Distributed Computing in Fault-Prone Dynamic Networks

Philipp Brandes, Friedhelm Meyer auf der Heide

Introduction

- Moving nodes in a dynamic network with changing connections

Introduction

- Moving nodes in a dynamic network with changing connections
- Given highly dynamic network with n nodes
- But n unknown
- Needed for many basic tasks
- all-to-all dissemination
- determining median
- Counting important task by itself

Overview

- Introduction
- Model
- Impossibility of strong counting
- Weak counting
- Strong counting with upper bound N

Model

- $G_{t}=\left(V, E_{t}\right)$ with $V=|n|$
- Connected in every round, but no other restriction on E_{t}
- Nodes communicate via broadcast
- Each node has unique identifier (UID)
- T-interval dynamics: \exists stable, connected subgraph for the next T rounds at every round
- Solved by Kuhn et al. in $\mathcal{O}\left(n+\frac{n^{2}}{T}\right)$

Model

- $G_{t}=\left(V, E_{t}\right)$ with $V=|n|$
- Connected in every round, but no other restriction on E_{t}
- Nodes communicate via broadcast
- Each node has unique identifier (UID)
- T-interval dynamics: \exists stable, connected subgraph for the next T rounds at every round
- Solved by Kuhn et al. in $\mathcal{O}\left(n+\frac{n^{2}}{T}\right)$
- Random edge fault with probability p on top

Counting

Strong Counting An algorithm for strong counting has a runtime bound $t(n)$ such that each node stops with the correct count n within $t(n)$ steps
Weak Counting An algorithm for weak counting has a runtime bound $t(n)$ such that each node has the correct count n after $t(n)$ steps, but the execution of the algorithm does not necessarily stop

Strong Counting with Random Edge Faults

- Assume algorithm A with runtime bound $t(n)$
- Consider edges e_{1}, e_{2} which create segments of length n

Strong Counting with Random Edge Faults

- Assume algorithm A with runtime bound $t(n)$
- Consider edges e_{1}, e_{2} which create segments of length n
- Always faulty during the first $t(n)$ steps if size of the ring $T(n) \geq\left(\frac{1}{p}\right)^{2 t(n)}$ with constant probability

Strong Counting with Random Edge Faults

- Assume algorithm A with runtime bound $t(n)$
- Consider edges e_{1}, e_{2} which create segments of length n
- Always faulty during the first $t(n)$ steps if size of the ring $T(n) \geq\left(\frac{1}{p}\right)^{2 t(n)}$ with constant probability
- Strong Counting is not possible under random edge faults

Distributed Counting

- Guess $k=2,4,8, \ldots$
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$
\begin{aligned}
& \text { Disseminate }(A, k) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, \frac{k}{T} \\
& \text { for } r=1, \ldots, 2 T \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { broadcast } b \\
& \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Distributed Counting

- Guess $k=2,4,8, \ldots$
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$
\begin{aligned}
& \text { Disseminate }(A, k) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, \frac{k}{T} \\
& \text { for } r=1, \ldots, 2 T \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { broadcast } b \\
& \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Distributed Counting

- Guess $k=2,4,8, \ldots$
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$
\begin{aligned}
& \text { Disseminate }(A, k) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, \frac{k}{T} \\
& \text { for } r=1, \ldots, 2 T \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { broadcast } b \\
& \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Distributed Counting

- Guess $k=2,4,8, \ldots$
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$
\begin{aligned}
& \text { Disseminate }(A, k) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, \frac{k}{T} \\
& \text { for } r=1, \ldots, 2 T \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { broadcast } b \\
& \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Distributed Counting

- Guess $k=2,4,8, \ldots$
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$
\begin{aligned}
& \text { Disseminate }(A, k) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, \frac{k}{T} \\
& \text { for } r=1, \ldots, 2 T \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { broadcast } b \\
& \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Distributed Counting

- Guess $k=2,4,8, \ldots$
- Use T-dissemination to spread UIDs
- Count UIDs to obtain n

$$
\begin{aligned}
& \text { Disseminate }(A, k) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, \frac{k}{T} \\
& \text { for } r=1, \ldots, 2 T \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { broadcast } b \\
& \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Dissemination under T-interval Dynamics and Edge Faults

- Adapt dissemination such that it can handle failures

$$
\begin{aligned}
& \text { Disseminate }(A, I, x) \\
& S \leftarrow \emptyset \\
& \text { for } i=1, \ldots, l \\
& \text { for } r=1, \ldots, \frac{2 T}{x} \\
& \text { if } S \neq A \\
& b \leftarrow \min (A \backslash S) \\
& \text { for } q=1, \ldots, x \\
& \text { broadcast } b \\
& \quad \text { receive } b_{1}, \ldots, b_{y} \\
& A \leftarrow A \cup b_{1}, \ldots, b_{y} \\
& S \leftarrow S \cup b \\
& S \leftarrow \emptyset
\end{aligned}
$$

Weak Counting

- Use $\operatorname{Disseminate}(A, l, x)$ to achieve s-dissemination.
- If $p>\frac{1}{T}$, set $s=\frac{T}{2 \log (T)} \log \left(\frac{1}{p}\right)$ and $I=2 \cdot \frac{1}{1-p} \cdot e \cdot \frac{k}{s}$.
- If $p \leq \frac{1}{T}$, set $s=\frac{T}{2}$, and $I=2 \cdot \frac{1}{1-p} \cdot e \cdot \frac{k}{s}$.
- Note that $s=\frac{T}{x}$

Theorem

The above procedure executes weak counting. If $p>\frac{1}{T}$, then all nodes output the correct count n after $\mathcal{O}\left(\frac{n^{2}}{T}\left(\frac{\log (T)}{\log \left(\frac{1}{p}\right)}\right)^{2} \cdot \frac{1}{1-p}\right)$ steps. If $p \leq \frac{1}{T}$, they do so after $\mathcal{O}\left(\frac{n^{2}}{T}\right)$ steps. The bounds hold with probability at least $1-e^{-\frac{n}{2 T}}$.

Distributed Counting (2)

- k-Verification
- Send committee ID or \perp if at least two committees are known

Strong Counting

- Use upper bound $N \geq n$ and reuse k-verification

Theorem

If an upper bound N on the number n of nodes is known to all nodes, then strong counting can be done. If $p>\frac{1}{T}$, then it needs runtime $\mathcal{O}\left(\frac{n^{2}}{T} \cdot\left(\frac{\log (T)}{\log \left(\frac{1}{p}\right)}\right)^{2} \cdot \frac{1}{1-p}+\log \left(\frac{1}{p}\right) \cdot n \cdot \log N\right)$. If
$p \leq \frac{1}{T}$, then runtime $\mathcal{O}\left(\frac{n^{2}}{T}+\log \left(\frac{1}{p}\right) \cdot n \cdot N\right)$ suffices. The bounds hold with probability at least $1-n^{-\alpha}$.

p Unknown

- If p is unknown, strong counting is not possible

p Unknown

- If p is unknown, strong counting is not possible
- Weak counting with $\log n$ overhead
- Let $k^{\prime}=2,4,8, \ldots$ be powers of 2 (upper bound on runtime)
- Let $k=2,4,8, \ldots$ be powers of 2 (estimation number of nodes)
- Set p such that runtime bound is met

Conclusions

- Strong counting not possible without upper bound
- Strong counting possible with upper bound on n
- Weak counting possible with small overhead

Conclusions

- Strong counting not possible without upper bound
- Strong counting possible with upper bound on n
- Weak counting possible with small overhead
- Other connectivity models?

Conclusions

- Strong counting not possible without upper bound
- Strong counting possible with upper bound on n
- Weak counting possible with small overhead
- Other connectivity models?

Questions?

