly trust all other
users’ decisions. Instead, one learns over time which users are generally
assenting with the own opinion about what is spam and what is not. A user
considers only those spam reports that were sent by trusted users.

In the next sections, we first describe Trooth in a general setting. We
examine a voting scheme where users want to evaluate arbitrary items to be
either “good” or “bad.” When a user has selected an item, she can either
classify it manually or use the Trooth assistance to evaluate it. Assessing
it manually means to buy a product, install and experience an application,
or read an email in order to check whether it is spam or legitimate. After-
wards, the user casts a vote for the item expressing her opinion to the Trooth
system. Alternatively, Trooth can automatically evaluate an item. For this
purpose, Trooth analyzes the user’s own and other users’ previous votes in
order to predict the user’s view of the current item. Obviously, the automatic
approach should be preferred since it means less effort for the user. But it
also involves some risk relying on calculated values instead of the own reason.

After this general introduction, we show in Section 4.5 how Trooth is
employed in the Spamato system to secure the collaborative activities of the
Earlgrey and Comha filters.
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4.1 Related Work

Trust systems are related to the domain of collaborative filtering techniques
[151]. Generally, a sparse m×n matrix for m users and n items is considered,
in which only a few entries reflect the users’ opinions on the items. The goal
of a collaborative filtering system is to ease the task of manually choosing a
new item by automatically recommending suitable items to users who have
not rated them previously. For this purpose, this technique derives future
decisions from assenting opinions in the past.

We adopt this notion in that we also assume users to vote for items, votes
being either “good” or “bad.” Additionally, we explicitly introduce trust val-
ues between users; a higher value denotes more confidence in a user. By this,
we implicitly define special interest groups which contain users with assenting
opinions. In contrast to collaborative filtering, we are not particularly inter-
ested in recommendations for arbitrary items—instead, our system computes
evaluations of specific items, being either “good” or “bad” (or “unknown” if
an item cannot be evaluated). Furthermore, we assume a continuous stream
of items, which a varying number of users want to have assessed. Thus, the
number of users and items is not predefined or bounded to any m and n
respectively.

All work on collaborative filtering shares the concept of predicting future
user behavior or recommending suitable choices based on historical data. One
of the earliest work on collaborative filtering systems is Tapestry [34] which
uses a SQL-like language to filter manually annotated (electronic) messages.
The focus of current research lies in different areas. Several approaches are
described in [54, 42, 9]; a comprehensive research bibliography can be found
in [128, 145].

We share some ideas of collaborative filtering but focus on practical as-
pects. For this purpose, we only provide a heuristic to evaluate an item for
a user. We do not provide mathematical analysis as in [50, 9].

In contrast to offline algorithms, such as [50, 83, 54], which usually rec-
ommend a single item to a user based on a fixed set of votes, we consider
a continuous stream of items which a user has to assess. These items can
arrive at any time, making predictions time-dependent. Furthermore, users
cannot be asked to train a server-based system in order to increase the rate of
correct predictions; items are always selected client-side. We also store only
a minimum of data on the server and evaluate items on clients. We differ
from other online approaches, such as [27, 10], in that we do not consider a
round-based synchronous model. Again, in Trooth users can vote for items
at any time.

Systems recommending articles to clients, such as employed by Amazon
[59], differ from ours in two aspects. First, Amazon chooses a fast, server-
based approach while we explicitly integrate clients in the evaluation process
of items. And second, we do not recommend items to users but evaluate
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them when a user is confronted with them, for instance when a new email
arrives.

Other collaborative spam filter system also rely on trust systems to dis-
tinguish between trustworthy and malicious users. The Razor [135] filter and
the Cloudmark products [105] take a strict server-based approach [74]. In
the SpamGuru [88] system, a server-based, supervised clustering of items or
rather users might be employed.

4.2 Preliminaries

In this section, we describe some basic aspects which we use and refine in
the next sections. The general aim of Trooth is to help rate items, such as
products, people, or emails, to be either “good,” “bad,” or “unknown” by
allowing users to classify the item as “good” or “bad.”1 Given an item, a
user first tries to revert to a calculated recommendation. If the evaluation is
“unknown,” the user has to manually assess the item. Afterwards, she casts
a vote, sending her manual assessment to the Trooth system.

In this section, we assume that a pre-defined, globally valid evaluation
for an item exists, which has to be exposed for each item. In Section 4.3, we
revise this assumption and instead calculate individual, user-specific opinions
about each item.

4.2.1 Evaluation Functions

A global evaluation of an item can be derived from all user votes in various
ways. For instance, using a simple majority evaluation, the overall catego-
rization of an item is “good” if a majority of all users (> 50%) votes in favor
of the item, “bad” if a majority votes against the item, and “unknown” if the
number of “good” and “bad” votes are equal. For the more general threshold
evaluation function, we classify an item to be “good” (“bad”) if the ratio
between “good” (“bad”) votes and all votes is greater than a threshold value
hg (hb) and “unknown” otherwise.

It is easy to extend this simple scheme from the set {good, bad, unknown}
to a more general range where votes and evaluations can be in the interval
[0, 1]. In this case, we can define the result of an evaluation to be the average
of all vote values. This is however not necessary in the Spamato system
where a user always votes for spam (bad) or ham (good).

4.2.2 Weighting Votes With Trust Values

So far, votes or rather users have been considered to be equally important.
In real life, however, it can be beneficial to apply different weights to votes

1We assume that a user who does not know how to classify an item does not vote at
all rather than voting for “unknown.”
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or, in other words, to consider some users to be “more equal than others.”
Since we assume the existence of a single, pre-defined evaluation for each
item, users who often agree with the majority of users should be trusted
more than those who regularly dissent.

Ideally, this means trying to separate users into two groups: One group
contains those users who are trustworthy and the other group those who are
malicious. Practically, it is possible to approximate these groups by intro-
ducing trust values for each user that are adjusted whenever new information
is available. Then, instead of simply summing up equal “good” (and “bad”)
values as before, each vote is previously weighted with the trust value of the
associated user. For this approach to make sense, we generally assume that
the group of trustworthy users are a majority, or more precisely: that those
users who agree with the majority are trustworthy.

The Additive Increase, Multiple Decrease (AIMD) approach takes user
specific and automatically adjusted trust values into account. When all users
have cast their votes, the trust values are modified. Using AIMD, users who
voted correctly, that means in accordance with the majority, are awarded by
slightly increasing their trust values. On the other hand, users whose votes
do not comply with the majority are punished by harshly decreasing their
trust values.

Note that we are rating in two different domains: On the one hand, we
want to evaluate items by having unknown users vote “good” or “bad” for it.
On the other hand, we want to calculate trust values for unknown users to
make their votes more reliable. The voting (and thus also the evaluation) is
actively performed; trust values are implicitly generated. While in principle
it is possible to let users choose whom they want to trust, in reality this is
considered too involved.

4.2.3 Implementation Issues

For applications like Spamato or rather its collaborative spam filters, the
voting for an item (in this case, reporting or revoking a misclassified email)
and its categorization (spam/ham) will not take place at a single point in
time. Instead, users can always vote for an arbitrary message, and Spamato
classifies a message whenever it arrives in an inbox. Additionally, not all users
vote for all items, since not all users receive the same messages. Therefore,
user votes have to be stored for later usage and the evaluation of an item
has to be recalculated whenever a new vote has been cast. In other words,
evaluations are time-dependent. Furthermore, users must not be able to vote
more than once for the same item or multiple votes have to be handled in a
reasonable way. Finally, users have to be authenticated in order to prevent
manipulations.

Implementing the AIMD approach or weighting algorithms in general en-
tails some difficulties since users can vote at any time. The question is:
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“When should trust values be updated?” On the one hand, new trust val-
ues can be calculated at a single point in time, for instance after a specific
number of votes were received. For this approach, only few data sets have
to be stored on the server. It also saves server resources as trust values are
updated only rarely. However, this approach obviously ignores later votes
and thus important information to provide complete and fair trust values.
On the other hand, trust values can be calculated whenever a new vote is
received. As it is possible that new votes for an item change its evaluation,
the trust values of all involved users have to be updated. For this, extensive
historic information about the whole voting process has to be managed on
the server. In both cases, the server has to store the trust values for each
user and the overall evaluation of each item—to avoid time- and resource-
consuming calculations whenever these values are required. In summary, the
second approach demands for significantly more server resources than the
first solution.

4.3 The Trooth System

In this section, we introduce Trooth as a robust, partially decentralized,
collaborative, and personalized voting and trust system. It is robust as it
withstands malicious users who are trying to cheat the system, partially
decentralized as clients are explicitly involved in the voting and evaluation
processes, and collaborative and personalized as users interact with each
other for collective benefits.

In the previous section, we have assumed that it is possible to globally
evaluate an item—that an overall evaluation exists which coincides with the
votes of all trustworthy users. But the separation of users into groups of
trustworthy and malicious users often is too harsh. In fact, the assumption
that an objective overall categorization can always be calculated is arguably
wrong.

We believe it is more reasonable to individually evaluate an item for
each user separately. A user does not distinguish between trustworthy and
malicious users anymore, but between users who generally vote in accordance
and those who do not. Thus globally seen, users are implicitly separated into
several special interest groups who share a similar opinion rather than to
discriminate them with the “black & white” scheme described before.

Note that we still believe that trustworthy and malicious users exist.
While the former describe users who really try to express their opinion, the
latter usually vote against the common sense and try to deceive the system,
probably for personal benefits. We also consider users who make mistakes
and others who just do not understand how to operate a voting system. But
generally, from a user’s point of view, all these categories can be reduced to
assenting and dissenting users only. For the sake of simplicity, in this section
we use the term malicious also for incautious and unaware users.
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Depending on the voting domain, the number of groups can vary signif-
icantly. Although we expect groups to be rather large and overlapping, in
the extreme, each user might trust only herself so that the number of groups
equals the number of users. But this especially expresses the strength of
the system: Even if all except one user are malicious, this one will (eventu-
ally) figure out not to trust anybody except herself. Thus, the system can
even serve different minorities with satisfying results while approaches that
assume the existence of an objective evaluation cannot.

Since Trooth does not compute a global evaluation of an item for all
users, it is possible to reduce the consumption of server-side resources to a
minimum. Therefore, in Trooth, we store only (item,user,vote)-tuples server-
side and calculate user specific trust values client-side.

4.3.1 Managing Votes and Trust

As in structured peer-to-peer systems, we assign each item and each user a
unique identifier from an interval [0, ..., N ], organized as a “ring.” Thus, we
can use the notions of clockwise and anti-clockwise to denote neighbors on the
ring. In Section 4.4, we show how user IDs (and signatures to authenticate
users) are generated in the Spamato system.

The Voting Process

When a user votes for an item, she sends her opinion (“good” or “bad”) to the
Trooth server and locally adapts the trust values for other users who voted
for the same item. In more detail, the voting process takes the following
steps:

• User u0 sends a vote vi
0 for an item i to the server where the (i, ui

0, v0)-
tuple is stored.

• The server assembles two lists which are populated with the identifiers
of other users who previously voted “good” (list G) and “bad” (list
B) for item i. Each list contains a maximum of k user IDs that are
numerically nearest to u0 in respect to the ring formation. The lists G
and B are sent to the client.

• User u0 locally adapts the trust values of the users sent to her by
increasing the trust values of those users who agreed with her own vote
v0 and decreasing the trust values of those users who voted against it
(using the AIMD approach mentioned before or any other weighting
scheme).
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The Evaluation Process

To classify an item, “good” and “bad” votes from the server are weighted
with the client-side stored trust values. In detail, the following steps are
performed for the evaluation process:

• User u0 sends a query for item i to the server.

• The server returns two lists containing identifiers of users who voted
“good” (list G) and “bad” (list B) as in the second step of the voting
process described above.

• User u0 extracts the l ≤ k most trustworthy users of each list, resulting
in the lists G′ ⊆ G and B′ ⊆ B.

• Finally, the classification can be calculated using the threshold evalua-
tion function and the votes weighted with the trust values of the users
in G′ and B′ as parameter.

User Specific Parameters

In the Spamato system, the size k of the “good” and “bad” lists returned by
the server, l that denotes the number of the most trusted users to select from
the lists, inc and dec as parameters of AIMD, and the values of hg and hb

for the threshold evaluation function are user specific values. Thus, the user
is able to further configure the processes to some extent on the client-side.

Discussion

In the second step of both algorithms, the server returns about k/2 clockwise
and anti-clockwise neighbors of user u0 for each list. If there are less then
k users who voted “good” or “bad” for item i, we return only that many
without any loss in quality. Assuming that users usually vote for the same
type of items, it is reasonable to believe that the total number of trust values
that have to be handled client-side is bounded.2 This means that each user
generally stores only a small subset of all users who share the same opinion.
It is also an advantage that a user’s vote can only affect those users in the
implicit neighborhood. Thus, the impact of a possibly malicious user trying
to cheat the system is limited. On the other hand, though, the rather high
consumption of bandwidth for each voting and evaluation operation can be
regarded as a drawback.

By choosing only the most trustworthy users in the third step of the eval-
uation process, we decrease the influence of unwanted users to a minimum.

2Regarding emails, users who are contained on the same email address list (compiled
by spammers) often get the same spam messages.
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As an optional step, trust values could be adjusted after the evaluation pro-
cess similar to the last step in the voting process. Doing so would amplify the
influence of trust values even more. Additionally, the calculated evaluations
could automatically be sent as a personal vote to the server. If the user does
not agree with the evaluation, she would (immediately or after some time)
send her correct opinion rejecting the old one.

Note that a malicious user who tries to gain a high trust value in order
to manipulate the evaluation process, previously has to “play by the rules”
for a long time, thereby helping other users more than harming the system.
Moreover, to manipulate a particular user (or a group of users with assenting
opinions), it is necessary to, first, get an ID that is near that of the user, and
second, to know which items the user is “interested” in. While attacking one
particular user is hard, it is a futile attempt to oppose against many groups
or even all users at once. Thus, Trooth significantly reduces the impact of
malicious users in the evaluation process.

4.3.2 The Majority Heuristic

We introduce the majority heuristic that can be applied as a special case when
many users almost unanimously decide about an item. That is, in contrast
to what we have described so far, the evaluation of an item is determined by
the majority of users without regarding any trust values. To use it safely,
one has to rule out the chance of malicious users being a majority.

In the voting process, the server still stores the vote of a user for an item.
But it does not return any data and the client, therefore, cannot adjust any
trust values. In the evaluation process, the server sends only the number of
“good” and “bad” votes to the client. Therefore, the client is not able to select
her most trusted users anymore; all votes count the same. The evaluation for
the item is calculated using the majority or threshold evaluation function.

The majority heuristic clearly simplifies the voting and evaluation pro-
cesses by transferring less information between client and server, and thus
also saving bandwidth. However, this approach slightly reduces the reliability
of the classification since trust values are not considered anymore. But this
can be neglected because there are almost no dissenting votes, and malicious
users cannot be a majority as defined above.

4.3.3 Extending Trooth

In this section, we provide two extensions for the Trooth system which imple-
ment orthogonal ideas. While the first one describes a system which centers
all activities on one server, the second sketches the idea of a completely
decentralized approach.
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Server-Side Trust Values

In the Trooth system described so far, each user stores a list of trust values
on the client. As we previously explained, although it is possible that this list
contains a trust value for all other users, it is more likely to hold only a small
subset of neighbors. In contrast to our earlier motivation, we could store
trust values and determine the classification of an item solely on the server.
By sending the parameters of the voting and evaluation processes from the
client to the server, the user would still be able to adjust the outcome as
before. Therefore, running Trooth server-side implies no restrictions for the
user.

Having trust values stored on a single server also allows to globally an-
alyze this data. Consolidating the trust values of each user could disclose
a variety of interesting information—for instance, how groups of assenting
users are organized or whether malicious users or rather users whom nobody
trusts exist. Another advantage is that users can now share their trust val-
ues between different machines or accounts. Furthermore, aggregated trust
values could be used to provide a new user with some initial data. On the
other hand, processing Trooth on a server drastically increases the resource
demand for CPU and storage (while the bandwidth consumption is lowered).

We want to emphasize that a server-side Trooth system is not similar
to approaches summarized in Section 4.2. The main difference is that we
manage trust values for each user separately, still assuming that it is more
promising to rely on several groups of assenting users than on trustworthy
and malicious (in its original sense) ones.

Distributed Trooth

Trooth shifts most of the work to the client, keeping only the storage of (item,
user, vote)-tuples on the server. This is a good foundation to completely
decentralize the Trooth system.

We propose the usage of a distributed hash table (DHT) such as Chord
[90] or Kademlia [64] to obtain a server-free Trooth system. In such systems,
the “lookup” operation is the most important command which maps a key
to the peer being responsible for it. Besides this, the “store” operation stores
the value associated with a key at the managing peer.

Regarding Trooth, the information about user votes have to be managed
in the DHT. In the voting process, (item,user,vote)-tuples are the values to
be stored at the peer responsible for the item. For this, the mentioned DHTs
have to be adapted only slightly to support the storage of multiple values for
one key. Similarly, in the evaluation process a user performs a lookup for an
item and the responsible peer has to return a subset of all votes that have
previously been cast for it. Thus, a fully decentralized Trooth system can
generally be realized.
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However, there are some difficulties. The voting and evaluation processes
will take more time due to the nature of a DHT, where the responsible
peer has to be looked up by routing through several intermediate stations.
Furthermore, a DHT has to manage other issues such as the handling of
joining and leaving peers, counter measurements for hot spots, and caching
and replication mechanisms. Although ensuring trust among peers can also
be regarded as a key task of DHTs, we want to describe two aspects of this
problem in relation to Trooth: authenticated and complete votes.

In Trooth, we assume the existence of unique user identifiers as well as
the possibility to verify which user has cast which vote. In Section 4.4,
we describe how we guarantee these assumptions in the Spamato system
by generating a public/private-key pair for each user, which is used to sign
votes. Although this approach is server-based, we could still employ it for
generation and verification of keys only. For a pure distributed approach,
though, it is necessary to abandon this server, too.

Another drawback is that one cannot trust peers. A peer is able to alter
information in any way before sending it to a user. Thus, votes can be
modified, coined, or deleted at will. While the signing of votes will help to
detect modified or coined votes, peers cannot be kept from concealing them.
One solution to this problem is to store votes not only at one peer but at
many. Similarly, a lookup would have to return votes from several different
peers. Although this increases the amount of data in the system and the
effort to store and query for it by the replication factor, the reliability of the
result will be increased accordingly.

4.4 The Spamato Authentication and
Authorization System

The Spamato Authentication and Authorization System (SAAS) is used to
create unique identifiers for users who want to interact with the Trooth sys-
tem. Additionally, SAAS generates a public/private key pair with which
users (automatically) sign their votes to prevent any cheating and manipu-
lation attempts.

Since Spamato (and therefore SAAS) is embedded into an email client,
SAAS can make use of the authentication process between the email client
and the server. In other words, if a user is able to receive an email that
has been sent to her via SAAS, the user is also sufficiently authenticated for
Trooth.

In more detail, the first time Spamato is started, the SAAS client locally
generates a public/private key pair. The public part of this key pair and the
user’s email address are sent to an SAAS server (using a TCP connection)
which in turn sends a random challenge email to the stated address. On
receiving this challenge email, the client signs the message with its private key
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and sends it back to the server (again using a TCP connection). Thereafter,
the user is fully registered with the SAAS server which stores the user’s public
key and the (hashed) email address as an identifier for the user.

The actual implementation is slightly more sophisticated to allow for a
reregistration of users who want to use the same SAAS account. Additionally,
the Trooth and SAAS servers need to exchange data so that the Trooth server
can validate a user’s signature. In the Spamato system, the user information
is stored by SAAS in a database that can also be accessed by Trooth.

4.5 Applying Trooth to Spamato

The Earlgrey filter is a collaborative URL filter (see Section 3.6). Upon
receiving a new message, it collects all URLs in the message, extracts the
domains, and calculates a hash value of them. This hash value is sent to the
Earlgrey server which queries a database to find out whether the message
is spam or legitimate. Entries in the database are collaboratively inserted
by users who report “spam” or revoke “legitimate” emails (or rather the
calculated hash values). Thus, users help each other to filter spam messages.
A similar approach is taken by the Comha filter as described in Section 3.8.

Since not all users define the term “spam” equally—some also declare
unwanted newsletters to be spam while others like to read about online drug
stores—clearly, a system like Trooth is necessary to handle these different
opinions. In the context of Trooth, the hash values calculated by the col-
laborative spam filters are the identifiers for items, users are identified with
their email addresses (or their SAAS public keys), and reports and revokes
correspond to “bad” and “good” votes, respectively. As said before, to pre-
vent malicious users from harming the system, votes are signed with a user
specific private key. Additionally, the Earlgrey and Comha servers ignore
multiple reports/revokes and removes contrary votes for the same message
and user.

Although Trooth performs well securing the collaborative activities of the
Earlgrey and Comha filters, it has one problem which cannot completely be
solved. Trooth assumes unique item identifiers. However, as fingerprinting
algorithms are not perfect, undesired collisions of spam and ham hashes
cannot be eliminated. That is, a user reporting a spam message identified by
the fingerprint “X” might not be trusted by a user who receives ham messages
which are also mapped on the fingerprint “X”. For instance, a legitimate
newsletter containing the URL http://www.amazon.com would conflict with
a spam message that (maliciously) downloads images from the same domain.
A possible solution is to use whitelists to reduce such collisions; but this
solution can only be applied if one is aware of the problematic fingerprints.
In real life, fortunately, this weakness seems to be negligible as the Earlgrey
and Comha filters have not exhibited any detriments so far.
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Item User Vote

0x42… 0 spam

0x42… 1 ham

0x42… 4 ham

0x42… 22 spam

0x42… 83 ham

0x42… 114 spam

0x42… 189 ham

0x42… 242 ham

0x69… 36 spam

… … …

`

Earlgrey/Trooth

Client “0”

Earlgrey/Trooth

Server
User Trust

1 0.02

22 0.85

114 0.62

242 0.69

251 0.12

User Trust

1 0.004

4 0.1

22 0.9

114 0.67

242 0.138

251 0.12

(22,spam)

(114,spam)

(1,ham)

(4,ham)

(242,ham)

vote(0x42...,0,spam)

Figure 4.1: This figure exemplifies the voting process. User “0” classifies the
message “0x42...” as spam and adjusts her trust values.

4.5.1 Example

Figure 4.1 exemplifies the voting process. For this example, we set k = 3,
inc = 0.05 and dec = 0.2 (AIMD parameters), and the user identifier space
is in the range of 0 to 255. First, client “0” sends a spam report for the
email identified by the hash “0x42...” to the Earlgrey/Trooth server. The
server inserts the vote into the voting table and populates two lists for spam
and ham votes of users whose identifiers are numerically nearest to 0. Since
only two users have classified the message as spam, the spam list is returned
with these two entries only (22 and 114), while the list of ham votes contains
three entries (1, 4, and 242). Next, user 0 adjusts the trust values using the
AIMD approach. Since she voted for spam, users 22 and 114 are awarded,
and users 1, 4, and 242 are punished by increasing or decreasing their trust
values, respectively. For instance, user 22 has an old trust value of 0.85 which
results in a value of 0.9 after increasing it by inc = 0.05. Similarly, user 242
has an old trust value of 0.69 which is decreased to 0.138 after multiplying
it with dec = 0.2. User 4 has not been in the trust table before. Therefore,
she is rated with a default value of 0.5 before being punished.

In Figure 4.2, an example of the evaluation process is depicted (k = 3,
l = 2, hg = 2

3
, hb = 1

3
). After sending an evaluation request for the message

identified by the hash “0x31...” to the server, user “0” receives two lists as
described before. The client extracts l = 2 votes of each list which have
been cast by users she trusts most (189 and 242 for spam, and 22 and 114
for ham). Again, one user (189) has been unknown and was therefore rated
with the default value 0.5, which was chosen since this value is higher than
the third spam choice (user 1 with a trust value of only 0.004). The trust
values are accumulated and the evaluation is performed using the threshold
function. Since the ham votes are more trusted (1.57 to 0.638), the overall
classification for the email is “ham.”
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Item User Vote

0x31… 1 spam

0x31… 4 ham

0x31… 22 ham

0x31… 83 spam

0x31… 114 ham

0x31… 129 ham

0x31… 189 spam

0x31… 242 spam

`

Earlgrey/Trooth

Client “0”

Earlgrey/Trooth

Server

User Trust Vote

189 0.5 spam

242 0.138 spam

22 0.9 ham

114 0.67 ham

(1,spam)

(189,spam)

(242,spam)

(4,ham)

(22,ham)

(114,ham)

eval(0x31...,0)

User Trust

1 0.004

4 0.1

22 0.9

114 0.67

242 0.138

251 0.12

0.638 spam

1.57 ham

 1.57 / 2.208 = 0.71 > hg            ham

Figure 4.2: This figure exemplifies the evaluation process. User “0” requests
the votes for the message identified by “0x31...” and evaluates it as “ham.”

4.6 Concluding Remarks

We have been using Trooth in combination with the Earlgrey filter for about
two years without significant problems (Comha was added later). We have
to store only little information on the server. And as the evaluation is com-
pletely executed on the clients, the load on the server is reduced to a mini-
mum.

Currently, the biggest disadvantage we see is that we do not have any
usage statistics about the Trooth system. We do not exactly know which
users trust or distrust each other. This information would be interesting
to analyze on a large scale, as it might indicate whether our assumption
that user groups of similar opinions really exist. On the other hand, this
data might probably be too insightful, as it reveals personal preferences,
which users might not be willing to share. Nevertheless, gaining a better
understanding of the collaboration among users is a fascinating domain to
study and can help improve trust systems further.





Chapter 5

Analysis of Collaborative Spam

Filters

It is an honor to be working in collaboration with FGS
because they are a group of people who really want to make a difference

in the fight against crime.

(Inside Penny Stocks <Trudy@comcast.net>, 2/26/2006)

In this chapter, we evaluate collaborative spam filters on a set of collected
emails in an offline experiment. This “clinical” study makes it possible to
analytically compare different fingerprinting algorithms, as they are tested
on the same email corpus.

Several other studies have been conducted in literature, mainly analyzing
statistical spam filters [7, 65, 22, 21]. When checking an email, statistical
filters usually provide a spam probability reflecting the confidence in their
classification. The spam probability can be used to generate ROC graphs
[29] that visualize the trade-off between spam and ham misclassifications.
In contrast, we evaluate fingerprinting algorithms, which produce a binary
classification (match or no match) rather than a confidence value. Therefore,
a ROC analysis cannot be applied to our study.

Instead, we define a set of performance criteria in Section 5.2, which we
use to evaluate the fingerprinting algorithms described in the next section.
In Section 5.3, we present the results for a manually categorized corpus;
Section 5.4 contains the results for the TREC corpus. Finally, we discuss our
study in Section 5.5.

5.1 Fingerprinting Algorithms

We analyzed the following collaborative spam filters previously described
in Chapter 3: Comha1, Earlgrey, DCC, Pyzor, and Razor. The Razor filter

1The Comha filter was used with a window size of 20, a selection of the 10 largest
hash values, and a minimal number of 4 matching hashes. We experimented with other
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contains the hash-based Ephemeral and the URL-based Whiplash engines; we
assessed both of them separately and also a combined version (Razor.multi)
for which only one of them had to match (OR-combination). DCC has three
algorithms: Body, Fuzzy1, and Fuzzy2; again, we used them separately as
well as in an OR-combination (DCC.multi).

Additionally, we experimented with the following fingerprinting algo-
rithms. If not otherwise explained, a match for a hash-based technique is
given if two fingerprints (for the same algorithm) are identical—with the ex-
ception that an “unknown” fingerprint never matches any other fingerprint.
Note that comparing fingerprints that are not hash-based can be very expen-
sive in terms of the number of necessary comparisons. That is, implementing
for instance the Alpha algorithm on a server is from a practical perspective
rather futile. Nevertheless, we also present the results for such algorithms
below.

• Hash.start: If an email contains more than 100 characters, this al-
gorithm hashes the window starting at index 10 and ending at index
59 (denoted as position [10..60]). If an email contains 100 or fewer
characters, the fingerprint is “unknown.”

• Hash.end: If an email contains more than 100 characters, this algo-
rithm hashes the window for the position [text.length-60..text.length-
10]. The fingerprint is “unknown” if 100 or fewer characters are con-
tained in an email.

• Multihash: If an email contains more than 1000 characters, this al-
gorithms combines three hash values; otherwise, the fingerprint is “un-
known.” The first hash value is calculated for the window at position
[100..200], the second hash value is calculated for the position [450..550],
and the third hash value is calculated for [text.length-300..text.length-
200]. The AND-combination of the three hashes is referred to as Mul-
tihash.and and the OR-combination as Multihash.or.

• Alpha: The fingerprint of this algorithm is a hash table that contains
letters as keys and their frequencies as values; the idea has been taken
from [66]. The fingerprint is “unknown” if 10 or fewer characters are
contained in an email.

When comparing two fingerprints (F1 and F2) with each other, we
calculate the difference of their frequency tables. We also determine
two threshold values T1 and T2 that depend on the length of the emails
for which F1 and F2 are calculated. Particularly, we have chosen the
threshold values to be T{1,2} = 0.1· text{1,2}.length.2 If the difference

values and found these to perform best in our scenario.
2We also experimented with different fractions but have chosen 0.1, as the results

were best with this value.
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is less than T1 or T2, the fingerprints are defined to be similar. Note
that the comparison function is symmetric but not transitive.

For example, if F1 contains 100 ’A’ and 200 ’B’ and F2 contains 95 ’A’,
206 ’B’, and 20 ’C’, the difference is 5 + 6 + 20 = 31. F1 contains 300
characters, therefore, T1 is 30; similarly, T2 is 32.1. Since 31 < 32.1, F1

and F2 match.

As a generalization of this scheme, we tried an n-gram-based approach
for which we did not count characters but hashes over small windows of
size 2 to 5. We also mapped the calculated hash values to a fixed num-
ber of buckets (8 to 4096) in order to reduce the cost for comparisons.
However, the results were worse than for the single character-based
Alpha algorithm so we decided to skip these results in the following
sections.

• Alpha.multi: This algorithm AND-combines three values: the size of
an email, the average of the letter frequencies (avg criterion), and the
standard deviation of the letter frequencies (std criterion). Particularly,
the lengths of two emails are allowed to differ by at most 50 characters,
the avg criterion may differ by 0.02, and the std value by 0.1 percent.
The fingerprint is “unknown” if the message size is 10 or less. As in the
previous Alpha algorithm, comparing fingerprints regards symmetry
but not transitivity.

• Nilsimsa: We use the Nilsimsa algorithm as described in Section 3.5.1.
However, we have experimentally derived a value of 230 matching bits
for good results rather than 152 as proposed by the author. The “im-
provements” mentioned in [24] could not be confirmed by our experi-
ments. Therefore, we use the original Nilsimsa algorithm. Similar to
the Alpha algorithms, the comparison function is symmetric but not
transitive.

5.2 Performance Criteria

We assume that a categorized corpus exists in which similar emails—that
is, emails that share a common origin but might have been modified by
spammers—have been sorted into the same category. A good fingerprinting
algorithm should classify emails in the same category to be similar. The more
matching fingerprints the algorithm calculates for the emails in each category,
the better it is. In order to compare fingerprinting algorithms objectively,
we define the following performance criteria that reflect the capability of an
algorithm to map similar emails on similar fingerprints.

The Total False Negative Rate is calculated as the ratio between the sum
of emails not matched and the sum of emails that should be matched; the
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set C contains all email categories and each c ∈ C contains all emails in that
category:

FNtotal = � c∈C � e∈c #emails not matched by e in c

� c∈C (#emails in c)· (#emails in c - 1)

The Average False Negative Rate is calculated as the number of emails
that did not match all other emails in the same category (#emailsincomplete)
divided by the number of all spam emails (#spam):

FNaverage =
#emailsincomplete

#spam

The Matched-X False Negative Rate is calculated as 1 minus the num-
ber of emails that matched at least X other emails in the same category
(#emailsmatched-x) divided by the total number of spam messages (#spam):

FNmatched-x = 1 −
#emailsmatched-x

#spam

The FNmatched-x is of particular interest, as in a collaborative spam filter
network a match is usually not announced unless several reports for the same
fingerprint have been registered.

So far, we have described performance metrics to evaluate fingerprinting
algorithms applied to spam emails of the same kind. Even more important is
the capability not to erroneously match ham messages with spam messages.
Therefore, we will also measure the False Positive Rate that we have defined
as the fraction of ham emails whose fingerprints collide with at least one spam
email (#hammatched) divided by the number of all ham emails (#ham):

FP =
#hammatched

#ham

We also show the Spam Unknown Rate that is defined as the number of
spam emails for which no fingerprint could be calculated (#spamunknown)
divided by the number of all spam emails (#spam); the Ham Unknown Rate
is defined accordingly.

Spamunknown =
#spamunknown

#spam

We have evaluated other metrics as well. However, as their values are
related to each other, we have chosen the subset described above and use it
for the evaluation presented in the next sections.
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5.3 Results for a Categorized Corpus

We manually compiled a categorized spam corpus to evaluate the finger-
printing algorithms. The corpus consisted of 5005 spam emails, which we
had sorted into 213 categories; each category contained at least 5 similar
emails. Furthermore, we used a private ham corpus with 5419 ham mes-
sages. Note that we did not expected the algorithms to reach optimal “0.0”
values. Although we revised the corpus thoroughly, it could still contain a
few misclassified messages. Nevertheless, smaller values definitely indicate
better algorithms and the performance criteria can thus be used to compare
algorithms with each other. The results are depicted in Figure 5.1, on which
we comment below.

Original Corpus

The false positive rate was for all filters very low—with two exceptions: For
the Earlgrey filter, it was about 11.5% and for the Hash.start algorithm
about 6.5%. As we see later, the Hash.start algorithm was very sensitive to
HTML mails, as also ham emails often exhibited a standard HTML header.
The poor result for the Earlgrey filter was astonishing since the Whiplash
engine of the Razor filter should perform similarly. After verifying the re-
sults, it was obvious that the Whiplash algorithm did not correctly detect
all domains—neither using the original Perl code nor with our Java imple-
mentation.3 We want to emphasize that such high numbers of false positives
are usually unacceptable. However, most collaborative spam filters use a
whitelist to eliminate obvious misclassifications. In our case, removing only
the domain “ethz.ch” decreased the false positive rate by about 7%.

The FNaverage rate was generally very high, as only few messages matched
all other fingerprints in the same category. The FNtotal was a better criteria
since it also considered the number of partially matched emails.

The Comha filter clearly outperformed all other algorithms. Although its
false positive rate (1.3%) was higher than for Pyzor and Razor (both almost
zero), all other values were significantly better. Interestingly, also the Alpha
and Nilsimsa algorithms performed very well—however, finding a match for
these algorithms was more expensive, as a fingerprint had to be compared to
all other fingerprints (rather than looking it up in a hash table).

3We used the original code for our evaluation to circumvent any problems with our
own implementation. As we do not use the url plug-in but completely re-implemented
the original code, it was no surprise that the Java code also contained the now detected
domain detection bug.
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Figure 5.1: Results for the original categorized email corpus.
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Deobfuscated Emails (Categorized Corpus)
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Figure 5.2: Results for the deobfuscated categorized email corpus.
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Deobfuscated Corpus

One of our first concerns was that simple filters, such as the Alpha or the
Hash.start filter, were good HTML detectors rather than spam filters. There-
fore, we used our deobfuscator plug-in (see Section 2.4.6) to eliminate some of
the worst spamming techniques, and primarily to remove HTML code from
the email body. For the deobfuscated corpus, we deleted all emails that, after
removing the HTML code, had only an empty body. This left 4788 spam
and 5329 ham messages for which the results are shown in Figure 5.2.

As can be seen, most filters performed worse in the deobfuscated sce-
nario. Only the Pyzor filter had a significant benefit; also the values for the
DCC.body and the Alpha.multi filter improved slightly. We think that most
of the other algorithms matched fewer emails because the deobfuscated email
bodies contained less information. However, this has to be studied further.

5.4 Results for the TREC Corpus

We chose the TREC 2005 Public Corpus [22] to verify our results on a dif-
ferent email corpus. It is based on the Enron corpus [51][111] and contains
about 92000 emails in an almost original, unmodified form. Other corpora,
such as the Ling Spam corpus [7] and the PU corpora [8][133], could not be
used since they contain only pre-processed emails, lacking header or body
information.

After removing emails larger than 100 kB and emails that could not
correctly be parsed by our corpus builder tool, 12606 ham and 41960 spam
messages were left for our evaluation. Since we did not categorize the spam
corpus, the only meaningful experiment we conducted was to measure the
false positive rate. Note that we did not deobfuscate the TREC corpus, as
the differences on the categorized corpus seemed to be too small to justify
the additional effort.

The false positive rates measured on the TREC corpus are illustrated in
Figure 5.3. For better comparison, we also show the false positive rates of
the original, categorized corpus. Note that the y-axis is only from 0 to 0.12.

As can be seen, the Comha and the Earlgrey filter performed slightly
better than before; the Hash.start filter even showed an improvement of more
than 4%. The Whiplash engine and the Hash.end algorithm were significantly
worse compared to the categorized corpus. Also the Multihash.or, Alpha,
Alpha.multi, and Nilsimsa algorithms performed worse on the TREC corpus.
Note that the DCC.body, DCC.fuzzy1, Pyzor, and Multihash.and algorithms
produced no false positives on both corpora.

It is hard to explain the differences between the results. Analyzing further
corpora could help understand which types of legitimate emails are often
matched with spam emails.
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False Positive Rate of Original Emails
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Figure 5.3: False positive rates for the categorized and TREC corpora.

5.5 Concluding Remarks

In this chapter, we analyzed some widely deployed collaborative spam filters
and some experimental fingerprinting algorithms. We introduced several per-
formance criteria that we used to evaluate the capability of the algorithms to
match similar emails in our categorized email corpus. The results indicated
that our Comha filter performed best, but also some of the experimental
candidates did quite well. Overall, none of the filter results were particularly
poor. However, some of the filters caused a high number of false positives.
As mentioned before, we believe that this problem can be alleviated by in-
troducing server-side or client-side whitelists as they are employed by many
collaborative spam filters.

Our spam corpus has manually been compiled; it contains about 5000
messages sorted into 213 categories. It would be interesting to verify our
study on a larger categorized corpus. However, building such a corpus is
very time consuming and error-prone. To get a larger corpus, one could
try to apply typical techniques used by spammers to create “similar” emails
manually; this has been suggested and employed for example in [99]. To gen-
erate a large amount of real spam emails, it would be best to use a standard
spamming tool as it might be available on the Internet.
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In our experiments, we did not measure the effect of combining filters.
For instance, it would be interesting to see how the Earlgrey filter and the
Whiplash engine performed in concert, or whether Razor, Pyzor, and DCC
could be improved when they were combined with the simple Hash.start or
Hash.end algorithm. The stacking of classifiers has been studied for instance
in [82, 88, 65, 21]; the results show that the combination of different (sta-
tistical) filters increases the filtering accuracy compared to the application
of individual filters. We see the evaluation of combined fingerprinting algo-
rithms as an interesting future research direction.



Chapter 6

The Plug-In Framework

abidjanstudiousbicycleaustinsienadeliberatefromgerhardperseusschoon=
ermoencalanimadversionlilianabsolvebikeinnovatelagosplanoconcavejacmchroni=

cPLUGINvolute
(Jarvis Carrier <16r3em@front.ru>, 5/6/2006)

With increasing complexity, large software projects tend to get unwieldy,
unmanageable, or even out of control. Researchers and developers have tried
to counter this crisis with several approaches. Today, component and service
orientation, plug-in architectures, and aspect oriented programming are “en
vogue.” The software development process evolves to a software management
process, where more and more building blocks are developed separately and
connected afterwards.

The first version of Spamato was a single, monolithic block of code. Of
course, the Java packaging facility eases the development and maintenance
of large projects by bundling related classes in one namespace. But with an
increasing number of components in the Spamato system, it was difficult to
understand the entire architecture and the dependencies among its individual
parts. Moreover, it was almost impossible to integrate new spam filters
without breaking the existing code.

The building-block approach offers one chief advantage: a black box hides
its actual implementation behind a well-defined interface facade that defines
its functionality. In this chapter, we survey a special type of black boxes:
plug-ins. More precisely, we examine frameworks that manage a bundle of
plug-ins and their interdependencies.

Traditionally, plug-ins have been used to extend the functionality of exist-
ing software. For instance, web browsers are extendable to support custom
MIME types, such as Java or Flash, and imaging tools can support addi-
tional filters. Here, plug-ins are not deployed with the base product but
integrated afterwards via a well-defined interface and extension mechanism.
We consider a more radical plug-in notion. In our framework, everything
is a plug-in. Besides a small bootstrapper which initializes and connects
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the runtime system, the complete application logic is defined by cooperating
plug-ins.

Open-source projects such as the instant messaging client Gaim and the
spam filter system SpamPal, which are still traditional frameworks, benefit
from third-party developers who contribute additional features, which can be
plugged into the existing host application. But only in “everything-is-a-plug-
in” frameworks, the full power of plug-in development becomes apparent.
For example, Eclipse is not restricted to the default Java IDE—completely
unrelated applications can be built on top of the bare framework.

As the development of Eclipse has been driven to provide an application
framework for building software, our plug-in framework has been shaped as
we have implemented the Spamato spam filter system. However, it proved
to be useful in other projects as well.

For Spamato, we expect the development of several third-party spam fil-
ters and analyzing tools. Therefore, an architecture that allows the seamless
integration of such plug-ins is a must. We also require a mechanism to pub-
lish, install, and update plug-ins at runtime, that is, without a restart of
the application. This is particularly important for email filtering software
because, otherwise, malicious messages can slip through and harm a user’s
machine. Additionally, we do not want plug-ins to be kept apart, but to
interact with each other. For this purpose, we adopt the notion of hooking or
extension points that are associated with well-defined tasks that contributing
plug-ins (extensions) can implement. Finally, we want a lightweight frame-
work since applications are supposed to run client-side with as little overhead
as possible.

In the next section, we discuss existing plug-in frameworks. We detail
our own framework in Section 6.2. An example of how the Spamato system
makes use of the plug-in mechanism is presented in Section 6.3. Finally, we
draw a conclusion in Section 6.4.

6.1 Related Work

The Eclipse framework was initially focused on integrated development en-
vironments (IDEs) [109]. With version 3.0, the Rich Client Platform (RCP)
allows the development of any kind of client applications. The Eclipse Run-
time comprises the minimum set of classes to build a rich client application.
It is built on top of the OSGi framework [127], which defines for instance the
life cycle of a plug-in. The orientation on business compatible solutions and
the emphasis on rich client applications clearly show that Eclipse does not
aim to provide a lightweight plug-in container but a powerful solution for all
circumstances. A minimal “Hello World” project in Eclipse has a footprint
of about 450 kB, while our plug-in framework creates about 50 kB only. Our
approach adopts some of the features found in Eclipse: mainly the notion of
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extensions and extension points as well as the declaration of plug-in inter-
dependencies in a plugin.xml descriptor file. But while Eclipse employs a
service locator to connect plug-ins, we use the constructor injection pattern
to automatically resolve dependencies among plug-ins.

Apache Tomcat is a container that supports the Java Servlet and Java-
Server Pages specifications, running J2EE web server applications [147]. In
that, it differs from our approach, which rather aims to be embedded in
client-side applications. Using Tomcat, dependencies can be modeled by
using globally shared directories, which is also reflected in a simple class
loader hierarchy. In contrast to Tomcat, which employs a single class loader
to enable the sharing of classes among plug-ins, we use a hierarchy of several
class loaders to model the interdependencies. Furthermore, Tomcat does not
provide any means of extensions or extension points.

The Apache Avalon framework is implemented in several projects, such
as Phoenix, Fortress, Merlin, or Codehaus’ Loom, see [100] for a description
of the project history. We compare our approach to Fortress [112], the only
project which provides a lightweight plug-in container. In Fortress, plug-in
dependencies are declared as “inline” JavaDoc tags directly in the source
code. In contrast, we manage all plug-in dependencies and information in a
separate file. Although the Fortress approach seems to entail less overhead,
our scheme has the advantage of encapsulating all dependencies in one single
file. Moreover, Fortress does not provide extensions and extension points and
uses a service locator instead of the constructor injection pattern.

The Codehaus PicoContainer [129] offers a very simple container facil-
ity with a footprint of about 50 kB. It provides the constructor and setter
injection patterns but has to be configured directly in the source code. No
separate descriptor file is needed to model dependencies among plug-ins since
all plug-ins run with the same class loader.

A NanoContainer [122] bundles several PicoContainers and allows for the
usage of separate class loaders. Additionally, dependencies can be declared
in many scripting languages, while we stick to an XML description. There
are two main differences to our approach. First, NanoContainer does not
implement extensions and extension points. And second, it cannot be altered
after the startup—it does not provide install or update features as we use
them in our plug-in container.

6.2 The Plug-in Framework

In this section, we describe our plug-in framework [4]. It was originally built
to facilitate the development of third-party filters for Spamato, but eases the
implementation of any plug-in-based application. Some of our examples are
described in the context of Spamato for clearness without loss of generality.
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When talking about plug-ins, on the one hand, we mean software compo-
nents that are independent blocks of code. They usually do not provide any
features to other components, and do not make use of any shared features.
Independent components bundle everything they need to perform a specific
task and do not interact with any other component. On the other hand, we
think about open framework blocks that do not only provide features to other
components but explicitly incorporates them, exploiting their capabilities to
fulfill a job. It is obvious, that the latter is more powerful and includes the
former component type.

In the next section, we formulate the characteristics of our plug-in frame-
work and show how to meet the requirements to support the component
types described before. After that, we explain the general process of starting
a plug-in-based application and how plug-ins are connected, loaded, and con-
figured. Finally, we highlight the deployment mechanism to publish, install,
and update plug-ins.

6.2.1 Plug-In Characteristics

A plug-in features some apparent characteristics such as a name, a descrip-
tion, and a main class. These parameters are generally necessary to manage
plug-ins or to provide information to the user. Additional requirements in-
clude a security facility restricting the access to local resources, a deployment
mechanism to manage different versions of plug-ins, and a scheme to model
dependencies between plug-ins.

The plugin.xml Descriptor File

Most of the mentioned characteristics are mapped to a plugin.xml file that
describes a plug-in and its dependencies. The plugin.xml descriptor file in
Listing 6.1 exemplifies a dummy plug-in.

The aforementioned <name> and <description> of a plug-in, which are
solely of descriptive usage, are listed in lines 2 and 3. The <class> denotes
a plain old Java class; it does not have to inherit from a “PlugIn” class
or implement any interfaces. The <version> and <update-url> tags provide
information for the deployment mechanism, which is detailed in Section 6.2.6.

The <requires> section of the XML file specifies security requirements
and dependencies on other plug-ins. In this example, the “Dummy PlugIn”
requests "all" permissions meaning that the plug-in must not be subject to
any restrictions enforced by a Java SecurityManager to which permissions are
directly mapped. Therefore, this concept enables a fine granular assignment
of permissions such as the read/write access to local files from a user directory
or the connection to a specific web server only. This is particularly impor-
tant when dealing with third-party, untrusted plug-ins as described later.
Additionally, in the <requires> section, a plug-in defines its dependencies
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1 <plugin>
2 <name>Dummy PlugIn</name>
3 <description>This is a very simple dummy plug-in.</description>

4 <class>ch.ethz.dcg.dummy.DummyPlugin</class>
5 <version>1.0</version>

6 <update-url>http://spamato.net/update</update-url>
7 <requires>

8 <permission type="all"/>
9 <plugin key="another_dummy"/>

10 <extension point="dummy_point" param="hello world"

class="ch.ethz.dcg.dummy.DummyExtension"/>
11 </plugin>

12 </requires>
13 <share>
14 <package name="ch.ethz.dcg.dummy.shared"/>

15 <class name="ch.ethz.dcg.dummy.ImportantSharedClass"/>
16 <extension-point id="my_dummy_point"/>

17 </share>
18 </plugin>

Listing 6.1: An example of a plugin.xml descriptor file.

on other plug-ins—either to get access to <share>d classes or resources, or
to subscribe to offered “extension points.”

The <share> part enables other plug-ins to extend or use the facilities pro-
vided by the sharing plug-in. In this example, the “Dummy PlugIn” allows
other plug-ins to access all classes in the package ch.ethz.dcg.dummy.shared
and additionally the ImportantSharedClass. The sharing of resources, such
as images or files, can similarly be achieved. Line 16 states the publishing of
an extension point which is further described in the following section.

6.2.2 Extensions and Extension Points

The concept of extending other plug-ins has been borrowed from Eclipse.
Plug-ins offer well defined extension points which other plug-ins can register
with as extensions. This approach resembles a publish/subscribe mechanism
but is more powerful: Registered extensions are not only notified to handle
events, but are expected to extend the capability of the extension point or
to perform a particular job.

In Eclipse, for example, many plug-ins add information or views to the
user interface by hooking into extension points that are called when the GUI
is shown. Thus, new visible elements with associated tasks are embedded into
the default editor. The Spamato framework offers several extension points;
one is for registering spam filters, which are invoked whenever a new email
arrives. In this case, the filtering process is extended or rather relies on what
registered extensions contribute.

In Listing 6.1, an <extension-point> is defined in the <share> section of
the plug-in descriptor file (line 16). Its id can be referenced in the <requires>
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part of another plug-in as can be seen in line 10. Besides the class that im-
plements the extension point, additional parameters can be set (here “hello
world”). Usually, the main class of an extension implements an interface
which is shared by the plug-in that offers the extension point. In the Spam-
ato system, a plug-in that registers as a spam filter has to implement the
SpamFilter interface that belongs to the offering plug-in.

6.2.3 Dependency Modeling and Class Loading

Our plug-in mechanism basically represents a lightweight container compo-
nent which loads plug-ins in a specific format from a specified directory.
Plug-ins provide their class files in a classes directory (either as individual
files or as a single jar file), additional jar files in a lib directory, and static
resource files, such as documentation files, in an etc directory. These di-
rectories are located below a bin directory which also holds the plugin.xml

file. Further dynamic content that is created at runtime, such as user defined
configuration files, are stored in the root directory of each plug-in.

All plug-ins are located in the profile directory which is recursively tra-
versed when a plug-in-based application is started. As mentioned earlier,
a plugin.xml file characterizes the interaction (required plug-ins for shared
classes and extension points) with other plug-ins. These files are parsed in
order to build a directed, acyclic graph which reflects all dependencies of all
plug-ins. The graph is used, for example, to determine the start-up order,
such that plug-ins are available when dependent ones need them. Note that
the container is partly implemented as a plug-in itself (the runtime plug-in).
It shares classes and resources, offers extension points, and exhibits all other
features of a normal plug-in. Thus, the runtime plug-in is also contained in
the graph but does not depend on any other plug-in.

This graph is also reflected in a similar hierarchically organized set of
Java ClassLoaders. Generally, each plug-in is managed by its dedicated
class loader. By default, no plug-in can use or even knows about other plug-
ins; they are totally shielded in their personal namespaces. This results in
four nice features. First, developers do not have to worry about other plug-
ins. They can label their packages without considering problems due to any
name collisions even though all plug-ins are dynamically loaded into the same
JVM. More precisely, developers can prohibit access to their classes. Second,
we can easily assign different individual security permissions as mentioned
earlier. Third, the testing and analysis of plug-ins with different parameters
is eased. In the Spamato system for instance, spam filters, which are plug-
ins themselves, can be used multiple times in one Spamato instance with
different settings by copying them into different directories in the profile
directory. Thus, it is possible to easily compare the results of the same filters
running at the same time with different settings. Finally, using separate class
loaders provides the capabilities to update plug-ins without the need for a
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Figure 6.1: The class loader hierarchy of two plug-ins.

restart of the whole container component. Instead, only the updating plug-in
and its dependent plug-ins need to be restarted which can be performed at
runtime.

Yet we still have to provide the sharing of classes, resources, and extension
points. This means, we need some facility to let other plug-ins make use
of the shared information. Additionally, hooking into an extension point
entails that the plug-in which offers the extension point calls methods of the
extending plug-ins—mutually connecting both plug-ins with each other.

To allow such interactions, the default Java class loading scheme has to
be adapted. In our plug-in system, each plug-in is backed by four different
types of class loaders: the FileClassLoader, the SharedClassLoader, the De-
pendencyClassLoader, and the CombinedClassLoader. The interaction of two
plug-ins and their class loaders is depicted in Figure 6.1.

The FileClassLoader is responsible to load files from the file system and is
restricted to the associated plug-in directory. The SharedClassLoader wraps
the FileClassLoader. It restricts the access for other plug-ins to those files
which are declared as “shared” in the plug-in descriptor file. The Depen-
dencyClassLoader enables plug-ins to access shared classes of other plug-ins
by using their SharedClassLoader, provided that a dependency is declared.
Finally, the CombinedClassLoader combines the FileClassLoader and the De-
pendencyClassLoader and provides all class files, resources, and libraries ac-
cessible through them to the associated plug-in. Furthermore, there is a
single ContextClassLoader. It enables all CombinedClassLoaders to access
the default Java classes, the bootstrap plug-in classes, which are not part
of any plug-in, and all other classes and libraries that can be found in the
default CLASSPATH.

Also note that our class loading mechanism differs from the default Java
“first parent/then child”-scheme. We first browse the directly associated
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FileClassLoader, and only if the class or resource can not be accessed, the
parent CombinedClassLoader is called.

6.2.4 The Life Cycle of a Plug-in

The life cycle of a plug-in in our framework is simple. It can be managed by
implementing specific interfaces instead of hooking into an extension point.
The plug-in descriptor file is loaded and parsed in the initialization phase
by a Plugin Handler; for each plug-in exists one handler. After all plug-ins
have been initialized, they are loaded respecting the order of the directed
acyclic graph described in Section 6.2.3. Thus, whenever a plug-in is loaded,
its required plug-ins are available. The loading and instantiation of classes is
performed using the Dependency Injection pattern (IoC) or more precisely,
the constructor-based injection variant of it. References to required plug-
ins are automatically assigned through constructor parameters which are
resolved using the Java reflection facility.1 The start and dispose phases of
the life cycle can optionally be handled by implementing the corresponding
interfaces.

6.2.5 Configuration

An interface unifies the access to configuration settings from various sources.
The individual settings object of a plug-in can be accessed as a constructor
parameter during the start-up phase as described in the previous section.

Currently, text, Java properties, and XML files are supported to store
the settings; additional formats can be contributed using the corresponding
extension point of the runtime plug-in. For instance, a database implemen-
tation would be more appropriate to support a large number of users for a
server-side Spamato version.

6.2.6 The Deployment Mechanism

Oreizy et al. [71] identify three types of architectural changes in the life-time
of plug-ins in a framework: the addition of plug-ins, the removal of plug-ins,
and the replacement of plug-ins. We refer to these types as the installation,
deletion, and update of plug-ins, respectively. Furthermore, we extend our
framework to allow for another aspect: the publication of new plug-ins by
any user.

The runtime plug-in provides an extension point for each of these four
aspects; this is illustrated in Listing 6.2. Plug-ins can contribute to these
extension points by implementing corresponding interfaces.

1We also provide the service locator approach by allowing plug-ins to access the plug-in
container. But we regard the constructor injection method to be easier to maintain—and
a reference to the service locator can only be accessed in this way.
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<plugin>
<name>Runtime</name>
<share>

<extension-point id="deploy.search"/>
<extension-point id="deploy.download"/>

<extension-point id="deploy.upload"/>
<extension-point id="deploy.publish"/>

</share>
<extension point="deploy.search" id="http" class="..."/>
<extension point="deploy.download" id="http,ftp,file" class="..."/>

</plugin>

Listing 6.2: The runtime plug-in offers extension points to provide deploy-
ment handlers and registers default ones.

Search handlers are used to find plug-ins that can be installed or updated.
We provide default search handlers for HTTP and FTP servers as well as for
the local file system. The search provides a list that contains fragments of the
plugin.xml of a plug-in: descriptive data, such as the name, as well as data
necessary for the update mechanism, for instance the version and the down-
load source. Download handlers fetch plug-ins from a download server. As
an additional plug-in, the tracker-based Peerato system allows downloading
files directly from other users using a proprietary protocol. Upload handlers
store plug-ins on a download server, and publish handlers update the list of
available plug-ins accessed by search handlers. Both are necessary in order
to make new or updated plug-ins available to other users.

Note that the runtime plug-in only provides the basic capability to man-
age the deployment cycle of plug-ins. To employ it in an accessible way,
further steps have to be taken. In the Spamato system, we use a browser-
based approach to cope with this issue.

The Profile Deployment Scheme

On multi-user platforms, such as Linux and (to some extent) Windows XP,
it is often feasible to install an application based on our framework for all
users only once. This eases the application maintenance, for example when
updating plug-ins. Still, users should be able to configure their personal
environment, for instance by installing custom plug-ins or removing default
ones.

We address this issue in our profile deployment scheme. Usually, an ad-
ministrator installs an application to a directory which users can only read
from, the default installation directory. To allow for the configuration of a
user-specific environment, plug-ins are installed to the user’s profile directory
when an application is started for the first time. Any modification can now
be performed in the profile directory instead of the read-only installation di-
rectory. Nevertheless, administrators can update the default installation and
our profile deployment scheme applies the changes to each user profile.
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<plugin>
<name>Current Filter Process</name>
<share>

<extension-point id="precheckers"/>
<extension-point id="filters"/>

<extension-point id="decision_makers"/>
<extension-point id="postcheckers"/>

<package name="ch.ethz.dcg.cufip">
</share>

</plugin>

Listing 6.3: The CuFiP offers several extension points to control the process
of filtering emails.

6.3 Using the Plug-In Framework in the
Spamato System

In the previous chapters, we described a variety of plug-ins that exist in
the Spamato system. The obvious key functionality of Spamato is to check
whether incoming emails are spam. This task is performed by several spam
filter plug-ins, which are managed by a filter process component as described
in Section 2.2. As an example, we briefly show how the filter process is
defined in the plug-in framework. Thereafter, we sketch the implementation
of the Earlgrey filter, which depends on several other plug-ins.

The Filter Process

The plugin.xml file that exposes the capabilities of the CuFiP (see Sec-
tion 2.2.2) to the plug-in framework is given in Listing 6.3. The defined
extension points directly correspond to the different filter phases. For in-
stance, post-checkers have to register with the “postcheckers” extension
point in order to be notified after the classification of an email has been
determined. Moreover, for each extension point exists an associated Java
interface that has to be implemented by a plug-in for compatibility reasons.
That is, all post-checkers have to implement the “PostChecker” interface that
contains the invoked “onPostCheck()” method. This interface is defined in
the “ch.ethz.dcg.cufip” package, which is shared with other plug-ins.

The Earlgrey Filter

The plugin.xml of the Earlgrey filter is shown in Listing 6.4. As described in
Section 3.6, the Trooth system is used to weight votes from other users with
their trust values. The url plug-in extracts the relevant domains contained
in an email, and previously cached results can be consulted using the filter
history component. The runtime plug-in provides basic utility functions to
all plug-ins that want to store configuration files. Finally, the settings of a
plug-in can be managed using the web config plug-in; for the Earlgrey filter,
two pages are registered.
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<plugin>
<name>Earlgrey Filter</name>
<requires>

<plugin key="cufip">
<extension point="filters" class="..."/>

</plugin>
<plugin key="trooth"/>

<plugin key="url"/>
<plugin key="filterhistory"/>
<plugin key="runtime"/>

<plugin key="webconfig" name="Configuration">
<extension point="config.pages" class="..."

page="" menu="Earlgrey"/>
<extension point="config.pages" class="..."

page="aggressiveness" menu="Aggressiveness"/>

</plugin>
</requires>

</plugin>

Listing 6.4: The Earlgrey filter depends on several other plug-ins to perform
its filtering task.

6.4 Concluding Remarks

In this chapter, we presented a lightweight but powerful plug-in container,
which provides advanced features such as dynamic class loading and depen-
dency, configuration, and security management. The plug-in container is an
important part of the Spamato system, as it eases the integration of third-
party spam filters.

The plug-in framework was designed to support single-user applications.
A multi-user installation—one that shares a common code-base, runs in a
single JVM, and differs only in the configuration files for each user—is cur-
rently not supported.2 However, we plan to run the Spamatoxy in such a
scenario: A single instance could serve many users in parallel. For multi-user
support, we plan to extend the plug-in framework such that it uses session
objects to distinguish between users. Additionally, it might be necessary to
provide further tools to ease the administration of users and plug-ins.

2It is possible to start the same application several times in a multi-user environment
using independent Java processes. However, running it only once in a single JVM for
distinct users is not supported.





Chapter 7

Project Statistics and

Filter Results

My girlfriend loves the results, but she doesn’t know what I do.
She thinks it’s natural

(zona armstrong <dalemae@my.justlove.kiev.ua>, 6/3/2006)

In this chapter, we present some statistics about Spamato which we collected
during the last few weeks. The data was mostly taken from our statistics
database (see Section 2.4.2), which contains detailed information about de-
tected spam messages, such as the involved spam filters and their parameters.
The database is an extensive source for the real-world analysis of the deployed
system. However, its maintenance is also “expensive,” as for each detected
spam message a notification is sent from the users and a record has to be
stored on the server. Nevertheless, the insights gained from this data provide
valuable information about the entire Spamato system running in hundreds
of different environments and can help improve it in the future.

In the next section, we give a brief overview of the project history. Sec-
tion 7.2 presents statistics about the development of the number of users and
detected spam messages. Thereafter, in Section 7.3 we take a closer look at
the performance of the Spamato filters. Finally, in Section 7.4 we draw a
brief conclusion.

7.1 Project History

The first version of Spamato was published in February 2004. We started
using SourceForge with version 0.9 in August 2005, followed by version 0.98
in December 2005 and version 0.98b in February 2006. Version 0.99 was
released on June, 11th, 2006 on SourceForge and was added to the add-
ons directory of Mozilla on July, 20th, 2006. In the following sections, we
considered only version 0.99 for which all data was measured until August,
7th, 2006.



120 CHAPTER 7. PROJECT STATISTICS AND FILTER RESULTS

The latest Spamato release was downloaded about 4500 times from the
SourceForge and Mozilla sites: Spamato4Thunderbird had about 2750 down-
loads, Spamato4Outlook 1160, Spamatoxy 510, and Spamatozilla 80. Spam-
ato4Outlook was most frequently downloaded until Spamato4Thunderbird
was also available from the Mozilla page; more than 1600 downloads were
registered for this extension during the last 3 weeks.

Spamato was several times among the 100 most active projects on Source-
Forge; its best rank was 58 on August, 4th. The activity of a project is based
on several criteria, such as the number of downloads, homepage visits, bug
and feature tracker entries, and forum messages. Spamato had to compete
with more than 100000 other projects which were hosted on SourceForge as
well.

Searching for the term “Spamato” on Google produced 17300 hits on Au-
gust, 7th (not all for our software, though). It was added to a variety of down-
load platforms, discussed in blogs, and recommended in several articles. Each
day, hundreds of people visit our homepage at http://www.spamato.net

browsing for information and statistics. We expect to get further attention
with version 1.0 of Spamato.

7.2 Usage Statistics

Although Spamato was downloaded about 4500 times, the number of active
users was (for unknown reasons) smaller: For only 1713 users did our statis-
tics database record at least one successfully detected spam message. 1332 of
these users were active on at least two days, and 569 users on at least seven
days. Currently, about 50 new users join the Spamato community every day.

Figure 7.1 illustrates the development of new and active users over time,
starting on June, 6th, as day “1”.1 The number of known users is the cumu-
lative sum of new users. The ratio between active and known users per day is
mapped on the second y-axis and declines over time. Nevertheless, the total
number of active users shows a clear upward trend, and we expect the ratio
between active and known users to stabilize in the future. Note the drastic
increase in the number of users since day “44” when Spamato4Thunderbird
was listed on the Mozilla directory for the first time.

In total, Spamato classified 537544 messages as spam. Currently, the
number of daily spam detections is larger than 30000. More than 100 mes-
sages were removed by Spamato from 593 users’ inboxes, 107 users received
more than 1000 spam messages, and Spamato helped the worst affected user
in 24303 cases. Figure 7.2 depicts the number of daily detected spam mes-
sages. As before, since day “44” we can see a significant increase in the
number of identified spam emails. Interestingly, the average number of spam
emails per user, as depicted on the second y-axis, almost stabilized over time
and now slowly increases to about 60 spam messages per user and day.

1Note that we had an internal release five days before we published it on SourceForge.
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Figure 7.1: This figure depicts the number of new and active users per day
since the first release day of version 0.99. The considerable increase since day
“44” results from the release of Spamato on the Mozilla directory in addition
to SourceForge.
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Figure 7.2: This figure illustrates the number of detected spam messages per
day and per user. Again, the increase since day “44” is due to the listing of
Spamato4Thunderbird on the Mozilla site.
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7.3 Filter Results

Overall, our statistics database recorded 537544 spam detections from which
13053 have been revoked (about 2.4%). Most users kept the default settings
for the filters and the Min-Spam Decision Maker (see Section 2.3.1); only
few decided to modify the parameters. For simplicity, we did not consider
different parameter values; doing so would lead to slightly different results
though.

Note that we did not collect information about detected ham messages.
We can elaborate only on the number of spam detections and the number
of reported and revoked emails. To complicate the matter, reports did not
necessarily reflect false negatives since messages were also reported when
training the Bayesianato. That is, we cannot distinguish between real false
negatives and “training” reports. Similarly, not all revokes were false posi-
tives. In this case, we determined the number of real false positives as the
number of revoked messages for which also a positive spam check was stored
in the database.

In the following paragraphs, we present the results concerning spam de-
tections and false positive rates and discuss the impact of different filter
selections and min-spam values.

Detection Rate

Figure 7.3 illustrates how many spam emails were detected by each filter;
the “Spamato” category reflects the entire Spamato system with all filters.
The Razor.Ephemeral and Razor.Whiplash engines were part of the Razor
filter and not individually evaluated. We show them here, as this allows us
to compare the Whiplash algorithm with the Earlgrey filter, which are both
collaborative and URL-based filters. Furthermore, the Ruleminator is not
listed, as all of its rules were evaluated but not the Ruleminator on its own.
The Rule.* rules are default rules in the Ruleminator and were employed by
most users. Some users also created their own rules. However, we decided
to discard them from this overview, as they had only a very small impact on
the overall results.

Note that none of the filters checked all emails. For instance, the Bayesia-
nato checked only 311000 messages—226000 were not checked, as the Bayes-
ianato was either still “learning”—that is, it had not seen enough tokens
to start classifying emails—or had been disabled by the user. The Earlgrey
filter checked only about 432000 emails—the rest was not classified, as those
emails did not contain any domain (or because the Earlgrey filter had been
disabled).

The figure also shows the detection rate for each filter. For instance,
the Bayesianato detected about 88% of all spam emails it checked whereas
the Domainator classified only 45% of its checked message as spam; this
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Figure 7.3: This figure shows the number of checked and detected spam
messages for each filter. The spam/checks ratio is calculated by dividing
the number of detected spam messages by the number of checked messages
per filter. For the spam/all-checks ratio, the number of spam detections is
divided by the number of all (Spamato) checks.
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Figure 7.4: This figure illustrates the false positive rate of each filter. The
fp/spam ratio is calculated as the ratio between false positives and detected
spams per filter. Similarly, the fp/spam-all ratio is the number of false posi-
tives divided by the number of all spam messages.
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spam/checks ratio is depicted as the dashed line with triangle markers. The
second curve marked with squares is the ratio of the number of spam de-
tections per filter divided by the number of all checks (spam/all-checks ra-
tio). For instance, the Earlgrey filter had a spam/checks ratio of 61% and a
spam/all-checks ratio of only 49% since it did not check all emails as men-
tioned above.

False Positive Rate

The false positive rate for each filter is illustrated in Figure 7.4. It was
calculated as the number of false positives (revokes) in which a filter was
involved divided by the number of spam detections per filter (fp/spam ratio)
and by the total number of spam detections (fp/all-spam ratio). The min-
imal number of 2 filters per false positive was given in 9553 cases, 3 filters
were responsible for 2389 misclassifications, and 4 or even more filters erro-
neously voted in 1111 cases for spam. Therefore, the false positive rates of
the individual filters cannot be summed up to meet the overall rate, as the
sets of misclassified emails were not distinct.

The overall false positive rate was about 2.4% as given in the “Spamato”
column. The fp/spam ratio for the Bayesianato, for example, was about 1.7%
and the fp/spam-all ratio was approximately 0.8%. As can be seen, the Razor
filter performed best; it is the only filter with an fp/spam ratio below 1%.
The worst performing filter was the Rule.Distrusted rule. It was involved in
about 2.6% of all misclassifications, which was not surprising since this rule
classifies on a very strict criterion.

Impact of Min-Spam Values

In this section, we briefly discuss the impact of choosing different min-spam
values on the filtering success. Figure 7.5 depicts the false positive and false
negative rates for the entire Spamato system. The false positive rate is
measured as before; for instance, for a min-spam value of 2, it is about 2.4%.
The false negative rate is calculated as 1 minus the number of missed spam
messages divided by the number of all spam messages. For example, with
a min-spam value of 3, about 133000 emails (24%) would not be detected
as spam anymore. At the same time, the false positive rate would also be
decreased to only 0.9%.

Obviously, choosing high min-spam values results in low detection rates.
Therefore, we chose 2 as the default value—accepting a slightly higher false
positive rate than with other values.

Impact of Filter Selection

In this experiment, we were interested in the contribution that each filter had
on the overall detection rate. Particularly, we measured the false positive and
false negative rates of the entire Spamato system when one filter was removed.
The results for a min-spam value of 2 are illustrated in Figure 7.6.
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Figure 7.6: The figure depicts the impact on the false positive and false neg-
ative rates when one filter is removed. For instance, discarding the Bayes-
ianato from the set of Spamato filters decreases the detection rate by about
6% while the false positive rate is reduced from 2.4% to 2%.
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For example, when removing the Bayesianato, the remaining seven filters
would have a false positive rate of 2% and a false negative rate of 6%. That
is, only about 505000 emails were detected as spam, and thereof about 10500
were false positives. In other words, 32000 spam messages were not detected
if we had discarded the Bayesianato from the Spamato system since only one
other filter detected them as well. Note that removing the Rule.Distrusted
filter would have the highest impact on the false positive and false negative
rates. Again, this is because of its very harsh classification scheme.

The main purpose of this figure is to show that all filters contribute to
the overall detection rate. Discarding any individual filter would reduce
the number of detected spam messages. Moreover, the false positive rate
decreases only slightly when removing a filter. In conclusion, utilizing all
eight filters in the Spamato system seems to be most advantageous compared
to any “seven-filter system.”

We also measured the effectiveness of all 28 two-filter combinations. The
best performing combination (Bayesianato and Rule.Distrusted) detected
only about 52% of all spam messages with a false positive rate of 0.8%; Ra-
zor in combination with the Rule.Distrusted filter reached a detection rate
of 50% with a 0.3% false positive rate. These results confirm that bundling
several filters in a spam filter system is a good choice.

7.4 Concluding Remarks

The results presented in this chapter were derived from our statistics data-
base, which proved to be an invaluable source of information. It was interest-
ing to analyze a live system containing hundreds of users with different usage
behaviors. However, this variety also had some drawbacks. For instance, the
results indicated that Spamato performed worse than many spam filters eval-
uated in the literature. One reason for this behavior could be that many new
users joined Spamato in the evaluated period. Since new users generally
start with untrained filters, it is possible that false positives are more com-
mon until the filters get more training data. Another explanation could be
that spam filters in general do not meet the promised performance for the
“average real-world user.” It has to be studied further if the Spamato filters
are really that poor.

Tom Fawcett argued in [28] that “real-world in vivo spam filtering is a
rich and challenging problem for data mining. By ‘in vivo’ we mean the
problem as it is truly faced in an operating environment, that is, by an
on-line filter on a mail account that receives realistic feeds of email over
time, and serves a human user.” In this chapter, we actually did not study
“in vivo” spam filtering, but looked at a related domain: “in vivo” spam
filtering results. Moreover, we studied this domain not for a single but for
hundreds of “human users.” We believe that our data will help gain a better
understanding of spam filtering in a real-world scenario.
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Conclusion

I’m just a regular person who has seen what the world has to offer,
thus I have come to the conclusion I love all the people...

(Violet Guerrero <atthistveg@atthis.com>, 6/8/2006)

A crowd of drunken Vikings bawl Monty Python’s Spam Song whenever
Spamato detects a spam message. “Spam spam spam spam. Lovely spam!
Wonderful spam!” are the words that conclude the mail-way to hell. The song
is played at the very end of the filter process, in which the true face of every
email is revealed. The filter process is the conductor of the Spamato system.
It directs the invocation order of pre-checkers, spam filters, and decision
makers when scrutinizing emails. We discussed several implementations of
these components and their interaction, as they are crucial for the overall
success of Spamato.

The work presented in this thesis has a strong practical background.
Spamato was implemented for the purpose of being employed by many users
in real-world scenarios. This was a challenging venture, as reality significantly
differs from test bed experiments. Nonetheless, we succeeded in achieving
this goal: Hundreds of people use Spamato every day to remove unsolicited
emails from their inboxes. Since all filter results are stored in our statistics
database, we are able to analyze how each filter—and the entire Spamato
system—performs in operating environments.

We designed Spamato to allow for the integration of third-party spam
filters. With the extension mechanism, it is easy to plug additional filters
into the system. Unfortunately, we have not yet been able to encourage any
spam filter developer to rely on the functionality provided by the Spamato
framework. A comprehensive “Developer’s Guide” may help to attract pro-
grammers who want to contribute to the Spamato project. We also plan to
implement new spam filters on our own. Particularly, we want to explore the
capabilities of collaborative spam filters in more depth.

The long-term goal of our project is to turn Spamato into a kind of
“smart secretary” for email handling. Currently, Spamato is restricted to the
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spam filtering domain; but this restriction is self-imposed. From a technical
perspective, we can easily support mechanisms to make the handling of email
in general more feasible. Many people complain about not being able to
keep up with the load of emails arriving in their inboxes every day—and
this concerns ham messages! Once a message has scrolled “off the screen,”
it is most likely lost forever. We recently started research on automatic
topic detection and prioritization of emails. Employing such mechanisms will
help organize what is left after removing unsolicited content, urging users to
answer the most important messages first.

At the end of this thesis, we want to recall its very beginning: “Mastering
Spam” was the challenge of this dissertation. Did we succeed? No would
be an honest answer—when measured on a global scale, we achieved only
little. Spam is still a problem, and it seems to get even worse. However,
the objective of this project was not to eradicate spam completely. In this
thesis, we sought to filter spam upon reception. We did not fight the root
of the problem, which would prevent spammers from sending spam at all.
So maybe, yes is the correct answer. At least, the existence of hundreds of
people successfully using Spamato provides evidence that this is indeed the
case. Who should decide about this question if not the users?

At the World Economic Forum in January 2004, Bill Gates claimed that
“Two years from now, spam will be solved.” Looking at the current situation,
he was undoubtedly wrong. Comparing Spamato to Microsoft’s efforts may
appear audacious. But only time will tell to which extent Spamato can
master spam.
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