
Symbolic Music Genre Transfer with CycleGAN
Gino Brunner, Yuyi Wang, Roger Wattenhofer and Sumu Zhao*

Department of Information Technology and Electrical Engineering
ETH Zürich
Switzerland

brunnegi,yuwang,wattenhofer,suzhao@ethz.ch

Abstract—Deep generative models such as Variational Autoen-
coders (VAEs) and Generative Adversarial Networks (GANs)
have recently been applied to style and domain transfer for
images, and in the case of VAEs, music. GAN-based models
employing several generators and some form of cycle consistency
loss have been among the most successful for image domain
transfer. In this paper we apply such a model to symbolic
music and show the feasibility of our approach for music genre
transfer. Evaluations using separate genre classifiers show that
the style transfer works well. In order to improve the fidelity
of the transformed music, we add additional discriminators that
cause the generators to keep the structure of the original music
mostly intact, while still achieving strong genre transfer. Visual
and audible results further show the potential of our approach.
To the best of our knowledge, this paper represents the first
application of GANs to symbolic music domain transfer.

Index Terms—Deep Learning, Neural Networks, Music, MIDI,
Style, Genre, Domain, Transfer, CNN, GAN, CycleGAN

I. INTRODUCTION

Style and domain transfer using neural networks have
become exciting machine learning showcases. Most prior work
has focused on the image domain, and has enabled us, for
example, to take photographs and have them rendered in
the style of a certain painter [1], or change an image taken
during summer to look like it were captured in winter [2].
Domain transfers are interesting, because they require the
development of novel representation learning techniques that
will carry over to other areas in Deep Learning research.
In order for domain transfers to work, the neural network
models must have a “deep” understanding of the underlying
domain. This requires the extraction of salient features from
complex data such as images, natural language, or music. Deep
generative models like Variational Autoencoders [3] (VAE)
and Generative Adversarial Networks [4] (GAN) seem well
suited for this task, as they attempt to learn the true underlying
data generating distribution. Thus, neural style transfer using
deep generative models is a highly relevant part of deep
representation learning research [5].

Domain transfer for music has many possible real world
applications. For instance, professional musicians often create
cover songs, i.e., new interpretations of a song from another
musician. If both musicians roughly belong to the same genre,
a slight change in instrumentation coupled with the unique
characteristics of the cover artist’s voice could already be
enough to make the cover song worth listening to. However,

* Authors are listed in alphabetical order.

there are many cases were the original and cover artists
come from completely different styles. In such cases, the
transformations necessary to make the cover song pleasing
to listen to are far more elaborate. One can only imagine the
amount of effort that goes into arranging an entire symphony
based on a comparatively simple rock song [6]. Domain
transfer systems could significantly accelerate this process, or
even automate it completely, which would let us enjoy music
that generally has not been feasible to create on a large scale.

The terms style and domain transfer have often been used
interchangeably in the literature. As there are no standard
definitions or distinctions of the two terms, which can lead
to some confusion, we will discuss them briefly at this point.
The term style transfer in the context of neural networks
was introduced by Gatys et al. [1] and usually refers to
preserving explicit content features of an image and applying
to it explicit style features of another image. The explicit
style and content features are, e.g., extracted from a pre-
trained CNN. Thus, style transfer enables the merging of
two images while allowing the control over how much style
and content each of the images contributes. The concept of
domain transfer is more general, as it aims to learn a mapping
between entire domains of, e.g. images. For instance, domain
transfer allows to take any input from domain A and change
it such that it looks like it belongs to domain B, where A and
B could be summer and winter, or Jazz and Classic. There
must not necessarily be an explicit constraint that preserves
“content”, but regularization techniques such as applying a
cycle consistency loss as in [2] encourage the preservation of
overall content, and help the network to only change what is
necessary to perform the domain transfer. However, we think
that the idea of style transfer is more general than simply
using the “style” features extracted from a CNN, and that it
depends on the definition of style. For example, if we want
to transfer music from one genre to another, it could either
be called style transfer (if style is defined as the genre) and/or
domain transfer, where music genres A and B are seen as two
domains. Nevertheless, for the sake of consistency, we will use
the terms domain or genre transfer, but still occasionally use
the term style transfer when referring to prior work.

In this paper we consider the task of transferring a piece
of music from a source to a target genre. The transfer
should be clearly noticeable, while retaining enough of the
original melody and structure such that the source piece is
still recognizable. To that end we adapt CycleGAN [2], a

successful neural domain transfer architecture for images, to
perform genre transfer on symbolic music. We show that
our model can transform polyphonic music pieces from a
source to a target genre, e.g., from Jazz to Classic, by only
changing note pitches. We introduce additional discriminators
to balance the strength of the domain transfer against retaining
the original input’s content. We use separate genre classifiers
to quantify the effect of the genre transfer. Provided audio
samples show that the genre transfer cannot only be picked
up by a neural network classifier, but can indeed be heard
by humans. Additionally, the polyphonic music generated by
our model sounds pleasing and harmonic, with relatively few
dissonant notes or rhythmic stumbles. To the best of our
knowledge, we present the first successful attempt at domain
transfer for symbolic music with GANs. In order to facilitate
future research we provide our code and training data.1

II. RELATED WORK

Gatys et al. [1] introduce the concept of neural style transfer
and show that pre-trained CNNs can be used to merge the style
and content of two images. Approaches such as CycleGAN [2]
do not require the extraction of explicit style and content
features, but instead uses a pair of generators to transform
data from a domain A to another domain B. The nature of the
two domains implicitly specifies the kinds of features that will
be extracted. For example, if domain A contains photographs
and domain B contains paintings, then CycleGAN should learn
to transfer any painting into a photograph and vice versa.
We use the same structure as CycleGAN and apply it to
music in the MIDI format. The general idea of CycleGAN has
been further developed and improved. A few notable examples
include CycleGAN-VC [7], StarGAN [8], CoGAN [9] and
DualGAN [10]. In the future we plan on using a more complex
architecture and incorporate improvements from these works,
but in this paper we focus on showing the feasibility of a
CycleGAN approach to domain transfer for symbolic music.

Existing work on music style transfer includes Malik et
al. [11], who introduce a model that learns to play music in
the style of a human musician. Their model adds velocities
to “flat” MIDI files which results in more realistic sound-
ing music. While their model can indeed play music in a
more human-like manner, it can only change note velocities,
and does not learn the characteristics of different musical
styles/genres. Brunner et al. [12] create MIDI-VAE, a multi-
task Variational Autoencoder model with a shared latent space
that is capable of changing the style of complete compositions
from, e.g., Classic to Jazz. In addition to note pitches, MIDI-
VAE also models most other aspects of music contained in
MIDI files, i.e., velocities, note durations and instrumentation.
In contrast to MIDI-VAE, we do not limit the number of
simultaneously played notes, which leads to richer sounding
music. Furthermore, when only considering the note pitches,
our method achieves a more convincing style transfer. For

1Repository:
https://github.com/sumuzhao/CycleGAN-Music-Style-Transfer

raw audio, Van den Oord et al. [13] introduce a VAE model
with discrete latent space that is able to perform speaker
voice transfer. Mor et al. [14] develop a system based on
WaveNet [15] autoencoders that is capable of translating raw
music between instruments, genres and styles. Their system
even enables the synthesis of music from whistling.

The focus of this paper lies on musical genre transfer.
However, genre transfer can only be successful if the result-
ing music sounds pleasant. Therefore we will briefly cover
important work in the field of automatic music generation
without direct application to style or domain transfer. Much
of the existing work uses standard Recurrent Neural Networks
(RNN) ([16], [17]) or long short-term memory networks [18]
([19]–[23]) to model music. More recently, CNNs have also
been successfully applied, sometimes in combination with
RNNs ([24], [25]). Generative models such as the Variational
Autoencoder (VAE) and Generative Adversarial Networks
(GANs) have been increasingly successful at generating music.
Roberts et al. introduce MusicVAE [26], a hierarchical VAE
model that can capture long-term structure in polyphonic
music and exhibits high interpolation and reconstruction per-
formance. GANs, while very powerful, are notoriously difficult
to train and have generally not been applied to sequential
data. However, Mogren [27], Yang et al. [28] and Dong et
al. [29] have recently shown the efficacy of CNN-based GANs
for music composition. We use CNN-based GANs to model
music and perform domain transfer. Yu et al. [30] were the
first to successfully apply RNN-based GANs to music by
incorporating reinforcement learning techniques. For a more
comprehensive overview of automatic music generation, we
refer the interested reader to the following surveys: [31]–[33].

III. MODEL ARCHITECTURE

Our model is based on Generative Adversarial Networks
(GANs) [4]. Vanilla GANs consist of a generator G and a
discriminator D. The generator tries to generate real looking
data from noise, while the discriminator attempts to distinguish
the output of the generator from real data. G and D are
iteratively trained in a two-player minimax game manner.
Since our goal is to transfer music from one domain to another,
the generator does not actually get noise as input, but instead
real samples from the source domain. In this paper we only
deal with translation between two domains at a time, and
will hence refer to them as domain A and B, where the two
domains correspond to music from two different genres. Since
the transfer should be symmetric, i.e., we want to transfer
samples from A to B and vice versa, our model follows the
same structure as the recently introduced CycleGAN [2]. A
CycleGAN basically consists of two GANs that are arranged in
a cyclic fashion and trained in unison. One generator transfers
data from domain A to B and the other from B to A. One
discriminator is attached to each generator output. Figure 1
shows the architecture of our model. Blue and red arrows
denote the domain transfers in the two opposite directions, and
black arrows point to the loss functions. GA→B and GB→A

are two generators which transfer data between A and B. DA

https://github.com/sumuzhao/CycleGAN-Music-Style-Transfer

and DB are two discriminators which distinguish if data is
real or fake. DA,m and DB,m are two extra discriminators
which force the generators to learn more high-level features.
Following the blue arrows, xA denotes a real data sample
from source domain A. x̂B denotes the same data sample after
being transferred to target domain B, i.e., x̂B = GA→B (xA).
x̃A denotes the same data sample after being transferred back
to the source domain A, i.e., x̃A = GB→A (GA→B (xA)).
Equivalently, following the red arrows describes the opposite
direction, i.e., the transfer from B to A and back to B. M
is a dataset containing music from multiple domains, e.g,
M = A ∪B. xM denotes a data sample from M .

As in [2], we use the L2 norm for the adversarial loss. For
the generators, we have

LGA→B
= ‖DB (x̂B)− 1‖2

LGB→A
= ‖DA (x̂A)− 1‖2

To enforce forward-backward consistency, Zhu et al. [2]
introduce an extra L1 loss term called cycle consistency loss:

Lc = ‖x̃A − xA‖1 + ‖x̃B − xB‖1
The cycle consistency loss ensures that the input is mapped

back to itself after passing it through both generators, i.e.,
after completing the cycle. If the cycle loss is omitted, the
generators will suffer from posterior collapse, and there will
only be little or no mutual information between the input and
output, which is generally undesirable. The cycle consistency
loss can also be seen as a regularizer that makes sure the
generators do not ignore the input data, but instead retain as
much information as necessary to then be able to invert the
transformation.

Thus, the total loss function of the generators is

LG = LGA→B
+ LGB→A

+ λLc (1)

Where λ is used to weight the contribution of the cycle
consistency loss. For the standard GAN discriminators, we
have

LDA
=

1

2
(‖DA (xA)− 1‖2 + ‖DA (x̂A)‖2)

LDB
=

1

2
(‖DB (xB)− 1‖2 + ‖DB (x̂B)‖2)

GAN training is highly unstable and the discriminator and
generator training needs to be carefully balanced. A common
failure mode is when the discriminator is too powerful and
overpowers the generator early in training, which results
in convergence to a bad local optima. In our setting there
is another difficulty: Since the generators need to learn a
transformation from a source to a target music genre, they
effectively need to learn features of both genres, such that the
discriminator can be fooled. It is likely that music genres have
a few very distinctive patterns, and that the generators could

then simply generate many of these patterns in an attempt to
fool the discriminator. Even though the discriminator might
be fooled, the output might not sound realistic anymore. In
order to force the generators to learn better high-level features,
we add two extra discriminators. The main difference to the
standard discriminators is that they are trained to distinguish
fake data and data from multiple domains (M), instead of just
data from the target domain. This helps regularize the gener-
ator to stay on the “music manifold”, and generate plausible,
realistic music. More importantly, it causes the generator to
retain much of the input’s structure, thereby ensuring that the
original piece is still recognizable after the genre transfer. The
loss for these two extra discriminators DA,m and DB,m is

LDA,m
=

1

2

(
‖DA,m (xM)− 1‖2 + ‖DA,m (x̂A)‖2

)

LDB,m
=

1

2

(
‖DB,m (xM)− 1‖2 + ‖DB,m (x̂B)‖2

)
where M denotes mixed real data from multiple domains (here
possibly Jazz, Classic and/or Pop). Thus the total loss for the
discriminators is

LD,all = LD + γ
(
LDA,m

+ LDB,m

)
(2)

where γ is used to weight the extra discriminator losses.
To further stabilize the GAN training we add Gaussian noise
N

(
0, σ2

D

)
to the inputs of the discriminators, similar to [34].

This improves the robustness and generalization performance
of the model. The effects of adding the extra discriminators
and applying noise to the input of all discriminators are
evaluated in Sections VI-B and VI-C.

IV. DATASET AND PREPROCESSING

We train our models on music in the MIDI format, which is
a symbolic music representation that resembles sheet music.
MIDI (Musical Instrument Digital Interface) was originally
created as a standard communication interface between elec-
trical instruments, computers and other devices. Thus, MIDI
files do not contain actual sound like MP3 files, but instead so-
called MIDI messages. For us, the most relevant are the Note
On and Note Off messages. The Note On message indicates
that a note is beginning to be played, and it also specifies
the velocity (loudness) of that note. The Note Off message
denotes the end of a note. Each note also has a specified pitch,
which in MIDI can range between 0 and 127, corresponding
to a note range of C−1 to G9. A standard piano can play
MIDI notes 21 to 108, or equivalently A0 to C8. Velocity
values also range between 0 and 127. Since MIDI files do not
contain any sounds themselves, a MIDI synthesizer is required
to actually play them. Such synthesizers can either be hardware
devices or pieces of software. The final sound will depend on
the implementation of the instrument sounds within the used
synthesizer.

𝑥"

𝑥#$

𝑥$

𝑥#"

𝑥%"

𝑥%$

𝑀

𝑀𝐺"→$

𝐺$→"

𝐷"

𝐷",+

𝐷$

𝐷$,+𝐿-

𝐿./→0

𝐿.0→/

𝐿1/

𝐿10𝐿1/,2

𝐿10,2

Fig. 1. Architecture of our model. The two cycles are shown in blue and red respectively. The black arrows point to the loss functions. We extend the basic
CycleGAN architecture with additional discriminators DA,m and DB,m.

To input MIDI files to a neural network, they must first
be converted into a matrix, the so-called piano roll represen-
tation, which can be obtained using the pretty midi [35] and
Pypianoroll [29] Python packages. Since MIDI notes can have
arbitrary lengths, it is necessary to re-sample the MIDI file in
order to discretize time and allow a matrix representation. We
use a sampling rate of 16 time steps per bar, a common choice
in the literature ([12], [28]), which means that the shortest
possible note is the 16th note. A bar is a segment of time
corresponding to a specific number of beats, each of which
is represented by a particular note value and the boundaries
of the bar are indicated by vertical lines (bars) on a music
sheet. For example in the common 4

4 time signature, a bar
contains 4 beats and on each beat we can play a quarter
note, two eighth notes, four sixteenth notes, and so on. Thus,
our final piano-roll representation is a t × p matrix, where
t denotes the number of time steps (e.g., t=16 for a 1-bar
piece), and p denotes the number of pitches. We omit the
velocity information by setting all velocities to 127, such that
every note has the same loudness. This makes learning easier,
since every note can now only be on or off, instead of taking
128 possible values. Therefore, the piano-roll representation
contains a p-dimensional k-hot vector at each time step, where
k is the number of simultaneously played notes. Because notes
with the pitch below C1 or above C8 are not very common,
we only retain notes between this range, i.e., p = 84. Thus,
the piano-roll for one bar is of size 16 × 84. Since music
has temporal structures we need to consider the relation of
consecutive bars. Therefore, similar to MuseGAN [29], we use
phrases consisting of 4 consecutive bars as training samples.
Thus, the resulting samples are of size 64× 84.

MIDI files can have multiple tracks, where each track can
be assigned a different instrument. Since we base our genre
transfer solely on note pitches, it is important that we retain
as much of the “content” of the original song as possible.
Otherwise, the “style” of the song might be lost after selecting
only a subset of voices. For example, two songs from two
different genres with roughly the same melody but different
accompaniments would be difficult to classify if we only
consider the notes that comprise the melody. While some
previous works select a limited number of voices to make

learning easier (e.g., [12]), we simply merge all notes of all
tracks into a single track. By doing so we retain most of the
original songs identity, i.e., it is still clearly recognizable as
the original song. However, since all notes are now played
by the same instrument, the music can sound cluttered. We
therefore do not use highly complex pieces of music such as
symphonies, as the number of different voices and instruments
is simply too high. We further omit the drum track, since it
often sounds bad when played by another instrument.

In order to perform domain transfer we require music
from different genres. In this paper we use songs from the
genres Jazz, Classic and Pop which we collected from various
sources. As the dataset is noisy, we need to perform several
preprocessing steps. First, we filter out MIDI files whose
first beat does not start at 0. Then we remove songs whose
time signature changes throughout the song, or whose time
signature is not 4

4 . After these preprocessing steps, we have
a clean dataset consisting of 12,341 Jazz, 16,545 Classic and
20,780 Pop samples, where the length of one sample is equal
to one phrase, or four bars. To avoid introducing a bias due
to the imbalance of genres, we reduce the amount of samples
in the larger dataset to match that of the smaller one. For
example, when training on Jazz and Classic, we randomly
sample 12,341 phrases from the Classic dataset to match the
size of the Jazz dataset.

V. ARCHITECTURE PARAMETERS AND TRAINING

GAN training is generally unstable, as the generator and
discriminator need to be carefully balanced. Many techniques
have been introduced in order to stabilize GAN training [36],
of which we employ several, such as using instance normal-
ization [37] and LeakyReLU [38] activations. During devel-
opment we experimented with different architectures for the
generator and discriminator, before settling on those shown in
Tables I and II. The inputs to the generators and discrimina-
tors have the shape (batchsize, 64, 84, 1). Before feeding the
samples to the models, we normalize the pitch values to the
range [0,1]. We use the Adam [3] optimizer with an initial
learning rate of α = 0.0002. The momentum decay rates are
set to β1 = 0.5 and β2 = 0.999. As suggested by [2], we set
λ = 10 in Equation 1. Also, we choose γ = 1 in Equation 2.

TABLE I
DISCRIMINATOR ARCHITECTURE

Input: (batchsize× 64× 84× 1)
layer filter stride channel instance norm activation
conv 4× 4 2× 2 64 False LReLu
conv 4× 4 2× 2 256 True LReLu
conv 1× 1 1× 1 1 False None
Output: (batchsize× 16× 21× 1)

TABLE II
GENERATOR ARCHITECTURE

Input: (batchsize× 64× 84× 1)
layer filter stride channel instance norm activation
conv 7× 7 1× 1 64 True ReLu
conv 3× 3 2× 2 128 True ReLu
conv 3× 3 2× 2 256 True ReLu

10× ResNet 3× 3 1× 1 256 True ReLu
3× 3 1× 1 256 True ReLu

deconv 3× 3 2× 2 128 True ReLu
deconv 3× 3 2× 2 64 True ReLu
deconv 7× 7 1× 1 1 False Sigmoid

Output: (batchsize× 64× 84× 1)

We train each model for a maximum of 30 epochs, or until
the cycle loss converges, and set the batch size to 16.

VI. EXPERIMENTAL RESULTS

Evaluating the performance of a music generation system
is difficult since the goodness of music is a highly subjective
measure. Evaluating style and domain transfer is slightly
simpler, because one effectively generates aligned pairs of
samples, e.g., xA and x̂B , where both samples have a domain
label. Thus, we can train a style classifier CA,B to distinguish
between genre A and B, and then apply it to xA and x̂B . If the
style transfer works, CA,B will classify xA as A, and x̂B as
B. The more confident the classifier is, the stronger the genre
transfer. In the following we describe the style classifier CA,B ,
before describing how the GAN training can be improved by
applying Gaussian noise to the discriminator inputs. Finally,
we evaluate the style transfer effectiveness of multiple models.

A. Genre Classifier

To evaluate whether our model really learns the translation
among different genres, we build a binary classifier CA,B that
outputs a probability distribution over domains A and B. The
architecture of the genre classifier is shown in Table III. We
apply a softmax activation to the two output neurons of the last
layer, and optimize the classifier with a cross-entropy loss. We

TABLE III
CLASSIFIER ARCHITECTURE

Input: (batchsize× 64× 84× 1)
layer filter stride channel instance norm activation
conv 1× 12 1× 12 64 False LReLu
conv 4× 1 4× 1 128 True LReLu
conv 2× 1 2× 1 256 True LReLu
conv 8× 1 8× 1 512 True LReLu
conv 1× 7 1× 7 2 False Softmax
Output: (batchsize× 2)

TABLE IV
AVERAGE GENRE CLASSIFIER ACCURACY WITH GAUSSIAN INPUT NOISE

ADDED DURING TESTING TO EVALUATE ROBUSTNESS.

σC 0 0.01 0.1 0.2 0.3 0.5
Jazz vs. Classic 88.89% 88.53% 87.87% 84.71% 83.07% 74.93%
Classic vs. Pop 84.66% 83.42% 81.97% 81.12% 78.14% 70.28%

Jazz vs. Pop 67.07% 66.18% 63.78% 62.40% 61.72% 59.96%

train the genre classifiers on real data from two domains, e.g.,
Jazz and Classic. The data is the same as that used during
the GAN training, and we use a 90/10 train/test split. The
performance of the genre classifiers on the test sets is shown
in the first column of Table IV. The accuracy on Jazz vs.
Classic and Classic vs. Pop is quite high, with 88.89% and
84.66% respectively. The classifier’s performance on Jazz vs.
Pop is significantly lower, indicating that the two genres are
more similar, at least when only considering note pitches.

The genre classifiers are trained only on real data. However,
we want to use them to evaluate whether a domain transfer
was successful. For this, we need to apply the classifier on data
that has been passed through a generator. If the generator suc-
cessfully recovered the underlying data generating distribution,
the two cases are the same. However, in practice we have to
assume that the generator is not perfect and that the generated
data that is somehow different from real data. Therefore, the
train and test set for the genre classifier effectively come from
slightly different distributions, i.e., we are applying the genre
classifier on fake data, where during training it has only ever
seen real data. This could potentially negatively affect the
usefulness of our genre classifier, as we do not know how well
it will generalize to fake data. In this paper we investigate
the robustness of our genre classifier in the case where the
generators apply Gaussian noise to the inputs. This is of
course a simplification, since the true transformations applied
by the generators are more complex. Table IV shows how
the performance of the style classifier changes when Gaussian
noise (N (0, σ2

C)) is applied to the inputs of the classifier.
Note that the inputs (note pitches) are normalized to lie in
the range [-1,1]. The results show that the genre classifier is
robust even when adding noise that is large relative to the
input value range (i.e. N (0, 0.52)). We therefore conclude
that the genre classifier learned salient features and cannot
easily be broken by random noise. We leave the evaluation of
the classifier’s robustness against more sophisticated, possibly
even adversarial, noise for future work.

In the following we will use the genre classifier CA,B to
evaluate the results of the domain transfer. When considering
a transfer from A to B, CA,B reports the probability PA(x)
if the source genre is A, and PB(x) if the source genre is B.
We consider a domain transfer from A to B as successful if
PA(xA) = CA,B(xA) > 0.5 AND PA(x̂B) = CA,B(x̂B) <
0.5. In other words: If the source style is considered to be
more likely before the transfer, and less likely after the transfer.
Among the successful domain transfers, we define the strength

TABLE V
LOSSES OF THE base MODEL AFTER 20 EPOCHS. ONLY FOR σD = 1 DID

THE CYCLE LOSS CONVERGE TO 0 AND THE DISCRIMINATOR AND
GENERATOR ARE IN BALANCE.

σD 0 0.01 0.1 1 3 5
Lc 0.37 0.98 0.20 0.00 0.29 0.87
LG 1.20 1.87 1.00 0.52 0.80 1.56
LD 0.36 0.27 0.41 0.49 0.50 0.44

of the domain transfer in one direction (A → B → A) as

SD
A→B =

P (A|xA)− P (A|x̂B) + P (A|x̃A)− P (A|x̂B)
2

For the other direction i.e., (B → A → B), SD
B→A is defined

analogously. The final domain transfer strength of a particular
model is defined as the average of the strengths in both
directions

SD
tot =

1

2
(SD

B→A + SD
A→B)

The maximum strength that can be achieved is SD
tot = 1 if

for both directions, the source style’s probability is equal to
1 before the transfer, equal to 0 after the transfer, and again
equal to 1 after completing the cycle. For the remainder of
this paper we will use this metric to determine how well a
model can perform domain transfer. However, a model that
does not retain any structure of the original input can still
achieve SD

tot = 1 if the generators learn to perfectly invert
each other. Therefore, human judgment is still necessary to
determine whether a model performs well. Generally, we are
looking for a model that transforms a piece of music from a
source to a target genre while retaining as much of the source’s
content as possible.

B. Discriminator Input Noise to Stabilize GAN Training

In order to force the generators and discriminators to learn
better features, i.e., avoid overfitting on spurious patterns,
and hence improve generalization, we add Gaussian noise
N (0, σD) to both real and fake inputs of the discriminators,
similar to [34]. We train models for each domain pair with 6
different values for σD. For each domain pair and σD value
we train three different models: A base model without extra
discriminators, a partial model with DA,m and DB,m where
m ∈M = A∪B and a full model with DA,m and DB,m where
m ∈ M = A ∪ B ∪ C. Since we have three genres in total,
C is always the remaining genre on which none of the base
discriminators is trained. For simplicity, we henceforth refer to
the three models as Mbase, Mpartial and Mfull. This results
in a total of 3∗3∗6 = 54 models, from which we pick the best
ones according to our domain transfer strength metric SD

tot. For
the sake of brevity, we only show the hyper parameter search
results for the base model trained on the Jazz and Classic
domains. Table V shows the effect of different values for σD
on the cycle consistency loss (Lc), generator loss (LG) and
discriminator loss (LD), respectively. For σD = 1 the cycle
loss converges to zero, and the discriminator and generator
losses are balanced, which is generally an indicator that the

TABLE VI
GENRE TRANSFER PERFORMANCE OF THE base MODEL MEASURED BY A

GENRE CLASSIFIER WITH σC = 1. A CONTAINS JAZZ PIECES AND B
CONTAINS CLASSIC PIECES.

σD 0 0.01 0.1 1 3 5
A 88.09% 88.09% 88.09% 88.09% 88.09% 88.09%

A→B 31.38% 5.82% 29.16% 20.62% 12.18% 19.47%
A→B→A 84.71% 99.82% 84.36% 88.18% 87.91% 34.13%

B 92.53% 92.53% 92.53% 92.53% 92.53% 92.53%
B→A 48.80% 56.26% 31.20% 20.71% 61.78% 90.67%

B→A→B 89.24% 89.87% 89.33% 92.53% 90.67% 90.67%
SD
tot 48.5% 61.5% 58.4% 69.7% 52.8% 20.5%

TABLE VII
GENRE TRANSFER PERFORMANCE OF THREE DIFFERENT MODELS

TRAINED ON JAZZ AND CLASSIC. A: JAZZ, B: CLASSIC

Mbase

σD = 1
Mpartial

σD = 0
Mfull

σD = 0.01
A 88.09% 88.09% 88.09%

A→B 20.62% 9.87% 20.00%
A→B→A 88.18% 87.73% 85.16%

B 92.53% 92.53% 92.53%
B→A 20.71% 25.87% 20.09%

B→A→B 92.53% 89.51% 90.49%
SD
tot 69.7% 71.6% 69.0%

model converged to a good optima and did not experience a
failure mode. Table VI shows the style transfer performance
of the same model. According to our genre transfer evaluation
metric, the model with σD = 1 performs best (SD

tot = 69.7%),
which is consistent with the results from Table V. We found
that in order to find a model with good performance on
a particular domain pair, it is necessary to perform a new
parameter search over different values of σD.

C. Genre Transfer

In this section we evaluate the genre transfer performance
of our final models. For each model we indicate the specific
value for σD that was used during training. We present domain
transfer results on three different domain pairs: Jazz and
Classic, Classic and Pop, and Jazz and Pop. For each of
these domain pairs we show the results of the models Mbase,
Mpartial and Mfull. Tables VII, VIII and IX show the average
genre transfer results of our final models. The tables show
the probabilities that the genre classifier CA,B assigned to the
source genres. In all cases the transfer is successful, i.e., the
genre classifier assigns high probability to the source genre
before the transfer, and low probability after the transfer.
Please note that since our classifier is binary, a low probability
of the source genre is equivalent to a high probability of the
target genre. For most models, especially for the Jazz/Classic
and Classic/Pop pairs, the genre transfer is very strong, as can
be seen from the high values of SD

tot. For Jazz and Pop, the
genre transfer is still successful, but less strong on average.
This is due to the fact that the genre classifier CA,B cannot
distinguish Pop and Jazz as easily as the other genre pairs.

At first glance, adding the additional discriminators in
Mpartial and Mfull does not have a clear benefit, at least
measured by our domain transfer metric SD

tot. However, as

Fig. 2. Samples transferred from Jazz to Classic. The first row contains
original samples from the test set of domain A (Jazz). The remaining rows
show the results from the domain transfer done by models Mbase, Mpartial

and Mfull respectively (see Table VII for more details on the models).

TABLE VIII
GENRE TRANSFER PERFORMANCE OF THREE DIFFERENT MODELS

TRAINED ON CLASSIC AND POP. A: CLASSIC, B: POP

Mbase

σD = 0.1
Mpartial

σD = 1
Mfull

σD = 1
A 86.91% 86.91% 86.91%

A→B 45.12% 38.57% 26.61%
A→B→A 83.26% 87.39% 87.18%

B 80.04% 80.04% 80.04%
B→A 49.14% 23.13% 24.30%

B→A→B 72.48% 79.45% 80.15%
SD
tot 33.6% 52.6% 58.1%

explained in Section III, adding the additional discriminators
encourages the generators to stay on the “music manifold”
and has the effect of retaining more of the source’s structure.
This can be seen from Figures 2 and 3, where we show some
examples for both transfer directions of the Jazz and Classic
domain pair. The first row contains four original pieces from
the test set. The second row corresponds to the outputs of
Mbase, the third row to Mpartial and the last row to Mfull.
Mbase changes the input too much in most cases, especially
when transferring from Classic to Jazz (Figure 3). The differ-
ences between Mpartial and Mfull are less pronounced, but
we find that Mfull consistently produces better results, i.e.,
a clearly audible domain transfer while leaving the original
melody largely intact. This final evaluation is subjective and
we leave the development of better genre transfer metrics for
future work. Overall, the genre transfer from Jazz to Classic
seems to be most noticeable. Generally, the original songs
sound better than the transferred once, indicating that the GAN
training needs further improvement to produce better sounding
music.

We believe that the results presented in this paper show that
GAN-based genre and style transfer for music is a promising
direction. In the future we plan to incorporate instrumentation
as well as note durations and velocities. Adding these factors,
especially instrumentation, should make the genre transfers

Fig. 3. Samples transferred from Classic to Jazz. The first row contains
original samples from the test set of domain B (Classic). The remaining rows
show the results from the domain transfer done by models Mbase, Mpartial

and Mfull respectively (see Table VII for more details on the models).

TABLE IX
GENRE TRANSFER PERFORMANCE OF THREE DIFFERENT MODELS

TRAINED ON JAZZ AND POP. A: JAZZ, B: POP

Mbase

σD = 0.01
Mpartial

σD = 0.01
Mfull

σD = 0
A 60.53% 60.53% 60.53%

A→B 21.60% 14.84% 23.64%
A→B→A 57.51% 58.84% 60.53%

B 73.60% 73.60% 73.60%
B→A 40.62% 43.11% 49.24%

B→A→B 74.40% 72.09% 73.06%
SD
tot 35.4% 37.3% 30.5%

more easily audible for humans. To complement the presented
evaluation, we provide audio samples corresponding to Fig-
ures 2 and 3, as well as a few samples of famous songs.2

VII. CONCLUSION

In this paper we present, to the best of our knowledge, the
first application of GANs to symbolic music domain transfer.
We extend the standard CycleGAN model with additional
discriminators to regularize the generators. We show that these
discriminators improve the generated music by encouraging
the generators to preserve the structure of the input, while still
performing strong domain transfer. The genre transfer cannot
only be picked up by a neural network classifier, but can be
heard by the untrained ear. Furthermore, the resulting music
has complex structure and generally sounds harmonic. In the
future we plan to develop more objective genre transfer met-
rics, and further investigate the generalization capabilities and
robustness of the genre classifier metric. Incorporating richer
features such as velocities, note durations and instrumentation
could further improve the results and make genre transfers
more convincing and realistic. While in this paper we mainly
focused on evaluating the basic CycleGAN architecture, more
sophisticated architectures should be explored as well.

2Audio samples:
www.youtube.com/channel/UCs-bI NP7PrQaMV1AJ4A3HQ

www.youtube.com/channel/UCs-bI_NP7PrQaMV1AJ4A3HQ

REFERENCES

[1] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer
using convolutional neural networks,” in Computer Vision and Pattern
Recognition (CVPR), 2016 IEEE Conference on. IEEE, 2016, pp. 2414–
2423.

[2] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in IEEE
International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, 2017, pp. 2242–2251. [Online]. Available:
https://doi.org/10.1109/ICCV.2017.244

[3] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
CoRR, vol. abs/1312.6114, 2013. [Online]. Available: http://arxiv.org/
abs/1312.6114

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[5] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, 2013. [Online]. Available:
https://doi.org/10.1109/TPAMI.2013.50

[6] “Bohemian rhapsody for symphony orchestra and solo viola - the stu-
dio recording,” https://www.youtube.com/watch?v=aCFnzSCzoYA, ac-
cessed: 12-06-2018.

[7] T. Kaneko and H. Kameoka, “Parallel-data-free voice conversion using
cycle-consistent adversarial networks,” CoRR, vol. abs/1711.11293,
2017. [Online]. Available: http://arxiv.org/abs/1711.11293

[8] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo, “StarGAN:
Unified generative adversarial networks for multi-domain image-
to-image translation,” CoRR, vol. abs/1711.09020, 2017. [Online].
Available: http://arxiv.org/abs/1711.09020

[9] M. Liu and O. Tuzel, “Coupled generative adversarial networks,” in
Advances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, 2016, pp. 469–477. [Online]. Available: http:
//papers.nips.cc/paper/6544-coupled-generative-adversarial-networks

[10] Z. Yi, H. R. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised
dual learning for image-to-image translation,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, 2017, pp. 2868–2876. [Online]. Available: https:
//doi.org/10.1109/ICCV.2017.310

[11] I. Malik and C. H. Ek, “Neural translation of musical style,” CoRR,
vol. abs/1708.03535, 2017. [Online]. Available: http://arxiv.org/abs/
1708.03535

[12] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer, “MIDI-VAE:
Modeling dynamics and instrumentation of music with applications to
style transfer,” in Proceedings of the 19th International Society for
Music Information Retrieval Conference, ISMIR 2018, Paris, France,
September 23-27, 2018, 2018.

[13] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural
discrete representation learning,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
2017, pp. 6309–6318. [Online]. Available: http://papers.nips.cc/paper/
7210-neural-discrete-representation-learning

[14] N. Mor, L. Wolf, A. Polyak, and Y. Taigman, “A universal music
translation network,” CoRR, vol. abs/1805.07848, 2018. [Online].
Available: http://arxiv.org/abs/1805.07848

[15] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“WaveNet: A generative model for raw audio,” in The 9th ISCA Speech
Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016,
2016, p. 125. [Online]. Available: http://www.isca-speech.org/archive/
SSW 2016/abstracts/ssw9 DS-4 van den Oord.html

[16] P. M. Todd, “A connectionist approach to algorithmic composition,”
Computer Music Journal, vol. 13, no. 4, pp. 27–43, 1989.

[17] M. C. Mozer, “Neural network music composition by prediction:
Exploring the benefits of psychoacoustic constraints and multi-scale
processing,” Connect. Sci., vol. 6, no. 2-3, pp. 247–280, 1994. [Online].
Available: https://doi.org/10.1080/09540099408915726

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[19] D. Eck and J. Schmidhuber, “A first look at music composition using
lstm recurrent neural networks,” Istituto Dalle Molle Di Studi Sull
Intelligenza Artificiale, vol. 103, 2002.

[20] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling
temporal dependencies in high-dimensional sequences: Application to
polyphonic music generation and transcription,” in Proceedings of
the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012. [Online].
Available: http://icml.cc/2012/papers/590.pdf

[21] G. Brunner, Y. Wang, R. Wattenhofer, and J. Wiesendanger, “JamBot:
Music theory aware chord based generation of polyphonic music with
LSTMs,” in 29th International Conference on Tools with Artificial
Intelligence (ICTAI), 2017.

[22] G. Hadjeres, F. Pachet, and F. Nielsen, “DeepBach: a steerable
model for bach chorales generation,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, 2017, pp. 1362–1371. [Online].
Available: http://proceedings.mlr.press/v70/hadjeres17a.html

[23] H. Chu, R. Urtasun, and S. Fidler, “Song from PI: A musically plausible
network for pop music generation,” CoRR, vol. abs/1611.03477, 2016.
[Online]. Available: http://arxiv.org/abs/1611.03477

[24] D. D. Johnson, “Generating polyphonic music using tied parallel
networks,” in Computational Intelligence in Music, Sound, Art and
Design - 6th International Conference, EvoMUSART 2017, Amsterdam,
The Netherlands, April 19-21, 2017, Proceedings, 2017, pp. 128–143.
[Online]. Available: https://doi.org/10.1007/978-3-319-55750-2 9

[25] C.-H. Chuan and D. Herremans, “Modeling temporal tonal relations
in polyphonic music through deep networks with a novel image-based
representation,” 2018.

[26] A. Roberts, J. Engel, and D. Eck, “Hierarchical variational autoencoders
for music,” in NIPS Workshop on Machine Learning for Creativity and
Design, 2017.

[27] O. Mogren, “C-RNN-GAN: continuous recurrent neural networks
with adversarial training,” CoRR, vol. abs/1611.09904, 2016. [Online].
Available: http://arxiv.org/abs/1611.09904

[28] L. Yang, S. Chou, and Y. Yang, “MidiNet: A convolutional
generative adversarial network for symbolic-domain music generation,”
in Proceedings of the 18th International Society for Music Information
Retrieval Conference, ISMIR 2017, Suzhou, China, October 23-27,
2017, 2017, pp. 324–331. [Online]. Available: https://ismir2017.smcnus.
org/wp-content/uploads/2017/10/226 Paper.pdf

[29] H. Dong, W. Hsiao, L. Yang, and Y. Yang, “MuseGAN: Multi-
track sequential generative adversarial networks for symbolic music
generation and accompaniment,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, February 2-7, 2018, 2018. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17286

[30] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA., 2017, pp. 2852–2858. [Online]. Available:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344

[31] J. D. Fernández and F. J. Vico, “AI methods in algorithmic composition:
A comprehensive survey,” J. Artif. Intell. Res., vol. 48, pp. 513–582,
2013. [Online]. Available: https://doi.org/10.1613/jair.3908

[32] J.-P. Briot, G. Hadjeres, and F. Pachet, “Deep learning techniques for
music generation-a survey,” arXiv preprint arXiv:1709.01620, 2017.

[33] D. Herremans, C. Chuan, and E. Chew, “A functional taxonomy of music
generation systems,” ACM Comput. Surv., vol. 50, no. 5, pp. 69:1–69:30,
2017. [Online]. Available: http://doi.acm.org/10.1145/3108242

[34] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár,
“Amortised MAP inference for image super-resolution,” CoRR, vol.
abs/1610.04490, 2016. [Online]. Available: http://arxiv.org/abs/1610.
04490

[35] M. Data, “Intuitive analysis, creation and manipulation of midi data with
pretty midi,” 2014.

[36] “How to train a GAN? tips and tricks to make GANs work,” https:
//github.com/soumith/ganhacks, accessed: 12-06-2018.

[37] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization:
The missing ingredient for fast stylization,” CoRR, vol. abs/1607.08022,
2016. [Online]. Available: http://arxiv.org/abs/1607.08022

[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models.”

https://doi.org/10.1109/ICCV.2017.244
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/TPAMI.2013.50
https://www.youtube.com/watch?v=aCFnzSCzoYA
http://arxiv.org/abs/1711.11293
http://arxiv.org/abs/1711.09020
http://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks
http://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks
https://doi.org/10.1109/ICCV.2017.310
https://doi.org/10.1109/ICCV.2017.310
http://arxiv.org/abs/1708.03535
http://arxiv.org/abs/1708.03535
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning
http://arxiv.org/abs/1805.07848
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
https://doi.org/10.1080/09540099408915726
https://doi.org/10.1162/neco.1997.9.8.1735
http://icml.cc/2012/papers/590.pdf
http://proceedings.mlr.press/v70/hadjeres17a.html
http://arxiv.org/abs/1611.03477
https://doi.org/10.1007/978-3-319-55750-2_9
http://arxiv.org/abs/1611.09904
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/226_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/226_Paper.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17286
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
https://doi.org/10.1613/jair.3908
http://doi.acm.org/10.1145/3108242
http://arxiv.org/abs/1610.04490
http://arxiv.org/abs/1610.04490
https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks
http://arxiv.org/abs/1607.08022

	Introduction
	Related Work
	Model Architecture
	Dataset and Preprocessing
	Architecture Parameters and Training
	Experimental Results
	Genre Classifier
	Discriminator Input Noise to Stabilize GAN Training
	Genre Transfer

	Conclusion
	References

