Distributed Computing in Fault-Prone Dynamic Networks

Philipp Brandes, Friedhelm Meyer auf der Heide

ETH Zurich - Distributed Computing Group - www.disco.ethz.ch

Introduction

 Moving nodes in a dynamic network with changing connections

Introduction

- Moving nodes in a dynamic network with changing connections
- Given highly dynamic network with n nodes
- But n unknown
- Needed for many basic tasks
 - all-to-all dissemination
 - determining median
- Counting important task by itself

Overview

- Introduction
- Model
- Impossibility of strong counting
- Weak counting
- Strong counting with upper bound N

Model

•
$$G_t = (V, E_t)$$
 with $V = |n|$

- Connected in every round, but no other restriction on E_t
- Nodes communicate via broadcast
- Each node has unique identifier (UID)
- ► *T*-interval dynamics: ∃stable, connected subgraph for the next *T* rounds at every round

• Solved by Kuhn et al. in
$$\mathcal{O}\left(n+\frac{n^2}{T}\right)$$

Model

•
$$G_t = (V, E_t)$$
 with $V = |n|$

- Connected in every round, but no other restriction on E_t
- Nodes communicate via broadcast
- Each node has unique identifier (UID)
- ► T-interval dynamics: ∃stable, connected subgraph for the next T rounds at every round
- Solved by Kuhn et al. in $\mathcal{O}\left(n+\frac{n^2}{T}\right)$
- Random edge fault with probability p on top

Counting

Strong Counting An algorithm for strong counting has a runtime bound t(n) such that each node stops with the correct count *n* within t(n) steps

Weak Counting An algorithm for weak counting has a runtime bound t(n) such that each node has the correct count n after t(n) steps, but the execution of the algorithm does not necessarily stop

Strong Counting with Random Edge Faults

- Assume algorithm A with runtime bound t(n)
- Consider edges e_1, e_2 which create segments of length n

Strong Counting with Random Edge Faults

- Assume algorithm A with runtime bound t(n)
- Consider edges e_1, e_2 which create segments of length n
- ► Always faulty during the first t(n) steps if size of the ring $T(n) \ge \left(\frac{1}{p}\right)^{2t(n)}$ with constant probability

Strong Counting with Random Edge Faults

- Assume algorithm A with runtime bound t(n)
- Consider edges e_1, e_2 which create segments of length n
- ► Always faulty during the first t(n) steps if size of the ring $T(n) \ge \left(\frac{1}{p}\right)^{2t(n)}$ with constant probability
- Strong Counting is not possible under random edge faults

- Guess k = 2, 4, 8, ...
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

Disseminate(A, k)

$$S \leftarrow \emptyset$$

for $i = 1, \dots, \frac{k}{T}$
for $r = 1, \dots, 2T$
if $S \neq A$
 $b \leftarrow \min(A \setminus S)$
broadcast b
receive b_1, \dots, b_y
 $A \leftarrow A \cup b_1, \dots, b_y$
 $S \leftarrow S \cup b$
 $S \leftarrow \emptyset$

- Guess k = 2, 4, 8, ...
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$\begin{array}{l} \texttt{Disseminate}(A,k)\\ S \leftarrow \emptyset\\ \texttt{for } i = 1, \dots, \frac{k}{7}\\ \texttt{for } r = 1, \dots, 2T\\ \texttt{if } S \neq A\\ b \leftarrow \min{(A \setminus S)}\\ \texttt{broadcast } b\\ \texttt{receive } b_1, \dots, b_y\\ A \leftarrow A \cup b_1, \dots, b_y\\ S \leftarrow S \cup b\\ S \leftarrow \emptyset\end{array}$$

- Guess k = 2, 4, 8, ...
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$\begin{array}{l} \texttt{Disseminate}(A,k)\\ S \leftarrow \emptyset\\ \texttt{for } i = 1, \dots, \frac{k}{7}\\ \texttt{for } r = 1, \dots, 2T\\ \texttt{if } S \neq A\\ b \leftarrow \min{(A \setminus S)}\\ \texttt{broadcast } b\\ \texttt{receive } b_1, \dots, b_y\\ A \leftarrow A \cup b_1, \dots, b_y\\ S \leftarrow S \cup b\\ S \leftarrow \emptyset\end{array}$$

- ▶ Guess *k* = 2, 4, 8, . . .
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$\begin{array}{l} \texttt{Disseminate}(A,k)\\ S \leftarrow \emptyset\\ \texttt{for } i = 1, \dots, \frac{k}{T}\\ \texttt{for } r = 1, \dots, 2T\\ \texttt{if } S \neq A\\ b \leftarrow \min{(A \setminus S)}\\ \texttt{broadcast } b\\ \texttt{receive } b_1, \dots, b_y\\ A \leftarrow A \cup b_1, \dots, b_y\\ S \leftarrow S \cup b\\ S \leftarrow \emptyset\end{array}$$

- Guess k = 2, 4, 8, ...
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$\begin{array}{l} \texttt{Disseminate}(A,k)\\ S \leftarrow \emptyset\\ \texttt{for } i = 1, \dots, \frac{k}{T}\\ \texttt{for } r = 1, \dots, 2T\\ \texttt{if } S \neq A\\ b \leftarrow \min{(A \setminus S)}\\ \texttt{broadcast } b\\ \texttt{receive } b_1, \dots, b_y\\ A \leftarrow A \cup b_1, \dots, b_y\\ S \leftarrow S \cup b\\ S \leftarrow \emptyset\end{array}$$

- ▶ Guess *k* = 2, 4, 8, . . .
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$\begin{array}{l} \text{Disseminate}(A,k)\\ S \leftarrow \emptyset\\ \text{for } i=1,\ldots,\frac{k}{T}\\ \text{for } r=1,\ldots,2T\\ \text{ if } S \neq A\\ b \leftarrow \min{(A \setminus S)}\\ \text{ broadcast } b\\ \text{ receive } b_1,\ldots,b_y\\ A \leftarrow A \cup b_1,\ldots,b_y\\ S \leftarrow S \cup b\\ S \leftarrow \emptyset\end{array}$$

Dissemination under T-interval Dynamics and Edge Faults

Adapt dissemination such that it can handle failures

```
Disseminate(A, I, x)
S \leftarrow \emptyset
for i = 1, ..., l
   for r = 1, ..., \frac{2T}{n}
       if S \neq A
           b \leftarrow \min(A \setminus S)
          for q = 1, ..., x
              broadcast b
              receive b_1, \ldots, b_v
              A \leftarrow A \cup b_1, \ldots, b_v
          S \leftarrow S \cup b
   S \leftarrow \emptyset
```

Weak Counting

Use Disseminate(A, I, x) to achieve s-dissemination.

Theorem

The above procedure executes weak counting. If $p > \frac{1}{T}$, then all nodes output the correct count n after $\mathcal{O}\left(\frac{n^2}{T}\left(\frac{\log(T)}{\log\left(\frac{1}{p}\right)}\right)^2 \cdot \frac{1}{1-p}\right)$ steps. If $p \leq \frac{1}{T}$, they do so after $\mathcal{O}\left(\frac{n^2}{T}\right)$ steps. The bounds hold with probability at least $1 - e^{-\frac{n}{2T}}$.

- k-Verification
 - \blacktriangleright Send committee ID or \perp if at least two committees are known

Strong Counting

• Use upper bound $N \ge n$ and reuse k-verification

Theorem

If an upper bound N on the number n of nodes is known to all nodes, then strong counting can be done. If $p > \frac{1}{T}$, then it needs runtime $\mathcal{O}\left(\frac{n^2}{T} \cdot \left(\frac{\log(T)}{\log\left(\frac{1}{p}\right)}\right)^2 \cdot \frac{1}{1-p} + \log\left(\frac{1}{p}\right) \cdot n \cdot \log N\right)$. If $p \leq \frac{1}{T}$, then runtime $\mathcal{O}\left(\frac{n^2}{T} + \log\left(\frac{1}{p}\right) \cdot n \cdot N\right)$ suffices. The bounds hold with probability at least $1 - n^{-\alpha}$.

p Unknown

If p is unknown, strong counting is not possible

p Unknown

- If p is unknown, strong counting is not possible
- Weak counting with log n overhead
 - Let k' = 2, 4, 8, ... be powers of 2 (upper bound on runtime)
 - Let k = 2, 4, 8, ... be powers of 2 (estimation number of nodes)
 - Set p such that runtime bound is met

Conclusions

- Strong counting not possible without upper bound
- Strong counting possible with upper bound on n
- Weak counting possible with small overhead

Conclusions

- Strong counting not possible without upper bound
- Strong counting possible with upper bound on n
- Weak counting possible with small overhead
- Other connectivity models?

Conclusions

- Strong counting not possible without upper bound
- Strong counting possible with upper bound on n
- Weak counting possible with small overhead
- Other connectivity models?

Questions?