
Towards Measuring Real-World Performance of
Android Devices

Pascal Bissig, Gino Brunner, Florian Gubler, Roger Wattenhofer, Andreas Zingg
Department of Electrical Engineering and Information Technology

ETH Zurich, Switzerland
bissigp,brunnegi,flgubler,wattenhofer,zinggand@ethz.ch

Abstract—In this paper we investigate how to measure real
world performance of Android devices using app start durations.
To this end we collect ground truth app start times using an
automated mechanical setup. The ground truth start times are
highly correlated with the outputs from Android’s ActivityMan-
ager, which we then use to obtain app start times during normal
use on a range of rooted devices. We then predict app start
times with supervised learning to detect if device performance has
changed over time. We show that training data can be gathered
on a small set of rooted devices and then applied to other, non
rooted devices. We also present an unsupervised method that can
track the evolution of the system performance without requiring
root access at all.

Index Terms—Android, mobile, phone, benchmarking, real-
world, performance, measurement

I. INTRODUCTION

A responsive and fast mobile user experience is high up
on everyone’s priority list. Various synthetic and application
benchmarks measure the performance of smartphones, but they
usually only report numerical scores which are difficult to in-
terpret. While such benchmarks can be very useful to compare
phones in a controlled fashion, it is not clear what a score
of “91157” actually means for everyday usage. Furthermore,
a phone’s performance can degrade over time, e.g., due to
an increasing number of installed apps or badly optimized
firmware updates. Different phones from different manufac-
turers are not equally affected, and traditional benchmarking
applications cannot reflect this.

We launch many apps during daily use. Fast app launch
times are therefore important for a good user experience. In
this paper we thus focus on app launch times as our real-world
performance metric. We also show that when artificial load is
added, which noticeably slows down the phone, the app launch
times become longer as well. Thus, we will use app launch
times as proxy for overall device performance. Tracking how
launch times of apps develop over time can also help identify
which changes to the system are responsible for slowdowns.

To this end we first gather ground truth app start times. We
do this by mechanically activating the touchscreen of phones,
while a high speed video recording of the screen allows us
to measure the start times of apps precisely albeit manually.
To increase the number of starts included in our results, we
use a computer vision method that automates the process of
measuring app start times.

Next, we show that the ground truth app start times are
highly correlated with start times reported by the Android
ActivityManager (AM) [1] on rooted devices. This allows
us to perform experiments without requiring a video recording
of the screen, thus making it easy to collect data using multiple
rooted devices that we use as our daily phones for ten weeks
in total. While recording start times provided by the AM,
we also collect data about CPU and RAM usage as well as
AccessibilityEvents (AEs) [2]. Note that AEs, CPU,
and RAM usage can be gathered without root access.

Finally, this data is used to predict the start times gathered
with the AM. We show both supervised and unsupervised
methods that can detect changes in device performance based
on the types and time stamps of AccessibilityEvents.
The supervised methods can be trained on a few rooted devices
and applied to non-rooted devices with little performance
degradation, thus alleviating the need for root privileges on
every device that is to be benchmarked. We also investigate
using RAM and CPU utilization to measure app launch times.

A recurring theme in our paper is that we need to differen-
tiate between types of app launches. According to Google [3]
there exist three types of app starts: cold, warm and lukewarm.
Since the Android system does not provide any information
at runtime about the type of a start, there is no easy way to
distinguish these three types. Even more so as lukewarm starts
are a mixture between cold and warm starts that is not clearly
defined; the Android Memory Management [4] is complex and
apps can even be partially cached. Thus, we take a slightly
different approach and group app launches into cold and hot
starts. The AM only reports app launch times for starts that
go through the onCreate Android lifecycle method; we call
such starts cold starts. All other app starts that, e.g., only
go through onResume, and consequently do not have a AM
launch time, are considered as hot start.

II. RELATED WORK

The need to measure the performance of computer systems
is as old as the computer systems themselves. How else could
we determine whether a new generation of CPUs, GPUs,
SSDs, complete System on Chips (SoCs) or even entire plat-
forms consisting of many individual components, are worth the
upgrade and the accompanying monetary costs. Thus, there are
many tools to measure the performance of computing systems.
A quick Google search reveals more than 40 commonly used

benchmark tools [5]. Some of these benchmarks such as the
SPEC benchmarking suites [6]–[8] for CPU benchmarking,
or Mobile-/Sys-/Tabletmark [9] are industry standards and
maintained by entire (non-profit) corporations. For an in-depth
coverage of various topics in performance benchmarking we
refer the interested reader to [10]–[13].

Computer benchmarks can be roughly categorized into syn-
thetic and application benchmarks [14]. Synthetic benchmarks
measure the performance of individual components. These
benchmarks generally include artificial workloads that try
to match an “average” execution profile. This limits their
usefulness when trying to understand real-world performance.
For example, two GPUs might reach similar benchmark scores,
but perform differently in real games due to software optimiza-
tions. Application benchmarks on the other hand generally
measure the performance of a system as a whole. Such
benchmarks represent real-world workloads more accurately.
For example an application GPU benchmark could run real
games and measure the framerates. The main drawback of
application benchmarks is that the benchmark developers need
to make assumptions about what workloads best represent
realistic usage scenarios. We extend this standard definition
by a term we call real-world benchmarking. When we observe
a performance metric such as app launch times while a user
is operating her phone normally, we call this a real-world
benchmark, since we are not making any assumptions about
the users’ usage patterns. Also, we are not actively executing a
benchmark program, but rather passively observing. Note that
no single benchmark type is superior in general. Synthetic
benchmarks allow for more detailed analyses at the cost
of generality. Application and real-world benchmarks on the
other hand offer more realistic results, but it is more difficult to
pinpoint the reasons for either good or bad performance. Each
type of benchmark gives valuable feedback about different
aspects of system performance.

The areas of application are also different. For example, in
systems that do not experience much change and where the
future workload is well known, synthetic or application bench-
marks are well suited. In systems such as mobile phones that
experience many updates and where the user can download
a myriad of different applications, all with different effects
on performance, constant monitoring through a real-world
benchmark makes sense, since we are mostly interested in
changes in performance.

There are many benchmarking apps for Android [15], most
of which rely on synthetic performance measures. Phone man-
ufacturers regularly try to cheat such benchmarks as uncovered
by AnandTech [16] and XDA [17]. Gustafson [18] advocates
the use of purpose based benchmarks, where the purpose of
the benchmark is in alignment with the goals of the user. If
manufacturers were to optimize their hard- and software to
launch apps faster and thus excel in our benchmark, real-world
user experience would also improve, and it could arguably not
be called cheating.

Pandiyan et al. [19] investigate which factors govern the
performance of the Android platform in order to guide fu-

ture platform design. Yoon [20] studies the performance of
the Android platform using existing benchmarks and profiler
software. While we are also interested in overall system
performance, we do not aim at guiding system design, but
instead at measuring the real-world performance of phones
during daily usage. Furthermore, our benchmarks run without
modifications to the operating system or external hard- and
software.

Guo et al. [21] examine the current state of benchmarking on
mobile platforms. They mostly focus on finding ways to reduce
the variance of existing synthetic benchmarks. Kim et al. [22]
show how the storage performance of Android affects user
experience, and how to benchmark it through mixed workloads
of SQLite transactions. Although such methods can accurately
capture storage performance for given workloads, they do not
necessarily reflect the system’s performance in everyday use.
Joshi et al. [23] recognize that synthetic benchmarks generally
do not capture the performance that a specific application
will exhibit on a given hardware platform. Their Bench-
Maker framework facilitates the construction of synthetic
benchmarks that help capturing specific application behaviors.
MobileBench presented by Kim et al. [24] is a benchmarking
tool that focuses on user experience and realistic workloads
such as web browsing. These approaches have in common
that they focus on either synthetic or application workloads.
Our goal is to measure real-world performance of Android
phones during normal usage, without the need to specify any
“average” workload or component-specific synthetic tests.

III. VIDEO BENCHMARKING

In order to accurately measure the start duration of apps
as perceived by the user, we build a mechanical system that
simulates user input to launch apps. We show that the app start
times output by the Android Activity Manager (AM) correlate
well with the actual start times for apps as observed by users,
and we will thus use them as a metric for overall device
performance.

A. ActivityManager Launch Time

Since Android 4.4 there is a built-in tool [3] for profiling
app launch time performance on rooted phones or through
the Android Debug Bridge (ADB). Developers can use it to
identify performance bottlenecks that cause their applications
to start slowly. When an app is launched for the first time,
the following line is written to the log: ActivityManager:
Displayed myApp/.myAct: +3s12ms. The displayed time does
not necessarily capture the entire app launching process, as
resources can be asynchronously loaded after the initial draw-
ing of the UI. This process is called lazy loading. Developers
have the possibility to manually call reportFullyDrawn to
measure an app’s complete launch time including lazy loading.
However, we have not observed any such apps. Note that the
AM only provides start times for cold starts, since in the case
of hot starts, the onCreate lifecycle method is never called.
Remarkably, we have observed that around half of all app

Fig. 1. Our setup showing the Arduino, the stylus with the accelerometer,
the motor with the 3D printed arms, the camera and the smartphone under
test.

starts in our real world experiments (varies depending on
phone and app) are cold starts.

Figure 1 shows our hardware setup. The black box contains
an Arduino board that is connected to a PC via USB. The
Arduino controls the setup and receives all instructions from
the PC. Connected to the Arduino is a motor that has a two-
armed wheel attached to it. When this wheel is turning, it
lifts and drops a touch stylus. The stylus is guided such that
it can only move vertically. On top of the stylus there is an
accelerometer that is connected to the Arduino. We use the
data from the accelerometer to control the rotation of the
motor, i.e., we detect when the stylus is picked up by the
wheel, at which point we can halt the wheel. When we want
to trigger the next app launch, we turn the motor back on,
which will cause the stylus to drop onto the screen. Half a
rotation later it will be lifted from the screen again, which
will be registered as a button press by the app.

Below the stylus we place the phone to be tested. We created
an app that starts a predefined set of real apps by pressing
the fullscreen button. Therefore, the exact phone placement is
not important. Above the phone is a PlayStation 3 Eye [25]
camera. The camera has a frame rate of 120fps, which is higher
than the refresh rate of typical smartphone screens. The video
data from the camera will be used to measure the app launch
times, as described in Section III-B. The Arduino notifies the
PC when it detects that the stylus is lifted, which indicates the
beginning of the app start.

B. Automated App Launch Time Measurements

We use the mechanical setup introduced in the previous sec-
tion to collect data about app launches. We then automatically
analyze the video recorded by the camera to measure the app
launch times. We assume an app has finished starting when
the video frames do not change anymore. However, there are
apps, such as Shazam, that contain animations that do not stop

after the app has finished starting. To avoid such animations
from causing issues for our system, we group pixels together,
essentially downsampling the video. In the final setup we
group the images into squares of 5×5 pixels. For each square
we calculate the frame-wise differences and report a change
if that difference exceeds a threshold. We used a threshold of
1
10 · Imax, where Imax = 255 is the maximum possible pixel
intensity. These parameters were tuned such that apps like
Shazam can be measured accurately. Note that the grouping
happens on the pixels of the video, i.e., the parameters depend
on the resolution of the camera, and not on the resolution of
the smartphone screen. This way of detecting changes works
well for slow continuous movements, as on the splash screen
of Shazam. To evaluate the performance of our automated
computer vision method, we launch 16 different apps ten times
each. To obtain ground truth launch times, we look at the video
and manually annotate the app launch times. Figure 2 shows
how well our automated computer vision approach works
compared to manually finding the first frame in the video after
which the app has finished launching. The resulting average
absolute error is 0.09s. We consider this error negligible and
thus conclude that our automated method works.

In Figure 3 we show the relation between the launch times
measured by our automated system and the app launch times
as reported by the AM. For apps like Calculator that do not
perform lazy loading, the AM times are very close to the start
times as they are observed by the user. For apps that perform
a lot of lazy loading, such as Spotify, the absolute difference
is higher. While for many apps the AM times cannot be used to
accurately predict the absolute app launch times, the AM launch
times are highly correlated with the user-percieved app launch
durations. That is, when an app start is slower on average than
usual as measured by our system, then the AM launch times will
also be higher on average. Thus the AM launch times indeed
capture the loading of basic app components and provide a
good lower bound for app launch times as perceived by users.
We will thus use them as proxy for ground truth launch times
for the rest of this paper. Note again that in order to get the
AM launch times the phone needs to be rooted.

IV. RESOURCE USAGE BENCHMARKING

We expect that the RAM utilization changes when apps
are started from flash storage as data is being loaded into
RAM. Similarly, the CPU should do more work during an
app launch than during an idle period. Hence we look at
the changes in CPU load as well as RAM usage during an
app start to find out whether we can infer the startup time of
apps. We only need to detect the end of an app start, as the
beginning can be easily found using View Clicked events of the
AccessibilityService (AS), as described in Section V.
The data presented in the following has been recorded with an
app we call DataNiffler. The DataNiffler app contains a root
module which allows it to store the app startup times reported
by the Android AM.

0 1 2 3 4
0

1

2

3

4

Manual Video Annotation Measurement [s]

C
om

pu
te

r
V

is
io

n
M

ea
su

re
m

en
t

[s
]

Other Apps
Spotify
Calculator
Gmail

Fig. 2. Our video measurements show high correlations with the ground
truth annotated start times. Hence, we argue that we can use app launches
automatically annotated from video recordings to evaluate how well the AM-
reported start times can capture the actual start times.

0 1 2 3 4
0

1

2

3

4

ActivityManager Launch Time [s]

V
id

eo
M

ea
su

re
m

en
t

[s
]

Other Apps
Spotify
Calculator
Gmail

Fig. 3. The start times as reported by the Android ActivityManager are
correlated with the start times as found by our video measurement. The larger
offsets for Spotify and Gmail are caused by lazy loading.

10 15 20 25 30 35
740

750

760

770

780

Time [s]

A
va

ila
bl

e
R

A
M

[M
B

]

App Start
Not App Start

Fig. 4. Example of available RAM during two consecutive app starts.

A. RAM Usage

Our assumption is that the amount of available RAM should
decrease rapidly during a cold start and then level out when
all the app contents are loaded. Consequently, we interpret
the point in time after which the available memory is stable
as the end of a start. This effect should be less pronounced
in the case of hot starts, since app data is already cached in
RAM. The amount of total available RAM can be retrieved
using the AM API [1]. Figure 4 shows how the amount of
available RAM behaves during two cold starts. Clearly, the
amount of available total RAM cannot simply be used to
measure app launch times. During the first start, the available

total system memory increases, whereas during the second
start, the available memory first decreases and then increases
again. The first problem is that Linux keeps closed applications
in memory until it needs that memory for something else.
Consequently, a new app start can cause an increase in the
amount of free RAM because another app gets removed, and
the new app might need less RAM than the removed app.
Another difficulty is due to the memory management of both
Java and Android. Data which is no longer used by any app
will remain in memory until the garbage collector deletes it. As
the behavior of the garbage collector can neither be influenced
nor observed without root, this can also have an impact on our
measurements. Furthermore, apps can share memory, which
makes it even harder to find out what happens during an app
launch. In our experiments, there were only few cases where
RAM usage could be used to accurately estimate app start
durations.

B. CPU Load

Similar to the RAM usage idea in the last section, we now
look at the CPU usage before, during, and after an app start.
We expect the CPU load to be higher during an app start.
As of Android 7, the CPU load can only be computed for the
overall system and not for individual apps. There is no Android
API providing CPU load information, and it thus needs to
be computed from values read from the files /proc/stat,
scaling_cur_freq and cpuinfo_max_freq.

Figure 5 shows that there are indeed instances of app starts
during which the CPU load behaves as expected, and the app
launch time can be deduced. However, Figure 6 shows another
instance of an app launch during which the CPU load behaves
more erratically, and causes our prediction to fail.

10 11 12 13 14 15 16

20

30

40

50

60

Time [s]

C
PU

L
oa

d
[%

]
App Start
Not App Start
Est. Start End

Fig. 5. There are app launches that clearly show increased CPU load during
an app launch which could be used to determine the app start times. However,
the CPU load measurements also consume a lot of resources.

14 15 16 17 18 19 20

48

50

52

54

Time [s]

C
PU

L
oa

d
[%

]

App Start
Not App Start
Est. Start End

Fig. 6. Unfortunately, there are many app launches, we cannot predict,
especially when there is high overall system load (partially induced by our
CPU polling), since we do not get enough data points and the data is too
noisy.

As expected, the CPU load does usually increase when an
app is started and decrease after the start is finished. However,
the end of a start is hard to detect because in many cases the
app continues to produce load after the end of the start (e.g.,
due to lazy loading, as discussed in Section III-A). In other
cases, the CPU load might already start to decrease before the
app start is finished, e.g., because some parts of the starting
process are more resource consuming than others.

On top of that, background processes may create additional
CPU load, e.g., the garbage collector starts freeing up memory
from the previous app which generates CPU load as well. In
addition, we face problems with the performance overhead
introduced by the measurements themselves. To gather enough
data points we need a high polling rate of at least 20 mea-
surements per second. However, this generates load, and the
Android scheduler often waits much longer than requested
before reawakening the corresponding process. Consequently
we get only few data points for most starts, which makes the
predictions unreliable and generally worse than illustrated in
Figure 6.

Due to the results presented in this section, we conclude
that CPU and RAM usage cannot be used to efficiently and
accurately measure app launch times on Android.

V. ACCESSIBILITY SERVICE BENCHMARKING

Since the CPU and RAM usage does not allow for accurate
start time measurements, we show how to use Accessibili-
tyEvents (AE) instead. These events can be received by any app
which registers as a listener through the AccessibilityService
(AS) [26] API. Most of the AEs describe a state transition of
the user interface [2]. Associated with each AE is a timestamp
and the package/class name of the activity that triggered it.
For us, the most important AEs are the following:

View Clicked (VCL)
VCL events are triggered whenever the user clicks
on a UI element such as a button or app icon. When
a user starts an app by clicking on its app icon, the
VCL event provides us with the exact timestamp of
the app start.

Window State Changed (WSC)
WSC events are triggered every time a new window
is opened. Every app start at least produces one such
event.

Window Content Changed (WCC)
WCC events occur when new content is loaded in a
window. Usually, many of these events are triggered
during a start and the exact number varies strongly,
as shown in Figure 7.

In the following we first describe how we estimate the
durations of cold starts. We then train a classifier to distinguish
between hot starts and cold starts, such that the start time
estimation is not falsely applied to hot starts. We can then
use the estimated app start durations to detect performance
regressions. Finally, we investigate an unsupervised method
to detect changes in system performance that does not require
root access. Whenever there is an accuracy metric for a
classifier or predictor, we state the performance on the test set.
If the train and test data come from the same phone, we use a
90/10 train/test split. If we train on data from one device and
test on data from another device, we use all the data available
from each device. We did not perform a hyper parameter
search or cross-validation over different learning algorithms.
We were most interested in the general feasibility of our
approach, and not in achieving the absolute lowest errors.
Thus, it is likely that the results could be further improved
in the future.

A. Dataset

Our dataset consists of two parts: (1) Data collected during
controlled lab experiments and (2) data collected during daily
use. Table I shows how many apps were included in our lab
experiment, how many app starts we performed in total, and
which phones we used. The experiments were conducted under
controlled conditions while being connected to the Internet
through WiFi. We used sets of 17 and 24 popular apps,
including Google apps such as Calendar, as well as third party
apps such as Facebook, Instagram and Spotify. All devices are
running the manufacturer provided versions of Android 7.

Table I also shows the properties of our real-world dataset.
This data was collected on three different phones over the
course of ten weeks of normal use. As we have no control
over the test users’ behavior, some of these apps have been
started only a few times while others have hundreds of starts.
For the subsequent analysis we only include apps with a lot
of starts. The results presented in this section are based on the
data from the following apps: WhatsApp, GTasks, Gmail, and
Google Calendar. It is interesting to note that the fraction of
cold starts in our real-world dataset is 44%, which is higher
than we expected. This means that focusing only on cold start
launch times, for which we get an AM launch time, is justified.
The Nexus 5X and 6P were running stock Android 7, while
the Nexus 6 was using a custom ROM called Lineage OS [27]
based on Android 7.

B. Supervised App Launch Duration Estimation

In this section we show how well we can predict the AM
launch times. We train a Random Forest with 100 trees, using
the launch times reported by the AM API as ground truth.
We use the number of AEs, the AE timestamps and the app
names as features. The app names are used as features in order
to condition the Random Forest on specific apps, since starts
from different apps have different AE sequences.

The results are shown in the first two columns of Table II.
Internal denotes the case when training and test data were
gathered on the same device, and external is the case when
the Random Forest was trained on data from one device, and
tested on data from another device. The absolute errors are
relatively large, especially for the real-world dataset. However,
the estimated launch times always have high correlation with
the AM launch times. A correlation value of, e.g, 80% means
that if the predicted launch time increases, the AM launch time
increases as well with 80% probability. Furthermore, the start
durations of certain apps, e.g., Youtube, can be predicted very

TABLE I
DATASET SIZE IN THE REAL-WORLD AND LAB EXPERIMENTS.

Device #Apps #Starts Total #Cold
Starts

L
ab Nexus 5X 24 3484 1765

Xperia Z5 Compact 17 3219 1447

R
ea

l Nexus 6P 45 1959 921
Nexus 6 38 959 389
Nexus 5X 37 669 269

0 5 10 15 20 25 30
0

0.2

0.4

0.6

of WCC events

Fr
ac

tio
n

of
St

ar
ts

Hot Starts
Cold Starts

Fig. 7. The number of AEs depends on the start type. This is an example
for 394 cold starts and 587 hot starts of WhatsApp. Hot starts have a much
higher variance in the number of WCC events. Starts with only one WCC
event are most likely cold starts.

TABLE II
COMPARISON OF THE INTERNAL (TRAINED AND TESTED ON THE SAME

DEVICES) AND EXTERNAL (TRAINED AND TESTED ON DIFFERENT
DEVICES) PERFORMANCE OF THE SUPERVISED MODELS FOR LAB DATA

AND REAL-WORLD MEASUREMENTS.

Duration Duration Type
Error Correlation Error

Lab internal 25.2% 86.9% 5.3%
Lab external 30.0% 83.2% 17.7%
Real internal 57.0% 81.5% 13.9%
Real external 66.6% 74.1% 16.9%

accurately, as shown in Figure 8. Table II also shows that we
can train on data from one device and predict on other devices
(external) and still retain high correlations. Due to the high
correlations between the predictions and the AM launch times,
we can detect qualitative differences in phone performance, as
will be discussed in Section V-D.

C. Supervised Start Type Detection

As explained in Section I, the AM only reports launch times
for cold starts. Thus we should only apply the app launch
predictions to cold starts, which requires a way to distinguish
cold starts from hot starts. Figure 7 shows that hot starts and
cold starts exhibit different AE patterns, and a classifier should
thus be able to perform well. We again train a Random Forest
with 100 trees. As features we use the number of WSC and
WCC events as well as the app name. The AM provides us
with the label; when the AM reports a launch time we know it
was a cold start, and a hot start otherwise.

The classification performance of our start type detector
is summarized in the last column of Table II. As expected,
prediction performance is best when training and predicting
on the same device (internal). Again, the lab data allows for
higher accuracy than the real-world data. When taking the
training and test data from different devices (external), we
observe an increase of the classification error in both the lab
setting, and the real-world setting. For our lab experiments
we used two completely different phones, which explains the

relatively large performance difference between internal and
external. For our real-world experiments, we only used Google
Nexus phones, albeit one of them running LineageOS, which
could explain why the classification accuracy for the internal
and external cases is almost the same. Being able to predict
what kind of start just occurred, we can apply our Random
Forest start time prediction from Section V-B to all starts we
classify as cold starts.

D. Supervised Detection of Performance Changes

We have shown that we can predict app launch times with
high correlation to the AM launch times, and that we can
classify app launches into hot- and cold starts with accuracies
of 80-95%. We now combine these predictions to detect a
degradation in device performance. In our real-world datasets,
there are periods where DataNiffler was operating in heavy
mode, i.e., additional background tasks to artificially slow
down the phone were running, and periods where DataNiffler
was operating in lite mode with minimal impact on overall
system performance. Running DataNiffler in the heavy mode
slows down app starts by roughly 25% (based on AM launch
times). The slowdown does not just affect app launches, but
can be clearly felt by the user during normal operation, e.g.,
while scrolling or navigating apps. Since we cause the per-
formance decrease by running DataNiffler in heavy mode, we
know exactly when the phone’s overall performance changes.
Thus, we can compare periods of normal performance with
periods of decreased performance. Since we know that a
decrease in system performance corresponds to an increase in
app launch times, we can simply use our predicted app launch
times to detect the changes in performance. In the remainder
of this section we evaluate whether it is possible to distinguish
periods of good performance from periods of bad performance
using the app launch time and type predictors.

First, we classify app starts into cold starts and hot starts,
and then apply the launch time predictions to all starts we
classified as cold starts. We then compute the average differ-
ence between starts from the heavy mode and the lite mode. If
our method works this difference should be positive, i.e., we
should predict that app starts from the heavy mode are slower
on average. If on the other hand the system performance has
not changed, we should not observe a difference in predicted
launch times. Table III shows the results. For the four most
used apps in the real-world dataset, the average estimated
increase of app launch times is indicated. All the differences

TABLE III
AVERAGE INCREASE OF APP LAUNCH TIMES DUE TO RESOURCE

CONSUMING BACKGROUND PROCESSES.

Increase of App Start Times
Prediction [ms]
Mean / Median

WhatsApp 44 / 29
GTasks 159 / 146
Gmail 142 / 108
Calendar 165 / 137

200 400 600 800 1,000
200

400

600

800

1,000

Prediction [ms]

G
ro

un
d

Tr
ut

h
[m

s]

Youtube
Facebook
Chrome

Fig. 8. For some apps, e.g., YouTube, the prediction has low error (8%) and
high correlation (94%). For apps like Facebook we have a higher error (28%),
but retain high correlation (95%). There are also apps like Chrome, where we
have a higher error (51%) and lower correlation (45%).

are positive, i.e., we correctly predict increased launch times.
Thus, we can successfully detect the decrease in system
performance induced by DataNiffler running in heavy mode.
We verified that launch time predictions from app launches
within the same mode are not significantly different. For
example, when comparing WhatsApp launches from two heavy
mode periods, the mean and median differences in predicted
launch times are -2ms and -0.3ms.

E. Unsupervised Detection of Performance Changes

We showed that we are able to detect a change in smart-
phone performance using simple supervised Machine Learning
methods. Training the models requires phones with root access
to obtain the training data. To make the method applicable
on a large scale, we also discussed how well a predictor
can be trained on one set of devices and applied on another.
Collecting more training data should generally improve the
results. However, it might be difficult to gather enough data.
Also, the performance of our system will be generally worse
for phones that are unpopular, and thus generate less training
data. Furthermore, users might not be willing to install an
app that monitors (albeit anonymously) their system usage and

TABLE IV
THE TIME BETWEEN CONSECUTIVE AES GETS LONGER AS DEVICE

PERFORMANCE DECREASES DUE TO RESOURCE CONSUMING
BACKGROUND PROCESSES.

Mean Event Median Event
Differences [ms] Differences [ms]

WhatsApp 54 21
GTasks 94 16
Gmail 12 3
Calendar 64 3

sends the data back to a server, where we use it to train our
models.

Therefore we also propose an unsupervised method to detect
changes in phone performance based on the interval length
between consecutive AEs. We hypothesize that when the
phone is slowed down, the average distance in time between
AEs should increase. The intuition is that the system needs
to allocate CPU time to the processes that send and recieve
AEs, and as the overall system load increases, it will take
longer on average for the scheduler to serve these processes.
Thus for each app launch Li we calculate the average temporal
distance Di between AEs. To compare two app launches L1

and L2 we calculate the difference between D1 and D2. We
use this to compare app starts from periods when DataNiffler
was running in heavy mode with starts from the light mode.
Table IV lists the resulting average AE interval differences for
the four most launched apps in our real-world dataset. Clearly,
the average temporal distance between consecutive AEs has
increased. Thus, we conclude that the slowdown induced by
DataNiffler running in heavy mode can be detected by only
observing the intervals between consecutive AEs, since the
mean and median event time differences all increase when we
artificially slow down the phone.

VI. CONCLUSION AND FUTURE WORK

In this paper we take step a towards real-world bench-
marking of the Android system, using app launch times as
performance metric. We investigate the feasibility of different
measurement methods, and show that we are able to detect
system performance changes across different devices, even
without root access. Currently, we are only able to detect an
increase or decrease in system performance, but we cannot
yet accurately specify by how much and why the performance
has changed. We also plan to investigate other real-world
metrics such as frames per second during UI rendering. As
discussed, we have come to the conclusion that RAM and
CPU utilization cannot be used to accurately measure app
launch times. However, an increased overall CPU load or a
consistently lower amount of free RAM could serve as an
additional indicator of decreased system performance.

REFERENCES

[1] Google. Android activitymanager. https : / / developer . android . com /
reference/android/app/ActivityManager.html. Accessed: 2017-10-09.

[2] ——. Android accessibilityevent. https : / / developer . android . com /
reference/android/view/accessibility/AccessibilityEvent.html. Accessed:
2017-10-09.

[3] Google developers: Launch-time performance. https://developer.android.
com/topic/performance/launch-time.html. Accessed: 2017-10-09.

[4] Google. Overview of android memory management. https://developer.
android . com / topic / performance / memory - overview. html. Accessed:
2017-10-09.

[5] Benchmark (computing). https : / /en .wikipedia .org/wiki /Benchmark
(computing). Accessed: 2017-10-09.

[6] J. L. Henning, “SPEC CPU2000: measuring CPU performance in the
new millennium,” IEEE Computer, vol. 33, no. 7, pp. 28–35, 2000.
[Online]. Available: https://doi.org/10.1109/2.869367

[7] ——, “SPEC CPU2006 benchmark descriptions,” SIGARCH Computer
Architecture News, vol. 34, no. 4, pp. 1–17, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1186736.1186737

[8] Spec cpu 2017. https://www.spec.org/cpu2017/. Accessed: 2017-10-09.

[9] Bapco: Application based benchmarking for windows, android and ios.
https://bapco.com/. Accessed: 2017-10-09.

[10] R. O. Nambiar and M. Poess, Eds., Performance Evaluation and
Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon,
France, August 24-28, 2009, Revised Selected Papers, ser. Lecture
Notes in Computer Science, vol. 5895. Springer, 2009. [Online].
Available: https://doi.org/10.1007/978-3-642-10424-4

[11] ——, Selected Topics in Performance Evaluation and Benchmarking
- 4th TPC Technology Conference, TPCTC 2012, Istanbul, Turkey,
August 27, 2012, Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 7755. Springer, 2013. [Online]. Available:
https://doi.org/10.1007/978-3-642-36727-4

[12] R. Nambiar and M. Poess, Eds., Performance Evaluation and
Benchmarking: Traditional to Big Data to Internet of Things - 7th TPC
Technology Conference, TPCTC 2015, Kohala Coast, HI, USA, August
31 - September 4, 2015. Revised Selected Papers, ser. Lecture Notes
in Computer Science, vol. 9508. Springer, 2016. [Online]. Available:
https://doi.org/10.1007/978-3-319-31409-9

[13] ——, Performance Evaluation and Benchmarking. Traditional - Big
Data - Interest of Things - 8th TPC Technology Conference, TPCTC
2016, New Delhi, India, September 5-9, 2016, Revised Selected Papers,
ser. Lecture Notes in Computer Science, vol. 10080. Springer, 2017.
[Online]. Available: https://doi.org/10.1007/978-3-319-54334-5

[14] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, 5th Edition. Morgan Kaufmann, 2012.

[15] Google play: Benchmark apps. https://play.google.com/store/search?q=
benchmark. Accessed: 2017-10-09.

[16] B. K. A. Anand Lal Shimpi. (2013) They’re (almost) all dirty: The state
of cheating in android benchmarks. http://www.anandtech.com/show/
7384/state-of-cheating-in-android-benchmarks. Accessed: 2017-10-09.

[17] S. Z. X. Developers. (2017) Benchmark cheating strikes back: How
oneplus and others got caught red-handed, and what they’ve done about
it. https://www.xda-developers.com/benchmark-cheating-strikes-back-
how-oneplus-and-others-got-caught-red-handed-and-what-theyve-done-
about-it/. Accessed:2017-10-09.

[18] J. Gustafson, “Purpose-based benchmarks,” IJHPCA, vol. 18, no. 4,
pp. 475–487, 2004. [Online]. Available: https://doi.org/10.1177/
1094342004048540

[19] D. Pandiyan, S. Lee, and C. Wu, “Performance, energy characterizations
and architectural implications of an emerging mobile platform
benchmark suite - mobilebench,” in Proceedings of the IEEE
International Symposium on Workload Characterization, IISWC 2013,
Portland, OR, USA, September 22-24, 2013, 2013, pp. 133–142.
[Online]. Available: https://doi.org/10.1109/IISWC.2013.6704679

[20] H.-J. Yoon, “A study on the performance of android platform,” Interna-
tional Journal on Computer Science and Engineering, vol. 4, no. 4, p.
532, 2012.

[21] Y. Guo, Y. Xu, and X. Chen, “Freeze it if you can: Challenges
and future directions in benchmarking smartphone performance,” in
Proceedings of the 18th International Workshop on Mobile Computing
Systems and Applications, HotMobile 2017, Sonoma, CA, USA,
February 21 - 22, 2017, 2017, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/3032970.3032979

[22] J. Kim and J. Kim, “Androbench: Benchmarking the storage
performance of android-based mobile devices,” in Frontiers in Computer
Education [International Conference on Frontiers in Computer
Education, ICFCE 2011, Macao, China, December 1-2, 2011], 2011,
pp. 667–674. [Online]. Available: https://doi.org/10.1007/978-3-642-
27552-4 89

[23] A. Joshi, L. Eeckhout, and L. John, “The return of synthetic bench-
marks,” in 2008 SPEC Benchmark Workshop, 2008, pp. 1–11.

[24] C. Kim, J.-h. Jung, T.-K. Ko, S. W. Lim, S. Kim, K. Lee, and
W. Lee, “Mobilebench: A thorough performance evaluation framework
for mobile systems,” in The First International Workshop on Parallelism
in Mobile Platforms (PRISM-1), in conjunction with HPCA-19, 2013.

[25] Wikipedia: Playstation eye. https://en.wikipedia.org/wiki/PlayStation
Eye. Accessed: 2017-10-09.

[26] Google. Android accessibilityservice api. https : / /developer.android .
com / reference / android / accessibilityservice / AccessibilityService . html.
Accessed: 2017-10-09.

[27] L. Project. Lineage os. http://www.lineageos.org. Accessed: 2017-10-09.

